
Chapter 2

Statistical inference

Statistical inference (tilastollinen päättely) is the mathematical theory behind esti-
mates and their distributions. Estimates can be constructed in a way that statistical
hypothesis can be tested against their distributions. Estimate and its distribution
is the link between model (i.e. distribution and its parameters) and data.

2.1 Likelihood

Likelihood (uskottavuus) is the key concept in statistical inference. The theory is
developed by R.A. Fisher at the beginning of the 20th century. Likelihood deals
with data, model, and parameters. First of all, we need to have a model. Model
is the statistical distribution that we believe the random variable Y should obey,
so the model is probability density function fY (·). Model has parameters and their
values are unknown. In likelihood problems the parameter vector is often noted
with θ, although individual distributions usually have traditional conventions with
the parameter symbols. For example, normal distribution has θ = (µ, σ2).

The final component in likelihood is data. Very seldom we are doing inference
based on single observation y, almost always the data consists of observations
y1, . . . , yn. In that case the data is vector of observations, y. In more general case
the data is vector of multidimensional observations, i.e. matrix Y.

We are not dealing with random processes here, so the observations yi are identi-
cally distributed and the model or its parameters are not assumed to change with
time. If there is (auto)correlation between consecutive observations (yi, yi+k) we
are dealing with time series (aikasarja), but here we do not consider such cases. We
limit ourselves to independent observations, so together with the assumption of
non-varying model we deal with i.i.d. observations y = (y1, . . . , yn).

The idea of likelihood is quite simple and straightforward. Let us say that we have
reasons to believe that our data is from process that can be described with normal
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distribution with fixed and known variance of 1. The unknown parameter is the
expectancy µ. What if we have one observation y1? We cannot say much, but our
best guess would be that µ = y1, as in Fig. 2.1 a).
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Figure 2.1: Example of normal model with one observation (a) and with three ob-
servations (b).

Next, we consider case with three observations y = (y1, y2, y3), as in Fig. 2.1 b).
Intuitively, we should place our normal distribution so that it would somehow fit
to all three observations in the best possible way. What is the best possible way? If
our model Y ∼ N (µ, 1) is correct, the probability (density) of observing Y = y1 can
be computed from fY (y1;µ, 1). As the observations are i.i.d., the joint probability
of observing all three can be computed as a product of individual probabilities
(densities), fY (y;µ, 1) = fY (y1;µ, 1)× fY (y2;µ, 1)× fY (y3;µ, 1). Please note that with
likelihood and related fields both the data and the parameters are usually written
out with the pdf as fY (y;θ). The abovementioned procedure is, in a nutshell, the
likelihood principle.

2.1.1 Likelihood function

Following the previous procedure we can formulate the likelihood function L(·) in
a more formal way. Likelihood function is

L(θ;y) = c(y) fY (y;θ), (2.1)

where the pdf is the joint density function for y. Note the small change of paradigm
— likelihood function is used to estimate the unknown parameter vector θ, so that
is the main parameter of the function, the observed data y is a ’secondary param-
eter’.
The function c(y) in Eq. (2.1) can be any function involving only the data and not the
parameter vector, and in that sense the likelihood function is not uniquely defined.
Any function L(θ;y) ∝ fY (y;θ) is likelihood function. This fact can be used to
clean out unnecessary constants (i.e. terms independent of θ) from the likelihood,
making it a bit simpler.
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If we have i.i.d. observations, as we do in almost all the examples here, the likeli-
hood function is the product of the one-dimensional distributions:

L(θ;y) ∝
n∏

i=1

fY (yi;θ) , if y is i.i.d. (2.2)

The likelihood function is used together with maximum likelihood principle (su-
urimman uskottavuuden periaate). The principle simply states, that we should find
values (i.e. estimates) for our unknown parameters θ so that it will maximize the
likelihood function for observed data y. As L is defined through the joint proba-
bility density, we are essentially maximizing the probability of parameter values,
given the data.

