Asteroid orbital inversion using a virtual-observation Markov-chain Monte Carlo method

Karri Muinonen ${ }^{1,2}$, Mikael Granvik¹, Dagmara Oszkiewicz ${ }^{1,3}$,

Tuomo Pieniluoma ${ }^{1}$, \& Hanna Pentikäinen ${ }^{1}$

${ }^{1}$ Department of Physics, University of Helsinki, Finland
${ }^{2}$ Finnish Geodetic Institute, Masala, Finland
${ }^{3}$ Nordic Optical Telescope, La Palma, Canary Islands, Spain

Introduction

> Asteroid orbit determination is one of the oldest inverse problems
> Paradigm change from deterministic to probabilistic treatment near the turn of the millennium
> Uncertainties in orbital elements, ephemeris uncertainties, collision probabilities, classification
> Identification of asteroids, linkage of asteroid observations
> Incorporation of statistical orbital inversion methods into the Gaia/DPAC data processing pipeline
> Markov-chain Monte Carlo (MCMC, Oszkiewicz et al. 2009)
> OpenOrb open source software (Granvik et al. 2009)

Statistical inversion

> Observation equation

$$
\psi=\Psi(\mathbf{P}, \mathbf{t})+\varepsilon
$$

> A posteriori probability density function (p.d.f.)
> A priori p.d.f., Jeffreys

$$
\mathrm{p}_{\mathrm{p}}(\mathbf{P}) \propto \mathrm{p}_{\mathrm{pr}}(\mathbf{P}) \mathrm{p}(\psi \mid \mathbf{P})
$$

$$
\mathrm{p}_{\mathrm{pr}}(\mathbf{P}) \propto \sqrt{\operatorname{det} \Sigma^{-1}(\mathbf{P})}
$$ or uniform

> Observational error p.d.f., multivariate normal

$$
\mathrm{p}(\varepsilon ; \Lambda)=\frac{1}{(2 \pi)^{2 \mathrm{~N}} \sqrt{\operatorname{det} \Lambda}} \exp \left[-\frac{1}{2} \varepsilon^{\mathrm{T}} \Lambda^{-1} \varepsilon\right]
$$

Statistical inversion

> A posteriori p.d.f. for orbital elements
> Linearization

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{p}}(\mathbf{P}) \propto \sqrt{\operatorname{det} \sum^{-1}(\mathbf{P})} \exp \left[-\frac{1}{2} \chi^{2}(\mathbf{P})\right] \\
& \chi^{2}(\mathbf{P})=\Delta \Psi^{T}(\mathbf{P}) \Lambda^{-1} \Delta \Psi(\mathbf{P}) \\
& \Psi(\mathbf{P}, \mathrm{t})=\Psi\left(\mathbf{P}_{15}, \mathrm{t}\right)+\sum_{\mathrm{j}=1}^{6} \Delta \mathrm{P}_{\mathrm{j}} \frac{\partial \Psi}{\partial \mathrm{P}_{\mathrm{j}}}\left(\mathbf{P}_{\mathrm{ls}}, \mathrm{t}\right)
\end{aligned}
$$

$>$ A posteriori p.d.f. in the linear approximation

$$
\mathrm{p}_{\mathrm{p}}(\mathbf{P}) \propto \sqrt{\operatorname{det} \Sigma^{-1}\left(\mathbf{P}_{\mathrm{ls}}\right)} \cdot \exp \left[-\frac{1}{2} \Delta \mathbf{P}^{\mathrm{T}} \Sigma^{-1}\left(\mathbf{P}_{\mathrm{ls}}\right) \Delta \mathbf{P}\right]
$$

> Covariance matrix for orbital elements

$$
\Sigma\left(\mathbf{P}_{1 \mathrm{~s}}\right)=\left(\frac{\partial \mathbf{P}}{\partial \psi}\right)_{\mathrm{Is}}^{\mathrm{T}} \Sigma(\psi)\left(\frac{\partial \mathbf{P}}{\partial \psi}\right)_{\mathrm{Is}}
$$

MCMC ranging

> Initial orbital inversion using exiguous astrometric data (short observational time interval and/or a small number of observations)
> Ranging algorithm

- Select two observation dates
- Vary topocentric distances and values of R.A. and Decl.
- From two Cartesian positions, compute elements and χ^{2} against all the observations
> In MC ranging, systematic sampling and weighted sample elements
> How to sample using MCMC?

MCMC ranging

$>$ Gaussian proposal p.d.f. in the space of two Cartesian positions
> Complex proposal p.d.f. in the space of the orbital

$$
\begin{array}{r}
a_{r}=\frac{p_{p}\left(\mathbf{P}^{\prime}\right)}{p_{p}\left(\mathbf{P}_{t}\right)} \frac{p_{t}\left(\mathbf{Q}_{t} ; \mathbf{Q}^{\prime}\right) J_{t}}{p_{t}\left(\mathbf{Q}^{\prime} ; \mathbf{Q}_{t}\right) J^{\prime}} \\
J=\operatorname{det}\left|\frac{\partial \mathbf{Q}}{\partial \mathbf{P}}\right|
\end{array}
$$ elements (not needed!)

