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Convolution

● present in all observations
– finite time resolution → convolution of time

● detector response, temporal sampling

– finite spectral resolution → convolution of 
frequencies

● detector bandpass, channel resolution

– point spread function → convolution of spatial 
coordinates 

● telescope beam, seeing, detector geometry
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Convolution

● in 1D:

– convolution of source intensity I(f) with the 
detector response curve R(f) 

– observed intensity distribution on the sky

I obs f = I true∗Rdet f  = ∫0

∞

I true  f '  Rdet  f − f ' df '

I obs0,0 = ∫0

2
d∫0



d  I true , B0− ,0−

 f∗gh=∫−∞

∞

f x g h−x dx
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Convolution

● convolution can be calculated easily with 
Fourier transforms: convolution 
theorem 

... but if the filter function B is known, the 
original signal can be recovered directly

                                                                 □

(this is the least squares solution)

F  I obs = F I true∗B = F I true F B

I true=F−1 F  I obs/F B
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De-convolution

● How would this work in practice
– Example 1: deconvolution of a 1 D signal
– Example 2: deconvolution of a 2D map

– the noise should be part of the model

● least squares should be fine for gaussian noise

F I obs x , y = F I true F B  F nx , y
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De-convolution

● conclusion:
– de-convolution is trivial – in the sense of 

getting a function whose convolution is equal 
to the observation

– result is extremely sensitive to the noise (and 
the knowledge of the convolving function)

● solution also tries to fit all the noise 

– deconvolution becomes easily an ill-posed 
problem => need some regularization
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Convolution

● usually one works with discrete quantities

– D is the observed image, H elements of the 
point spread matrix, I the true signal, and  
the noise in the observed data elements

Di=∑ j
H i , j I j j
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Naive solution
● naively one might try a least squares 

solution (assuming the errors were 
normally distributed)

● as the previous examples showed, this 
does not usually work
– oscillatory solutions
– might be acceptable if number of data points 

> number of points in the reconstructed 
image and the noise level is small

min I
∥H∗I−D∥2

2
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CfA

IRAM
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Smoothed least squares

● in the basic regularization we require the 
result image to be 'smooth'
– no rigorous definition of smoothness

● the solution is found by minimizing

–  is a smoothing parameter

–  is smoothing function, for example

min I [
∥H∗I−D∥2

2
 I ]

I =∑ j
 I j−I j1

2
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Smoothed least squares

– in Tikhonov regularization one minimizes 
function

● first term is 2 
● second term contains convolution of the result 

image with a high pass filter
●  is regularization parameter that determines 

balance between exact fit and image smoothness

– the solution (note syntax:               )

I=
H ∗ D

∣ H∣2∣P∣2

J  I  = ∥D  x , y−H∗I x , y∥  ∥P∗I∥

F  x = x
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Smoothed least squares

● more generally one might write the 
smoothing function as a quadratic form

● the solution of the resulting equation

   becomes
– solution is found quickly with linear algebra

– least squares solution recovered with =0

– stable solution as soon as  'sufficiently' large

 f = f T C f

min I [
∥H I−D∥2

2
  I T C I ]

I=HT HC 
−1 H T D=K D
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Smoothed least squares

● the main problem is the selection of the 
smoothing parameter
– often an ad hoc value - what looks right
– below we follow Thompson & Graig -92

● objectively  could be chosen so that 
correct -value is recovered
–    the observed data,    reconstructed image
– in practice this leads to too smooth solutions

● different criteria developed for finding the 
optimal smoothing  

∥g−g∥2=n2

gg
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Smoothing parameters: EDF

● the reason the normal  criterion fails is 
that counts d.o.f. of the fit but ignores the 
d.o.f. of the observed image

                                                               (1)

–  criterion ignores the second term => fit 
becomes less precise => resulting image is 
too smooth

● the variance can be estimated if the 
probability distribution of the recovered 
image is known 
– see Thompson & Graig (1992)

∥g−g∥2
〈∣g−〈 g〉∣2 〉=n2



29/02/08 Inversion methods in astronomy 16

Smoothing parameters: EDF

● when I=K() D, the variance term 
becomes

–  is selected so that Eq. 1 holds

– result can be generalized for non-quadratic 
smoothing functions (Thompson & Kay -92)

〈∣g−〈 g〉∣2〉 = 
2 tr K  = 

2 tr H HT HC 
−1 HT



∥H f −g∥2
=

2 tr  I−K 
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Smoothing parameters: CB

● Craig & Brown (1990) use the same 
criterion                                                    
but calculate the second term according 
to the stability of the solution

● the probability of a realization g
k
 is

– the latter form follows when Hf is replaced 
with our best estimate, i.e., the actually 
observed map

∥g−g∥2
〈∣g−〈 g〉∣2 〉=n2

P gk∝exp 1
2∥

H f −gk

 ∥
2

=exp 1
2∥

g−gk

 ∥
2


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Smoothing parameters: CB

● the previous leads to the result

– smoothin parameter is found based on

– larger filter factor than EDF, asymptotical 
difference smaller than a factor of two

〈∣g−〈 g〉∣2〉 = 〈∣g−〈 gk 〉∣
2 〉

= ∫  gk−〈 gk 〉
T  gk−〈 gk 〉exp−1

2 
gk−g

 
2

d gk

= 
2 tr K K 

∥H f −g∥2
=

2 tr  I−K K 
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Smoothing parameters: BAS

