
Exercises for Data-analysis and Inverse Methods in Astronomy, spring 2012.

For details and questions, contact Mika Juvela regarding exercises 1–9, Antti Penttilä with ex. 10–12,
and Karri Muinonen with ex. 13–15. Return your answers before 18.4. to any of the lecturers.

Ex. 1
Generate a random sample of 100 Poisson distributed random numbers. Calculate the four first
moments of the sample distribution.

Ex. 2
Take the data set outliers.txt and calculate an estimate for the expectation value. Compare the
results from the normal mean and some trimmed mean and Winsorized mean.

Ex. 3
Fit a line to a two-dimensional data set (x, y) of your choice. Compare the results of weighted fits
(you need data with error estimates for y) and unweighted fits.

Ex. 4
As a continuation of the previous exercise, try some robust fitting technique (e.g. MAD).

Ex. 5
The observations consist of x values 0.0, 1.0, 2.0 and the corresponding y values of 0.0, 2.0, 1.0.
Calculate the linear correlation coefficient. Is the correlation statistically significant?

Ex. 6
Carry out a least squares fit of the data set nonlinear.txt. Assume the function is f(x) =
a+ bx+ c sin(x) and determine the parameter values a, b, and c and their uncertainties.

Ex. 7
Take a multivariate data set with four or more variables. Use two methods to visualise the data.
Present figures and list some pros and cons regarding the use of these methods for these data.

Ex. 8
Find a routine that takes advantage of the error estimates in both variables (e.g., total least squares)
and give an example where the difference to the normal weighted least squares becomes significant.
If you cannot find software for this, describe what total least squares does and how the results are
expected to differ in some sample cases.

Ex. 9
Calculate with Monte Carlo simulation the uncertainties of the value of the Planck function when
the temperature is 20 ± 2K (all other parameters are assumed to be free of errors). How does the
situation change when the temperature is 10± 2K.

Background for Ex. 10–11

The likelihood function

In statistical modeling the measurements mi that are realizations of a random variable M obey
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some distribution P . The density of P is a function of the measurements and the parameter(s) x.
In Bayesian approach also the parameter is a random variable X and has a prior distribution Ppr.
The posterior density is then given by

D(x|M = m) ∝ Dpr(x)D(m|X = x)

Usually we have n measurements instead of just one measurement, so the measurement distribution
is a joint distribution of all the Mi’s. If all the Mi’s are identically and independently distributed
(i.i.d.) the joint distribution is the product of n distribution P :

D(m|X = x) = D(m1|X = x)× . . .×D(mn|X = x)

The likelihood function L is simply the joint distribution D(m|X = x) but without the normalizing
constant (that can be any function of measurements c := c(m)), so D(m|X = x) = c(m)L(x;m) ∝
L(x;m). Because the likelihood function can be somewhat simpler than D the inference is often
done with it:

D(x|M = m) ∝ Dpr(x)L(x;m)

For example, in the case of n i.i.d. exponential-distributed measurements the likelihood function is

L(λ;m) =

n∏
i=1

λ exp(−miλ) = λn exp(−λ
n∑
i=1

mi) = λn exp(−λnm)

Ex. 10
Derive the likelihood function for n i.i.d. Poisson-distributed measurements.

Ex. 11
Derive the likelihood function for n i.i.d. Gaussian-distributed measurements with unknown µ but
known σ2. Try to simplify the likelihood function as much as possible by gathering all terms
dependent only on the measurements to constant c(m) and leaving them out of the L(µ;m).

Background for Ex. 12

The concept of Conjugate prior

A Conjugate prior distribution Dpr(x) for measurement (error) distribution D(m|x) or equivalently
likelihood function L(x;m) is such that the posterior distribution D(x|m) is of the same distribution
family as the prior. For example if measurements m follow exponential distribution and the prior for
parameter X is Gamma distribution, then the posterior distribution is also a Gamma distribution.

Ex. 12
The example above: show that when i.i.d. measurements mi follow exponential distribution and the
prior for λ is Gamma with hyperparameters (a, a/b) the posterior is also Gamma. (The parameters
for prior distribution are often called hyperparameters.) Use the likelihood function from the first
example of exponential measurements. Note that you only need to show that the posterior is
proportional to something which is essentially a Gamma distribution, maybe without the normalizing
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constant. Normalizing constant can also be a function of hyperparameters. What are the posterior
parameters of the resulting Gamma distribution?

Ex. 13
Consider the ill-posed inverse problem of ”fitting” y = kx+ b to a single data point y1 measured at
x = x1. Devise and implement a Markov-Chain Monte-Carlo method for the unknowns k and b and
discuss the results.

Ex. 14
Assume that the k random variables X = (x1, . . . , xk)

T obey a k-dimensional Gaussian probability
density function with the means µ = (µ1, . . . , µk)

T and k × k covariance matrix ΣX .
a) Derive the means and covariance matrices for the marginal probability density functions.
b) Derive the covariance matrix ΣF for the n-vector F = DX, where D is the n × k coefficient
matrix. This is sometimes called the law of error propagation.

Ex. 15
Assume that x and y are Gaussian random variables with the corresponding means of µx and µy and
standard deviations of σx and σy, as well as the covariance Σxy. Based on linearized propagation of
errors, what would be the mean (µz) and standard deviation (σz) of the random variable z = x/y?
Analyze the linearized propagation of errors in this case. If the random variables x, y, and z
represent physical quantities, what is wrong? Can you find a cure for the problem? Can you
identify a light-scattering-related question where the present problem can be important?

Different distributions:

Exponential D(X = λ|mi) = λ exp(−miλ)

Poisson D(X = µ|mi) =
µmi

mi!
exp(−µ)

Gaussian D(X = µ|mi) =
1√
2σ2

exp(−(mi − µ)2

2σ2
)

Gamma D(X = (α, β)|y) = β−α yα−1 exp(−y β) /Γ(α)

Bernoulli D(X = π|mi) = πmi (1− π)1−mi

Binomial D(X = π|k =
n∑
i=1

mi) =
n!

k!(n− k)!
πk (1− π)n−k

Beta D(X = (α, β)|π) = πα−1 (1− π)β−1 /B(α, β)
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