In the example in Fig. 2.1 b) we have three observed values: −1.2, 0, 0.7. The like-
lihood function is L(µ) ∝ exp (− ((−1.2− µ)2 + (0− µ)2 + (0.7− µ)2) /2). It is not
too hard to see that setting µ = −1/6 will maximize the likelihood, see Fig. 2.2.
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Figure 2.2: Likelihood function of normal model with three observations as in
Fig. 2.1 b).

Log-likelihood function

The likelihood function is a product of pdf’s, and the aim is to maximize that. Tak-
ing any monotonic and increasing function of L will not alter the values where
the function reaches its extrema points. The logarithm function can be used to
reduce the likelihood into simpler form, because logarithm of product is sum of
logarithms. Therefore, maximum likelihood problems are often solved through
log-likelihood function (log-uskottavuusfunktio). Log-likelihood function l(·) is sim-
ply

l(θ;y) = log (L(θ;y) , (2.3)

where log stands for natural logarithm. Another convenient property of logarithm
is that log(exp(x)) = x. Many statistical distributions belong to the so-called ex-
ponential family, normal distribution being one of them, so the exponential form
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in likelihood function is quite common. With log-likelihood one can change from
product of exponentials to sum without exponent functions.
With log-likelihood function our example in Fig. 2.1 b) would reduce to task of
maximizing l(µ) ∝ − ((−1.2− µ)2 + (0− µ)2 + (0.7− µ)2), see Fig. 2.3.
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Figure 2.3: Log-likelihood function of normal model with three observations as in
Fig. 2.1 b).

2.1.2 Maximum likelihood estimate

The concept of likelihood defines the maximum likelihood (ML) principle (suurim-
man uskottavuuden periaate) in statistics. The maximum likelihood estimate (MLE)
of the unknown parameter in our probability model, given the data, is the value θ̂

that maximizes the likelihood (or log-likelihood) function:

L(θ̂;y) ≥ L(θ;y) ∀θ. (2.4)

This θ̂ is the point-estimate (piste-estimaatti) to θ.
In most of the cases the likelihood and log-likelihood functions are at least twice
differentiable over the whole parameter space. If this is the case, the MLE can be
found by studying the first and second derivatives of the (log-)likelihood function.
Extrema points of continuous and differentiable functions have zero value of the
first derivative. Furthermore, if the extremum point is maximum, the value of the
second derivative is negative.
The conditions described before form the so-called likelihood equation. In the gen-
eral case the parameter is a vector (of length d here), and the vector of first partial
derivatives is called the score function u(·):

u(θ;y) = ∇ l(θ;y) =

(
∂ l

∂ θ1
, . . . ,

∂ l

∂ θd

)
, (2.5)

and the Hessian matrix H is the matrix of second order partial derivatives:

H = ∇∇T l(θ;y) =

[
∂2 l

∂θi ∂θj

]
ij

. (2.6)
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With these notations, the MLE satisfies the likelihood equation, i.e. u(θ̂;y) = 0 and
H at θ̂ is negative definite.

Properties of maximum likelihood estimate

MLE has some nice properties which make it even more important in statistics. We
list the most important here, invariance and asymptotic properties. First, MLE is
invariant in re-parametrization. If we would change our parameter of interest so
that we would use parameter ϕ := g(θ), the MLE of the re-parametrized model
would still be ϕ̂ = g(θ̂).
What is even more important with MLE is that we know its asymptotic distribu-
tion, and it is the normal distribution. The proof of that relies on the central limit
theorem, but is far too cumbersome for us. So, without proof, we state that

θ̂
∼−→ Nd

(
θ,−H−1

)
. (2.7)