● Bayesian derivation by Gull (1988)
– several formulations (one method identical 

with EDF)
– one particular form

● H was the beam, C the constraints
● this can be evaluated without calculating the 

trace of matrix K => suitable for large problems

∥H f −g∥2 f T C f =n
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Smoothing parameters

● conclusions of Thompson & Graig
– easy problem = low blur

● EDF reconstruction close to the best possible
● CB oversmooths slightly (some bias)
● BAS worse, consistently undersmoothed

– harder problem = large blur
● EDF sensitive to , sometimes grossly 

undersmoothed
● CB appears slightly more robust
● BAS undersmoothed (features produced by noise) but 

insensitive to the value of   
– the 2 method produces grossly oversmoothed results
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Linear regularization methods

● some problems
– Gibbs oscillations near discontinuities
– hard to use any a priori information (even 

positivity constraints)
– regularization usually through smoothing: 

leads to loss of resolution
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Some regularization schemes

● sometimes called (simultaneous) autoregressive 
model

● equivalent to prior

 

– examples of other forms 
● Charbonnier et al. (1997)
● Moline et al. (1996, 2001,   2000)

∥C I∥=∑∑ I x , y − I  x−1, y  I x1, y I  x , y−1I x , y1
4

∝exp−

2
∥C I∥
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Bayesian framework
– the Bayes formula of probabilities

– in this case we interpret D as the observed 
data and  I  as the true intensity

– solution found by maximizing posterior 
probability P(I|D) 

● P(I) is prior probability of given solution I 
● P(D|I) is the probability of data when model I  is 

given  (by itself would often lead to 2 
minimization)

● P(D) is merely a normalization factor

P  I∣D=
P I P D∣I 

P D
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Bayesian framework

– the maximum likelihood estimate would be

   while the solution from Bayes formula is

● MAP = maximum a posteriori solution
● denominator P(D) does not affect the solution
● ML = MAP with constant prior

ML  I =max I pD∣I  p I 

ML  I =max I pD∣I 
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Bayes: Gaussian noise
– for gaussian (=normally distributed) noise

● in unconstrained case this leads to 2 
minimization

● in constrained case regularization can be built in 
the iterative optimization algorithm

– Landweber / successive approximations / Jacobi method
– number of iterations ~ smoothness of solution
– include other constraints, e.g., positivity

pD∣I =...exp[−1
2  D−I ∗ H

 
2

]

max pD∣I =max exp−1
2


2
⇒min2
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Bayes: Gaussian noise
– in the special case that both object and noise 

are normally distributed with zero mean, the 
Bayes solution leads to Wiener filtering

– as before, H is the beam, D the observations, and I the 
recovered intensity

– N
2 the noise variance and o

2 the object variance

● Wiener filtering is very fast to calculate – and optimal 
in case of stationary, Gaussian signal

● ... but causes artifacts (e.g., rings around point 
sources) and needs noise estimates in the frequency 
space –  = () !

I=
H ∗ D

∣ H∣2N
2 /o

2
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Bayes: Poisson noise

– Poisson distribution is

● k is the discrete number of events
● µ is the expectation value (and variance)

and the probability becomes

– ML estimate is found by setting derivate of     
ln p(D|I) to zero

pk =
k

k !
e−

pD∣I =∏x , y

[H∗I x , y ]
Dx , y 

e−H∗I  x , y

D x , y!

∂ ln pD∣I 
∂ I

=0 ⇒
D

H∗I
∗H ∗

=1
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Bayes: Poisson noise

– this leads to an iterative algorithm 
● multiply both sides with I, evaluate left side using 

an old estimate on the right hand side

● this is the famous Richardson-Lucy algorithm 
(Lucy 1974) or the expectation maximization 
(EM) method

● the flux is conserved and the solution is always 
non-negative

● still only a maximum likelihood solution

I n1
= I n D

H∗I n
∗ H ∗ 
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Bayes: Poisson noise

– if we denote with M the true solution, the 
probability of given model I becomes

   and the MAP solution is

   setting M=I(n) one obtains an iterative formula

pI  =
∏ M I e−M

I !

I = M exp{[ D
H∗I

− 1]∗H ∗ }

I n1=I n exp{[ D
H∗I n

− 1]∗H ∗ }
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Iterative regularized methods
● let I be the recovered intensity
● constraints can be presented as a 

function PC so that we require, e.g., 

– positivity of solution
– object belongs to spatial domain D

– solution is band limited

PC  I  x , y={I  x , y , if  x , y ∈D
0, otherwise }

PC 
I  x , y={I x , y , if 0

0, otherwise}
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Iterative regularized methods

● the constraints can be implemented 
easily in iterative schemes
– smaller number of iterations acts also like 

regularization

● below are examples of regularized 
versions of the following algorithms
– Jansson-Van Cittert
– Landweber
– Tikhonov
– Richardson-Lucy
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Iterative regularized methods

● the van Cittert iteration is very simply

– convergence parameter can be set ~1

– may converge in a few iterations, diverges in 
the presence of noise

● Jansson (-70) considered constraint A<I<B 

– more generally 

I n1
=I nD−H∗I n

C [1−2∣I
n
−AB/2∣

B−A ]
I n1

=PC {I nD−H∗I n}
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Iterative regularized methods

● regularized Landweber iteration

– ~steepest descent minimization (Jacobi 
method)

– H*(x,y) = H(-x,-y) 

● regularized Richardson-Lucy

I n1
=PC {I n

H ∗
∗D−H∗I n }

I n1=PC {I n[ D
H∗I n

∗H ∗ ]}
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Iterative regularized methods

● Tikhonov solution is obtained using 
gradient function

● P is a high pass filter

– normal iteration is

   and the regularized version, not surprisingly,

∇ J=[H ∗
∗HP ∗

∗P ]∗I−H ∗
∗D

I n1
=I n−∇ J

I n1
=PC {I n−∇ J }
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Edge effects

● FFT based methods are computationally 
efficient in de-convolution
– Richardson-Lucy requires 4 FFT 

transformations and total cost is O(N2logN)

● in the case of extended emission edges 
cause ripple in the solution
– artifacts can be decreased by ×10 by using 

reflective or anti-reflective boundary 
conditions

● changes the result – what did the real beam see 
outside the image? 



29/02/08 Inversion methods in astronomy 36

Edge effects

● the boundary pixels depend on the 
unknown intensity outside the FOV

● Bertero & Boccacci (2005):
– RL is used to deconvolve a larger image, 

which improves the reconstruction inside FOV
– brightness values outside measured map as 

free parameters
– fast implementation using FFT:s
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Edge effects

original image and the beam

convolved image with Poisson noise and
RL reconstruction of full image

reconstruction of smaller area with RL
and with the method of Bertero &
Boccacci 
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Interlude: Interferometry

VLA/NRAO
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Interferometry

● correlation of signals observed by two or 
more antennas

● same wavefront is observed in 
antennas with a phase shift

● the correlator calculates time 
average of the product of 
measured voltages V

● V2 is proportional to the power 
of the radiation

● for a point source the cross 
correlation is 

g =
1
c
B⋅s

R xy∝w1 w2 ei 2
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Interferometry
● the phase shift is set to zero at a phase 

center close to the object
● the corrected cross correlation is called 

the visibility 
– this depends on the source intensity and the 

angles between the source direction and the 
baseline B connecting the antennas

● usually coordinates u and v are used
● u = east-west length of B as seen from the phase 

centre
● v = corresponding length of the north-south 

projection
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Interferometry

● in aperture synthesis the observed 
visibilities are used to derive a continous 
map of the sky around the phase centre

● for an intensity distribution the visibility is

– I(x,y) is the true surface brightness
– A(x,y) is the effective collecting area of the 

telescopes, including their beam pattern 
– ... one observes a Fourier transform of the 

surface brightness !

V u ,v = ∫ I

 x , y Ae x , yei 2ux yvdx dy
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Interferometry

● when we look at a small area surrounding 
the phase centre, the beam of individual 
telescopes is almost constant

● if visibilities were observed for all u and v, 
the intensity would be obtained by a 
direct Fourier transform

V u , v/Ae = ∫ I

x , yei 2uxyvdx dy

I

x , y  = ∫∫V u , v/Ae e−i 2uxvy du dv
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Interferometry

● in practice only a small part of the (u,v) 
plane is covered
– each antenna pair gives instantaneously only 

one position (u,v)
● ... and the corresponding point (-u,-v)
● because visibilities are real, V(-u,-v)=V*(u,v)

– as the Earth rotates, each antenna pair draws 
a curve in the (u,v)-plane 
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Interferometry

ATCA / J.Harju

(u,v)-coverage in two cases
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Interferometry

● the measured visibility can be seen as a 
convolution between true visibility and a 
mask g 
– g=1 where we have measurements, g=0 

elsewhere
– by definition the product g(u,v)V(u,v) is 

known everywhere and the Fourier 
transforms can be performed
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Interferometry

● according to convolution theorem

– Psyn is the Fourier transform of g = dirty beam 

– this defines the final resolution of the recovered 
map

– M is essentially the product of the true intensity 
and the beam pattern of an individual antenna

● g is also called the grading function of the 
synthesized aperture

F g u , vV u , v  = Con Psynl , m , M l ,m



29/02/08 Inversion methods in astronomy 48

Interferometry

● the recovered 'dirty image' contains 
artifacts caused by the incomplete 
sampling of the (u,v) plane
– each point source produces an image of the 

dirty beam
– one must somehow fill in the missing 

visibilities (regularization) or clean the final 
image
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Interferometry

● dirty image:
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CLEAN

● the CLEAN algorithm (Högbom 1974) 
models image as a sum of point sources

1. find an intensity peak in the (dirty) image

2. subtract the peak = (dirty) beam multiplied with a 
damping factor

3. repeat there are no more peaks above specified 
level

4. convolve point source model with idealized 'CLEAN 
beam' (e.g., central lobe of (dirty) beam)
– above 'dirty image'  and 'dirty beam' refer to 

interferometric observations
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CLEAN

– the residual image may be added to CLEAN 
image (as a check)

– instead of the real space image one can work 
in Fourier space using FFTs (Cark 1980) or, in 
the case of interferometry, directly with 
visibilities

– solution is unique 
● ... if there is no noise and if the number of 

visibility measurements is larger than the number 
of image elements

● in principle superresolution should be possible
● in practice (because of the noise and other 

factors) CLEAN performs badly in this respect
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CLEAN

dirty image cleaned and restored image
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CLEAN
– some negative aspects

● slow for large images
● no handle on the image statistics
● spurious peaks caused by the noise
● depression in surface brightness around strong 

sources
● fluctuations in extended emission
● final convolution with 'CLEAN beam' is basically an 

ad hoc procedure to produce nice images
– this affects also the relative scaling between CLEAN 

image and residuals!
● if there is a good source model for extended 

emission, that should be subtracted before 
CLEANing the image 
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Maximum entropy

● entropy is a measure of disorder
● in image reconstruction one would like to 

obtain an image that contains all 
information available from the 
observations – but no additional structure

● maximation of image entropy should 
guarantee this
– 'maximally noncommittal'
– 'as featureless as the data allow'
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Maximum entropy

● the problem is still the inversion of eq.