That means, at least, four things. First of all, it states that if we have ’enough’ data,
the MLE will approximately obey normal distribution. Note that as the parameter
here is a vector, the distribution is multidimensional.
Second, the MLE is unbiased. This means that the expectation of MLE is the ’true’
θ. Third, the MLE is efficient. This concept has not been mentioned here, but it
means that the variance of MLE is the smallest possible over all estimators.
Fourth consequence is very important in practice — we have a asymptotic variance
for the MLE, so we know how much it typically varies around true θ. This is the
basis for confidence intervals and statistical tests. The asymptotic variance for vec-
tor parameter is expressed through the expectation of the Hessian matrix, i.e. the
second partial derivatives of the log-likelihood function. While this may seem a bit
cumbersome, the good thing is that we usually do not need to derive estimators
and their variances ourselves. Somebody else has gone through the trouble and
done that for us using the abovementioned equations. For many practical cases the
formulas can be reduced to quite simple forms, for example that the variance of
mean x for normal model is σ2/n.

2.2 Statistical tests

From estimators and their distributions we can continue to statistical tests and con-
fidence intervals. Let us first deal with confidence intervals.

2.2.1 Confidence intervals

The MLE is a point-estimate, it gives us the most probable value for the unknown
parameter of our model. In the same manner, any statistics, whether MLE or any
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other t := t(y), are point-estimates. On the other hand, the data that we have
observed, y, is just one possible outcome of the random process. If we would repeat
the experiment or redo the observations, we would get different data vector y∗.
Following the though, we would also get another value for the statistics, t∗, that
would probably differ from the original t. As the observations y and y∗ are both
realizations of a random variable Y , also the estimates t and t∗ are realizations of a
random estimator T := t(Y ).
For that reason, often the point-estimate alone is not enough for us for data-analysis
purposes. A more interesting would be to know an interval where the statistics
would most probably be, even if we would repeat the experiment over and over
again. This interval is called confidence interval (CI; luottamusväli), or credible in-
terval in Bayesian inference.
The p 100 % confidence interval (e.g. 95 %) for parameter θ is the region where the
true value of parameter lies, with p 100 % confidence. More formally

P(θ ∈ Ωp) = p, (2.8)

although there are some philosophical issues in frequentist probability concept that
require slightly different formulation∗. The Eq. (2.8) does not define how the area
Ωp is chosen. There are some options for that, but with symmetric distributions (of
T ) all the options lead to the same conclusion — the area Ωp should be chosen so
that it is a symmetric interval around the θ, and only (1 − p) 100 % of the density
is left out from the tails of the pdf. Thus, CI for one-dimensional parameter and
symmetric distribution is such that

P(θ̂ − c ≤ θ ≤ θ̂ + c) = p. (2.9)
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Figure 2.4: Confidence interval (µ̂ − c, µ̂ + c) for µ, when data is from normal dis-
tribution.

∗Actually, in frequentist sense the parameter value is an unknown but constant value, and proba-
bility is not meaningful for it. The interval should be formulated using statistics as random variable,
T := t(Y ). Still, in practice the interpretation is more or less the same, and in Bayesian concept it is
allowed to speak about the probability of the parameter.
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Confidence interval for mean

Mean y is the most common statistics. With normal distribution as model, it is the
MLE for expected value, but the same is true for many other (symmetric) distribu-
tions and their location parameters. And, due to the asymptotic behavior of mean,
normal distribution is at least its asymptotic distribution.

The CI for mean and (asymptotic) expectancy µ is

P(y − ξ
s√
n
≤ µ ≤ y + ξ

s√
n
) = p, (2.10)

where the term s/
√
n is the standard error of the sample, divided by the number

of observations, i.e. the ’standard error of the mean’. The coefficient ξ depends on
the selected confidence level p. The ξ is selected so, that the probability in standard
normal pdf ϕ(·) from −ξ to ξ is p, i.e.∫ ξ

−ξ

ϕ(x)dx = p. (2.11)

For 95 % CI (i.e. p = 0.95) this value is 1.96, and similarly 2.58 for 99 % CI. To be
exact, the Eq. (2.10) with ξ from normal distribution is only the asymptotic result. If
the probability model actually is normal distribution, the ξ-values should be taken
from the Student’s t-distribution with n − 1 degrees of freedom. The difference is
not large, in practice it is something to be taken into account if sample size is, say,
less than 10. Example of normal and t-distributions are shown in Fig. 2.5.
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Figure 2.5: Standard normal distribution (black) and t-distribution with 2 (blue), 4
(red), and 9 (yellow) degrees of freedom.