– D is the observed quantity, in images usually 
the intensity

– H is the point spread function
– N (additive) noise

● the entropy of the recovered image is

– f is some function (not quite a unique 
definition!)

Di=∑ j
H i , j I iN i

S=∫∫ f [ I  x , y ]dx dy S=∑i , j
f [ I i , j ]
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Maximum entropy
● entropy is related to the probability of a 

state
– entropy measures the number of ways a 

given state can be realize
– entropy is additive while probabilities are 

combined multiplicatively => entropy should 
be proportional to the logarithm of probability

● if there are W ways to realize a state, each with 
probability p

w
 =1/W, entropy is S = ln W = -ln p

w

● when alternatives have probabilities p
i
 the 

average becomes 
S=−〈 ln pi 〉=−∑i

pi ln pi
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Maximum entropy

● if original variable X is transformed to Y

– J is the Jacobian of the transformation, J=dX/dY 

● this suggests that entropy should be 
written in form

– p
0
(X) is 'prior', which is analogous with the 

state degeneracy g in the discrete case

S=−∫ p X  ln [ pX ]dx=−∫ qY  ln[q Y /J Y ]dY

S=−∫ p X  ln [ pX / p0X ]dX

S=−∑i
pi ln  pi /gi
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Maximum entropy

● the prior makes entropy independent of 
the scaling

● when prior is constant (flat image), 
entropy is maximum when p

i
 is constant

– more generally, maximum corresponds to 
state where p is proportional to its prior 

● in practice different forms of entropy are 
used

f  I =−ln I
f I =−I ln I
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Bayesian derivation
● the Bayes equation of probabilities says

– P(I) is the prior probability
– P(D|I) is the probability of observations when 

image I  is given; in case of gaussian white 
noise

● note that the denominator P(D) does not depend on 
the solution and is merely a normalization factor

P  I∣D=
P I P D∣I 

P D

P I ∝exp [S  I ]

P D∣I ∝∏r
exp [−1

2
∑i  H ri I i−Dr

 
2

]
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Bayesian derivation

● when we take a logarithm we obtain 
probability

– this is a sum of entropy and the 2 value

– our solution would correspond to the 
maximum of this probability

– conversely, we could minimize  2 – S

– note: assumes uncorrelated errors and 
normal error distribution!

ln P  I∣D=S  I i−
1
2
∑r ∑i

H ri I i−Dr

r

2
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Entropy functions

● in the framework of power spectrum 
estimation Burg (1967) came up with the 
formula corresponding to
– there I corresponded to terms of power 

spectrum that can be seen as independent 
Gaussian random variables

– probability is product of normal probabilities 
and the entropy is proportional to logarithm 
of variance

– same form can be derived for images in the 
limit of high photon numbers

S1=∫ ln I
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Entropy functions

● consider an image with pixel intensities I
i

● with total flux of the image D0=sum(Ii), 
we can define fractional intensity fi=Ii / D0 

– the image can be constructed in  W=exp(S) 
different ways, which leads to

– the same formula can also be derived from 
thermodynamic entropy in the limit of low 
photon numbers

● valid for high frequencies while S1 might be more 
appropriate at radio frequencies?

S2≈−N∑i
f i ln f i=−N /D0∑i

ln I iconstant 
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Entropy functions

● the two formulations are not necessarily 
contradictory
– correspond to different probability 

distributions one can attribute to the same 
image ?

– both go to infinity when intensity goes to 
zero: forces results to be positive

● there are generalizations for cases with negative 
intensities

– both have negative second derivative which 
suppresses rapid variations
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Entropy functions

– still another formula (Gull & Skilling 1991)

● M prior image, I our solution
● entropy reaches maximum (value zero) when 

image is equal to the prior

S = ∑x∑y {I  x , y−M x , y−I  x , y ln I
M }
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ME-approach to interferometry

● intensity I(x,y) is to be reconstructed 
based on measured function F(D)(u,v)
– D is in real space and F(D) is its Fourier 

transform in the (u,v)-space so that F(I)
(u,v)=F(D)(u,v) for all measured u and v

– ignoring the noise we can maximize

● Lagrange multipliers  enforce the constraints

– derivation wrt I(x,y) gives

∫∫ f  I dx dy∑u , v
u , v ∫∫ I exp [−i 2u xv y]dx dy− Du , v

f ' [ I x , y]=−∑u , v
u , vexp[−i 2uxvy]≡J x , y
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ME-approach

● the ME image is found by formally solving 
this equation

– depending on the selected form of entropy 
we have either

   or 

I x , y= f '−1
[J x , y]≡g [J x , y]

S=ln I ⇒ S '=1/ I ⇒ gJ =1/J

S=−I ln I ⇒ S '=−ln I1 ⇒ gJ =exp−1−J 
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ME-approach

● the result has the following properties
● in J(x,y) are only Fourier components 

corresponding to measured (u,v) 
– in the restored image missing values must be created by 

the non-linearity of the f '
– the degree of the non-linearity depends on absolute 

value of I  
● if we add an offset in the intensities, the 

recovered map will be different
● the slope of f ' is small at large values of I => 

peaks will be narrow ('superresolution')
● the slope is large at small I => small scale 

variations are suppressed 
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ME-approach

– around extreme points Taylor expansion 
gives for f=-ln I

   and for  f = - I ln I  

– in other words, in details the first definition of 
entropy leads to Loretzian peaks, the latter 
to Gaussian peaks

I x , y= 1
ax−x0

2
2b x−x0y−y0cy−y0

2
d

I x , y=exp [−a x−x0
2
−2bx−x0y−y0−c y−y0

2
−d1]



29/02/08 Inversion methods in astronomy 69

ME-approach

– the resolution depends on the intensity level: 
it is largest for the highest peaks

● peak height is less reliable than the values of 
integrated flux

– suppression of small scale variation is best at 
low intensities

● the sidelobes of a point source are not well 
suppressed if the source is located on an elevated 
plateau 

– there can be spurious peaks around 
absorption features
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ME-approach, noisy data

● in ME analysis one can resort to the old 
scheme: smooth until one gets expected 
value of 2 =   number of independent 
data points

– the constraint

   is again forced with the help of Lagrange 
multipliers when maximizing

● 'least squares MEM' 

2=∑u , v [ I u ,v− D u ,v
 u , v ]

2

=

∫∫ f  I dx dy − 2−
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ME-approach, noisy data
● the function J is still band limited

– fourier coefficients of F(J) are zero except for 
the measured (u,v) coordinates 

● the model predictions differ  from the 
data

– in the fourier space the residuals F(I)-F(D) are 
not random

● highly correlated, negative at peaks and in 
regions of low intensity mostly positive, 
smoothing out variations of I 

J u , v − 
I u , v − D u , v


2
u , v

=0
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ME-approach, noisy data

– flux is transferred from peaks to background
● the relative effect is largest for small peaks

– at large S/N the residuals are larger than for the original 
data by a factor of sqrt(2) !

● the solution is always biased towards the prior 
(usually flat distribution)

– additional constraints can be added for flux  
conservation of the whole image

– resolution depends on the S/N ratio
● MEM is capable of superresolution

– but how to tell, whether all the structures are real?
● final MEM image can be convolved with a 

gaussian to get a more uniform resolution 
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ME-approach, noisy data

– comparison with CLEAN
● MEM is biased, CLEAN is not; bias results from the 

fact that data (including he noise) is not modelled 
exactly

● bias is acceptable as a trade-off with smaller 
variance and can be decreased by convolving the 
original data

● MEM minimizes pixel variance so that the images 
are smoother than CLEAN images

● CLEAN is poor for extended emission, MEM has 
problems with point sources on extended emission

● in MEM a priori information can be introduced easily 
through prior image
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ME-approach, single aperture

● here a single aperture means that we 
have full coverage of all spatial 
frequencies, but the S/N ratio drops at 
scales below the size of the psf H

● the maximized function is identical to the 
previous case except for the inclusion of 
the point spread function 

S = ∫∫ f I dx dy

− ∑u , v {∣ H u , v I u , v− D u , v∣
 u , v }

2

−
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ME-algorithms
● the MEM image is result of optimization 

● optimize                       
● unknowns are image values Ii,j based on which 

entropy is defined, e.g., 

●  one can include condition for flux preservation

– µ can be selected to fit given value of total flux
– more simply, use corresponding value A directly as the 

prior

 

max {S−C }

S=−∑i , j
pi , j log pi , j , pi , j=I i , j /∑i , j

I i , j

max {S−C−∑ I i , j}

S=−∑i , j
I i , j [ log  I i , j /A−1]
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ME-algorithms

– constrained optimization: maximize S subject 
to constraints on goodness-of-fit C 

● and possible other constraints on flux etc.

– solution is always iterative
– could be found with general optimization 

algorithms
– there are a number of specialized algorithms
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ME-algorithms
– Gull & Daniel (1978) maximize 

● image remains positive on all iterations
● unstable, even if successive iterates are smoothed

– normal steepest ascent

● develops negative values, unless x is extremely 
small

● negative values must be reset and even then there 
will be convergence problems

Q=S−C

I j
n1

= A exp [−
∂C  I n
∂ I j

]

I j
n1

=I j
n
x ∂Q I n

∂ I j
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ME-algorithms

– conjugate gradient algorithms
● instead of direction Q one uses only part that is 

conjugate to some previous directions (~attempts to 
estimate the Hessian based on previous steps)

● considerably better than steepest ascent although 
problem of negative values persists

– search of unconstrained optimization (=const)
● main expense is in the image data transformations 

needed for estimates of Q 
● instead of a single line, it may be more efficient to 

search full subspace
● some (<10) vectors are used to span the subspace
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ME-algorithms

● search directions of constrained problem
– in previous case a separate iteration is 

needed on  so that C becomes correct

– the search directions e can be selected to 
enforce the constraints directly

● e.g. see Skilling & Bryan (1984) 
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ME-algorithms

● Cornwell & Evans (1985; AIPS task 'VM')
– maximize 

● Lagrange multipliers  and  selected so that 2 
and total flux F both get their expected values