2.2.2 Tests

With statistical tests we can check the likelihood of our hypothesis against the ob-
served data, and make conclusions that are based on quantitative results. For tests
we need suitably constructed test statistics t(y) and a hypothesis, the so-called null
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hypothesis H0 (nollahypoteesi). The null hypothesis needs to define the probability
model for test statistics, i.e. we must be know how T |H0 is distributed.
If the data shows that our null hypothesis is very unlikely to be true, then we
conclude that the alternative hypothesis H1 (vastahypoteesi) seems more plausible.
While the null hypothesis defines either one point in the parameter space, or at
least some (small) set of parameters, the alternative hypothesis is its complement
and does not define single value for the parameter, rather a single value that the
parameter is not. For example, one could test with the mean from normally dis-
tributed data if (H0) the µ = c or, (H1) the µ ̸= c.
The principle of statistical tests lies in the distribution of T |H0 and the likelihood
of observed t. As said, we must know the pdf of T |H0, i.e. fT |H0(t). With that
knowledge we can calculate the probability of observing as extreme value of T as
we have, or even more extreme, on the condition that H0 is true. We return to the
question of ’even more extreme’ in the next section, but for now we just formulate
that

P(T more extreme as t|H0) =

∫
tmore extreme

fT |H0(x)dx

= 1−
∫
t less extreme

fT |H0(x)dx = p. (2.12)

Now, the philosophy is that if it is not that unlikely to observe such values of the
statistic t if H0 is true, we should not reject it. We do not say that H0 is proven, but
that there is no evidence that it should be rejected. If the p-value is very small it
is quite unlikely to observe such value of t if H0 is true. In that case we have two
possibilities — either H0 is not true, or very unlikely event has happened. When
the p-value is small enough, we tend to rule out the very unlikely event and say that
H0 is rejected and H1 is accepted with certain p-value. See Fig. 2.6 for an example
of test statistics where T |H0 obeys χ2-distribution and the corresponding p-value.
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Figure 2.6: χ2-distribution, observed test statistics t and the area corresponding to
p-value of the one-tailed test.

A certain conservative attitude is adopted with test, and typical p-values where the
H0 is rejected are 0.10, 0.05 and 0.01. In times before computers it was common that
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just these three p-values were used, because tabulated values were looked up from
tables containing these three cases. Nowadays one can as easily compute the exact
p-value for the test and report that.
With statistical tests one needs to understand their capabilities and limitations.
Tests are quite good to quantify observed facts when there is moderate amount
of data in hand. With just a few observations the uncertainty is usually so large,
that it is very hard to reject H0. With large amount of data the problem is the op-
posite — it is quite easy to reject H0. This is because the test usually states that
there is evidence of deviation from H0. What the test does not quantify that well
is how large the deviation from H0 is, and especially, does it have any practical
consequences. For example, if one tests the correlation between two variables, H0

is that there is no correlation, i.e. ρ = 0. With almost any kind of data, the pa-
rameter ρ probably deviates slightly from zero. When the number of observations
increase, the test becomes stronger and picks up smaller and smaller differences
from zero. Therefore, with large data it is easy to conclude that the correlation is
not zero, and thus there is correlation, but the amount of correlation can be very
small and not significant within the physical/real-world context behind the data.
That said, statistical tests are very useful with moderate number of observations
and with moderate deviations from H0 when it is difficult to see without statistics
if the deviation is ’unusual’ or not.