– condition J=0 leads to the implicit formula

● m is the prior image

– iterative substitution leads to unstable 
algorithm and slow convergence (see above) 
=> better to optimize directly the  J  

J=S−2− I

I i=mi exp −∂2 /∂ I i−
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ME-algorithms

– quadratic approximation of entropy is valid 
but only very close to solution => need to use 
second order methods

– direct Newton-Raphson gives

– Hessian of J is diagonal – apart from the 
contribution from beam profile H 

– approximation: neglect non-diagonal part of 
the Hessian = sidelobes of the beam

 I = −∇∇ J −1∇ J
∇ J = ∇ S−∇

2
− I

∇∇ J = ∇ ∇ S−2 H
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ME-algorithms

– beam H is replaced with a scaled identity 
matrix

● q is a scaling factor that depends on the beam 
solid angle (conversion from flux in the beam to 
flux within a pixel) – exact value is not important

– previous equations give the search direction 
b along which a line search is performed

● two convolutions are required for the calculation 
of residuals but also these can be interpolated

∇∇ J=∇∇ S−2 q I
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ME-algorithms

– convergence criterion
– update of lagrange multipliers

● these updates interfere with update of J so that 
step size must be limited

– one must correct for negative values
● small values are cut, lower limit decreased during 

the iterations

– for large images VM is generally faster than 
CLEAN 

∥∇ J⋅∇ J∥∥1⋅1∥

 = −2 /∥∇2⋅∇2∥

 = −F /∥∇ F⋅∇ F∥
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Problems in deconvolution

– Starck & Pantin (2002)
● fourier based methods give band-limited solutions 

(Wiener filtering, Tikhonov method, ...)
● CLEAN cannot restore extended emission (and is 

slow for large images)
● MEM cannot recover both compact and entended 

sources
– results depend on the background level
– poor results for features below the background level
– spatial correlations ignored

● iterative methods cause noise amplification
– van Cittert, Richardson-Lucy, Landweber, ...
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Problems in deconvolution

– two images with identical entropy

Starck et al. 2001
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Wavelet transform

– Fourier-based methods perform poorly when 
signal contains point sources or edges 

● base functions extend over the whole space

– wavelet transform promises to be a good 
alternative

● base functions are wavelets that are localized in 
both real and frequency space

● data is presented as a sum of wavelets that are 
scaled and translated

● presentation is hierarchical, each level describing 
the structures at one particular scale
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Wavelet transform

– original signal s is decomposed in to a coarse 
image cJ and wavelet bands wj  , j=1,..., J 

● J is the number of scales used

– the coarse image corresponds to frequencies 
<(1/2)J  and each wavelet band to frequencies 
[ (1/2)J+1, (1/2)J ]

– the decomposition is calculated using low- 
and high pass filters h and g 

● filters are derived from the wavelet function

c j1, l = ∑k
hk−2lc j , k

w j1, l = ∑k
gk−2lc j , k
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Wavelet transform

– for 2D images there are three wavelets, one 
horizontal, one vertical, and one diagonal

● three wavelet images on each resolution level
● total number of pixels same as in the original data
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Wavelet transform

● NGC 2997

Starck, Pantin, Murtagh (2002)
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Wavelet transform
● deconvolution can be done by first applying 

inverse filter H-1  

– in F the noise Z is still normally distributed, and 
may be amplified

– the wavelet transformation of F is thresholded 
and inverse transformation provides the result

● thresholding sets small wavelet coefficients (=noise) 
to zero

– wavelet-vaguelette method (Donoho -95)

H −1
u , v = 1 / H u , v
F = H−1∗DH−1∗N = IZ
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Wavelet transform

● Neelamani (1999, 2001) hybrid scheme
– regularization still done in Fourier domain 

through a window function W 

● S is the noise power spectrum !

– the windowed function F  is

● parameter  should be small
● remaining noise eliminated with wavelet 

transform (eliminates Gibbs oscillations)
● positivity constraint not used

W=
∣ H∣2

∣ H∣22 / S

F=W∗H−1
∗DW∗H−1

∗N
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Wavelet transform

– some problems of the previous approach
● determination of the regularization parameter  is 

not trivial
● positivity constraint is not used at all
● the power spectrum of noise is usually unknown
● restricted to the case of Gaussian noise
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Wavelet regularization

– in iterative deconvolution the residual at a 
particular iteration is

– using a wavelet algorithm the residuals can 
be written as sum of last smooth array and 
wavelets at  J scales

   ... but a large part of wj, x, y may be just noise

Rn
x , y=Dx , y−H∗I nx , y

Rnx , y=cJ x , y∑ j=1

J
w j , x , y
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Wavelet regularization
– need to separate significant structures from 

noise
– define multiresolution support M as

● coefficient is significant if P( |w>wj,x,y|<

● for Gaussian noise, e.g.,  w>3j 

● one can include a source mask in M 

– one can write 'noiseless' residual

M  j , x , y={ 1, if w j  x , y significant

0, if w j x , y insignificant }

R n x , y =cJ  x , y ∑ j=1

J
M  j , x , yw j , x , y
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Wavelet regularization

– with the previous definition one can 
transform a simple iteration (van Cittert)

   into a more stable scheme

● only statistically significant structures are carried 
over to the reconstructed image

● final result is the restored image and residuals 
that are pure noise (R=N) 

– regularization by significant structures

I n1
 x , y=I nx , yRn

x , y

I n1
 x , y=I nx , y R n

 x , y
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Wavelet regularization