Rejection areas

We need to define what we mean in Eq. (2.12) by areas where t is ’even more ex-
treme’. That depends on the distribution of the test statistics, and on the alternative
hypothesis. First, if the test statistics can have both negative and positive values,
the distribution must be symmetric over zero. This is the case, for example, if the
test statistics has normal or t-distribution under H0. If we cannot say beforehand if
it is impossible to have smaller (larger) values of t than assumed in H0, our alterna-
tive hypothesis must be two-tailed (kaksisuuntainen), i.e. H0 : θ = c, H1 : θ ̸= c. In
this case (symmetric distribution, two-tailed H1), the rejection area for test is such
that

P(T ≥ abs(t)|H0) = 2

∫ ∞

abs(t)

fT |H0(x)dx = 2

∫ −abs(t)

−∞
fT |H0(x)dx

= 1−
∫ abs(t)

−abs(t)

fT |H0(x)dx = p. (2.13)

If we have some a priori knowledge so that we can rule out, for example, positive
values of t, we have one-tailed (yksisuuntainen) alternative hypothesis H1 : θ < c

and the rejection area is

P(T ≤ t|H0) =

∫ t

−∞
fT |H0(x)dx = 1−

∫ ∞

t

fT |H0(x)dx = p, (2.14)
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and in similar manner for alternative hypothesis H1 : θ > c but with integration
limits changed accordingly.
The test statistics might have distribution that is only valid for positive values, for
example χ2- or F -distribution. These distributions are not symmetric, and we have
to choose carefully the rejection area. If our statistics is close to zero and we have
one-tailed H1, the test is defined as

P(T ≤ t|H0) =

∫ t

0

fT |H0(x)dx = 1−
∫ ∞

t

fT |H0(x)dx = p. (2.15)

With observed test statistics ’large’ and with one-tailed H1, the test is

P(T ≥ t|H0) =

∫ ∞

t

fT |H0(x)dx = 1−
∫ t

0

fT |H0(x)dx = p. (2.16)

If we cannot rule out beforehand the small or large values of t, we must choose
two-tailed test. Then, as we observe t to be either (i) close to zero or (ii) large, we
choose (i) Eq. (2.15) or (ii) Eq. (2.16) and multiply the p-value in the correct equation
by two to get the two-tailed p-value.

Mean tests

To list some tests, let us first consider the mean test, i.e. test for the expected value.
The data is y, and the statistics of interest is the mean value y. The null hypothesis
if of form µ = µ0. For practical reasons we rather use the test statistics

t =
y − µ0

s/
√
n
, (2.17)

where s is the sample standard deviation. From Eq. (2.7) we know that the asymp-
totic distribution of T |H0 is standard normal distribution. We can formally say that

H0 : µ = µ0 =⇒ T
approx.∼ N (0, 1). (2.18)

Actually, if we know that the distribution of data is normal, we can replace the
asymptotic distribution with the exact one: T ∼ tn−1, i.e. the Student’s t-distribution
with n− 1 degrees of freedom.
In Fig. 2.7 there are 10 random numbers that are sampled from N (0.1, 1) distri-
bution. Our H0 is that µ = µ0 = 0, and that distribution is drawn in subfig-
ure a) together with the data. The test statistics t is calculated and the areas ] −
∞,−t] and [t,∞] drawn in subfigure b) together with the distribution of T |H0, the
t-distribution with 9 degrees of freedom. The p-value, i.e. the colored area in subfig
b), is 0.212. Therefore, we do not have enough evidence against H0 : µ = 0 and we
cannot reject that possibility, although we actually know that the data comes from
distribution with µ = 0.1.
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Figure 2.7: Data and H0-distribution in left (a), observed value of t and the distri-
bution according to H0 in right (b).

Similar mean test can be also constructed for two samples and the difference of
their mean values. One has to assume that the samples have the same distribu-
tions (expect for the location parameter) and that their variances σ2

1 and σ2
2 , while

unknown, are equal. In that case,

H0 : µ1 − µ2 = d0 =⇒ T =
(y1 − y2)− d0

sp
√
1/n1 + 1/n2

∼ tn1+n2−2, (2.19)

where pooled variance

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
. (2.20)

In what follows we will shortly describe some tests, but the list is not by far com-
plete. You will notice that almost all the distributions for test statistics are either
Student’s t-distribution, χ2-distribution or F -distribution. This is simply because
all these distributions are derived from normal distribution – t-distribution from
the ratio of normal variable and its standard deviation, χ2-distribution from sum
of squared normal variables, and F -distribution from ratio of normal variables.

Variance tests

For variance of one normal distributed sample the test is

H0 : σ
2 = σ2

0 =⇒ T = (n− 1)
s2

σ2
0

∼ χ2
n−1, (2.21)

and rejection areas for two-tailed test can be computed using Eq. (2.15) or (2.16)
and adjusting p-value to 2p.
For two normal distributed samples the test for equal variance is

H0 : σ
2
1 = σ2

2 =⇒ T =
s21
s22

∼ Fn1−1,n2−1, (2.22)
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and the alternative hypothesis will define the rejection area to either Eq. (2.15) or
(2.16).

Correlation test

The linear correlation, i.e. the value of correlation coefficient ρ and its sample statis-
tics r = cor(x,y), can be tested against being zero. The test is

H0 : ρ = 0 =⇒ T =
r
√
n− 2√
1− r2

∼ tn−2, (2.23)

and rejection area is defined by Eq. (2.13) for two-tailed, and by Eq. (2.14) for one-
tailed test.

Kolmogorov-Smirnov test

Kolmogorov-Smirnov (K-S) test is our first non-parametric test. It can be used to
test if the observed distribution differs from theoretical distribution, and the test
is valid for all (continuous) distributions. The test is based on the empirical CDF
and the theoretical CDF. The test statistics t is defined as t =

√
nD, where D is the

maximum difference between the two CDF’s, see Fig. 2.8.
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Figure 2.8: Empirical and theoretical cumulative distribution functions and the
Kolmogorov-Smirnov difference D.

The K-S test is always one-tailed, and the test statistics have Kolmogorov distribu-
tion if H0 that the sample comes from the theoretical distribution is true, rejection
area is defined as in Eq. (2.16).

There is a similar version for K-S test between two empirical distributions, check
e.g. Wikipedia for the details.
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Goodness-of-fit test

Goodness-of-fit test can be used for discrete variables. It is formulated as

H0 : Empirical distribution obeys the theoretical one =⇒

T = n

n∑
i=1

(oi − ei)
2

ei
∼ χ2

n−1−m, (2.24)

and large values speak against H0 as in Eq. (2.16). The terms oi are the observed
probabilities (proportions) of class/value/category i in the sample, and terms ei are
the expected probabilities ifH0 is true. The variablem in the degrees of freedom for
the χ2-distribution is the number of unknown parameter values estimated from the
data for the theoretical distribution. For example, if we want to test if the observed
proportions come from uniform (discrete) distribution, we do not need to estimate
any parameter values from the data, and m = 0.

Independence test

The same test statistics as above can be used to test the independence between two-
dimensional categorical variable, i.e. proportions in two-way contingency tables
(cross tabulations, ristiintaulukko). Every observation has two properties, A and B,
and it can be associated to one cell in the contingency table. The proportions of the
associations are counted, resulting the following table

A \B 1 . . . k Σ

1 o11 . . . o1k A1

... ... ... ...
m om1 . . . omk Am

Σ B1 . . . Bk 1

The expected proportions, if the two properties A and B are independent, can be
estimated from the product of the marginal proportions: eij = AiBj . The test statis-
tics is computed over all the rows and columns, and

H0 : A ⊥⊥ B =⇒ T = n
m∑
i=1

k∑
j=1

(oij − eij)
2

eij
∼ χ2

(m−1)(k−1), (2.25)

and large values speak against H0 as in Eq. (2.16).
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