– the same can be applied similarly to the 
Richardson-Lucy algorithm

– setting D(n) as noiseless data

   the regularized version becomes

I n1
= I n D

H∗I n
∗ H ∗ 

D x , y=Dn
x , yRn

 x , y Dn
x , y=H∗I nx , y

I n1 = I n Dn
R n

Dn
∗ H ∗ 
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Wavelet regularization

● the basic idea of the Pixon method is 
somewhat similar to the 'regularization 
using significant structures'

● not based on wavelets; see Dixon et al. 1996

– data modelled as a sum of pseudo-images 
that are smoothed with spatially varying 
scale

– final image consists of a dictionary of 
features
+weak regularization for strong features

- if feature cannot be detected directly from data, it 
is strongly regularized as part of the background
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Wavelet regularization

● simulation of galaxy cluster observed 
with Hubble Wide Field Camera

original: no noise, no aberration 'observed': aberrated and noisy

Starck, Pantin, Murtagh (2002)
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Wavelet regularization

Richardson-Lucy Pixon method



29/02/08 Inversion methods in astronomy 101

Wavelet regularization

original: no noise, no aberration 'observed': aberrated and noisy



29/02/08 Inversion methods in astronomy 102

Wavelet regularization

wavelette-vaguelette wavelet-Lucy
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Wavelet regularization

– conclusions from the previous test
● Richardson-Lucy amplifies the noise; some of the 

fainter objects disappear
● in Pixon method the pixon features are identified 

from noisy (partially deconvolved data): strong 
sources are weakly regularized (=good), weak 
sources suppressed (=bad)

● wavelet-vaguelette is very fast; results better than 
with the previous methods

● wavelet-Lucy produced best results (fewer 
spurious sources)
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Wavelet CLEAN

● CLEANing 
– consisted of repeated subtraction of 

strongest point sources
– results were not good for diffuse emission

● MRC CLEAN (Walker & Schwartz 1988)
– build a smoothed image and the difference 

between original and the smoothed image
– apply CLEAN separately to both images
– result is the sum of processed maps
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Wavelet CLEAN

● in wavelet CLEAN the procedure is 
generalized to many scales (Starck 1998)
– calculate wavelet transformations of the 

image, the PSF and the CLEAN beam
– on each level, apply CLEAN using scale j of 

image and PSF transformations
– construct result image using the wavelet 

transformation of the CLEAN beam
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Multiscale entropy

● image I(x,y) is decomposed into a smooth 
image cnp(x,y) and a set of wavelet 
coefficients wj(x,y)

– index j refers to the scale, j=1, ..., np 

– original image is

– wj are calculated as the difference between 
the last smoothed plane and an image 
obtained with a low pass filter

I x , y=cnpx , y∑ j=1

np
w j  x , y

c j k  =∑l
hl c j−1k2 j−1 l 

w j k  =c j−1k −c j k 
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Multiscale entropy

– entropy is related to the sum of information 
on each scale

– in wavelet transformation information is 
related to the probability that individual 
wavelet coefficients are caused by noise

– minimize

S=−∑ j=1

J
∑k=1

N j ln pw j , k

J=1
2
∑k=1

N [ Dk−H∗I k

 ]
2

±  S
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Multiscale entropy

– for Gaussian noise

   where

● sj is again the noise in the wavelet coefficients at the 
level j 

● the constant term does not affect the maximization
● entropy ~ information => with the above definition 

smooth solution requires minimization of entropy

S=∑ j=1

J
∑k=1

N j s w j , k

s w j , k =
w j , k

2

2 j
2
 constant
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Multiscale entropy

● in Starck & Pantin (1996) multiscale 
entropy is defined 

● in the absence of signal the wavelet coefficients 
at level j approach mj – this should be small 
compared with any real signal, i.e., a small 
fraction of the noise

● the noise j acts as a weighting factor of the 
different scales

● entropy maximized 

Sm=
1
 I

∑scales j∑pixels
 j [w j  x , y−m j−∣w j x , y∣ln

∣w j x , y∣

m j
]
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Multiscale entropy

● multiresolution support 
● images at all wavelets scales, with pixel value 

TRUE if some information is present at given scale 
and location  (hard threshold, 'hard weighting')

1. calculate wavelet transform of image I(x,y) 

2. estimate  of the scale and set a threshold 
value for the significance (e.g. 3)

3. multiresolution support M(j,x,y) is

M  j , x , y ={1, if w j  x , yk j

0, if w j  x , yk j
}
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Multiscale entropy

● the aim 
– to reconstruct significant structures (where 

we have enough signal) without strong 
regularization

– to eliminate noise (strong regularization) 

● new definition for multiscale entropy

– entropy is calculated only for scales and 
regions with low signal-to-noise ratio

Sm=
1
 I

∑scales j∑pixels [1−M  j , x , y]  j [w j  x , y−m j−∣w j  x , y∣ln
∣w j  x , y∣

m j
]
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Multiscale entropy

– previous M can be replaced with a continuous 
function going from 0 to 1

● M~1  => weak regularization
● M~0 => strong regularization

– the values j can be obtained from 
simulations

● create noise image with =1 and do wavelet 
transform

● calculate standard deviations of wavelet 
coefficients at each scale, j

e 

●  j =  I j
e 
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Multiscale entropy

● image noise  I 

– estimated from the difference of the image 
and average filtered image

– e.g. in the case of CCD images one should 
disregard the high noise borders

● look at the intensity histogram

– estimate can be improved iteratively, using 
the wavelet transformation

● calculate multiresolution support and re-estimate 
noise from pixels M ~ 0
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Multiscale entropy

● for minimization of

Starck & Pantin (1996) used the gradient

   and steepest descent
–  above j is the wavelet at scale j 

J=∑pixels

1
2  D−H∗I

 I

2

−Sms I 

∇ J=−H ∗
∗

D−H∗I
 I

2




 I

∑scale j [ [1−M  j  ] j sgnw j
0 
 ln ∣w j

0 
∣

m j
]∗ j

∗

I n1
=I n

−∇ J  I n

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Multiscale entropy

– the parameter  is fixed by the noise 
behaviour of the wavelet transform

● determination far from straightforward
● depends on the requirement of smoothness
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Multiscale entropy

● Starck et al. (2001)
● the coefficient w is partly due to signal (SS), partly 

due to noise (SN)

– small coefficients are noise and contribute to SN 

– large coefficients contribute mostly to SS 

● one might want to minize

– in the solution minimize the information that is due to 
the noise 

J=1
2
∑k=1

N [ Dk−P∗I k

 ]
2

 S N I 
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Multiscale entropy

– the minimized function can be generalized as

● minimize signal contribution to the information in 
the residuals

● minimize the noise contribution to the information 
in the solution 

– both hard and soft weighting were studied, 
with and without the regularizing term

J=SS D−P∗I S N I 
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Multiscale entropy

a)   original
b)   blurred and with 
      Gaussian noise
c)   de-convolved
      image
d)   residuals

Starck et al. (2001)
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Multiscale entropy

– multiscale entropy can be used to test 
presence of undetected sources

● with h(wj,k) = -ln[p(wj,k)], calculate mean entropy 
of each scale j 

● for assumed noise model, calculate normalized 
mean entropy

– E(noise) can be calculated ... at least with simulations

E  j = 1
N
∑k=1

N j s w j , k 

En j = E  j 
Enoise j
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Multiscale entropy
● plot normalized entropy as the function of scale
● weak sources increse entropy at small scales, 

even when individual objects cannot be detected

– simulation (Starck 2001):
● 0, 50, 100, 200, or 400 sources with maximum 

equal to noise  and source standard deviation 2



29/02/08 Inversion methods in astronomy 122

Multiscale entropy
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Superresolution

● superresolution means resolution better 
than the beam size (diffraction limit)

● two conditions
– space-bandwidth product (SBP) is no more 

than ~1
● SBP is approximately the ratio between source 

diameter and the diffraction limit
● => source must be small

– good signal to noise ratio (SNR)
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Superresolution

● method requires some information about 
the source model
– flux of the reconstructed object is 

concentrated within a smaller area
– restoration is stable, if the total flux of the 

object is constrained
– even non-negativity of the MEM can produce 

superresolution (of 'nearly black objects')
– Richardson-Lucy implements both non-

negativity and flux conservation
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Superresolution

● data is kept at original resolution
● model and the PSF are sampled at higher 

resolution
● for example, in the case of MAP Poisson 

algorithm

● oversampling = '', down-sampling = ''

I n1=I n exp{ D
H∗I n

−1


∗H ∗ }



29/02/08 Inversion methods in astronomy 126

Superresolution

● PSF undersampled but observations are 
made with small shifts => deconvolved 
image can be reconstructed on finer grid

– co-adding of frames on fine grid: operator L  

– estimation of kth observation from LD: 

operator  L-1


– Landweber iteration becomes

● PSF function H is needed at the fine resolution

I n1=I nH ∗ [L  D−L


−1H∗I n]
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Superresolution

● example: Anconelli (2005)

1. apply Richardson-Lucy

2. if stars are resolved, go to step 3. Otherwise
1. define domain D where source intensity above 

threshold

2. apply RL to that domain

3. if stars are separated, positions are obtained as 
the feature centroids

3. fit a least squares model  (sum of psf's)
● ... in case feature still contains several stars
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Superresolution
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Superresolution

Starck et al. 2002

original filtered image

deconvolved

Multiresolution MEM
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Program packages

● IRAF/STSDAS
– Lucy (PLucy?); lucy 

– maximum entropy: mem 

● Starlink, package Kappa  
– Wiener filtering
– Richardson-Lucy
– maximum entropy
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Program packages

● MIDAS
– core commands

● DECONVOLVE/IMAGE frame psf result [no_iter] 
[cont_flag]

–

– package surfphot
● REBIN/DECONVOLVE frame psf result, zoom_x, 

zoom_y,  n_iter
–
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Program packages

● Midas ctd.
– package wavelet

● FILTER/WAVE
– thresholding, multiresolution Wiener filtering

● GRAD/WAVE
– deconvolution by regularized one step algorithm

● LUCY/WAVE
– wavelet Lucy

● DIRECT/WAVE
– multiresolution Tikhonov, regularization term 

● CITTERT/WAVE
– van Cittert + multiresolution support

 j∥w j∥
2
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Program packages

● MR/1-2 by Starck & Murtagh
– commercial program (www.multiresolution.com)

– free version restricted to max 256x256 
images

– standard deconvolution methods (MEM, Lucy, 
Landweber, MAP, ...)

– wavelet based methods
● including multiresolution MEM
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