> Jacobians and cancellation of symmetric proposal p.d.f.s

$$
a_{r}=\frac{p_{p}\left(\mathbf{P}^{\prime}\right)}{p_{p}\left(\mathbf{P}_{t}\right)} \frac{J_{t}}{J^{\prime}}
$$

$$
\text { If } a_{r} \geq 1, \quad \text { then } \mathbf{P}_{t+1}=\mathbf{P}^{\prime}
$$

$$
\text { If } a_{r}<1, \text { then }\left\{\begin{array}{l}
\mathbf{P}_{t+1}=\mathbf{P}^{\prime}, \text { with probability } a_{r}, \\
\mathbf{P}_{t+1}=\mathbf{P}_{t}, \text { with probability } 1-a_{r}
\end{array}\right.
$$

Examples

Observations					
Data set	Parameter	2004 HA $_{39}$	2004 QR	2002 CX $_{224}$	
Full	Nr of observations	57	19	20	
	First observation	2004 Apr 25	2004 Aug 16	2001 Oct 21	
	Last observation	2004 Sep 16	2004 Sep 23	2003 Oct 24	
	Time interval [day]	144.7	38.3	733.2	
	Nr of observations	5	10	6	
	First observation	2004 May 2	2004 Aug 16	2002 Nov 7	
	Last observation	2004 May 6	2004 Aug 18	2002 Nov 28	
	Time interval [day]	4.75	2.04	20.98	

Table 1: The full observational data sets and the data sets used in the computation.

Table 2. Least-squares orbits.

Object	$2004 \mathrm{HA}_{39}$	2004 QR	$2002 \mathrm{CX}_{224}$
$\mathrm{a}(\mathrm{AU})$	$2.1493040(34)$	$2.33155(74)$	$46.404(57)$
e	$0.5368719(72)$	$0.30163(21)$	$0.1329(49)$
$i\left({ }^{\circ}\right)$	$36.2085(3)$	$6.3566(36)$	$16.8447(63)$
$\Omega\left({ }^{\circ}\right)$	$204.154337(44)$	$314.82(1)$	$42.2592(56)$
$\omega\left({ }^{\circ}\right)$	$67.32116(11)$	$330.701(26)$	$132.51(1.07)$
$M_{0}\left({ }^{\circ}\right)$	$345.02807(39)$	$28.4223(89)$	$256.12(1.73)^{2}$

${ }^{2}$ The $1-\sigma$ standard deviations for the orbital elements are given after each element in the units of the last digit shown.
ω

Fig. 1. A sample of 5000 different orbit solutions for TNO $2002 \mathrm{CX}_{224}$ (observational time interval 20.98 d) obtained with MCMC ranging. The following proposal standard deviations were used: $\sigma_{\alpha_{A}}=\sigma_{\delta_{A}}=\sigma_{\alpha_{B}}=\sigma_{\delta_{B}}=0.5$ " for the angular coordinates, $\sigma_{\rho_{A}}=\sigma_{\rho_{B}}=2.0 \mathrm{AU}$ for the ranges, and high correlation $\operatorname{Cor}\left(\rho_{A}, \rho_{B}\right)=0.999$ between the ranges.

Fig. 2. Distribution of ranges for the observation dates A and B for TNO $2002 \mathrm{CX}_{224}$ (observational time interval 20.98 d) obtained with MCMC ranging (Parameters as in Fig. 1).

Table 3. Methods comparison.

Object	Parameter
$2004 \mathrm{HA}_{39}$	Computation time
2004 QR	Acceptance ratio $2002 \mathrm{CX}_{224}$
	Acceptance ratio Computation time Acceptance ratio

${ }^{3}$ Comparison of MCMC ranging and MC ranging methods.

MCMC ranging	MC ranging
$0 \min 19.417 \mathrm{~s}$	$0 \min 48.663 \mathrm{~s}$
0.17	0.05
$0 \min 6.344 \mathrm{~s}$	$1 \min 19.170 \mathrm{~s}$
0.54	0.03
$0 \min 4.525 \mathrm{~s}$	$0 \min 14.155 \mathrm{~s}$
0.45	0.09^{3}

Gaja/DPAC DU456 demonstration

> DU456, development unit entitiled "Orbital inversion"
> MCMC ranging as standalone Java software including GaiaTools
$>$ Potential for a future online computational tool with a friendly interface

Intermediate conclusions

$>$ MCMC ranging more efficient than MC ranging
> Operational within the Gaia/DPAC pipeline and as stand-alone software
> How to improve the efficiency of MCMC ranging?

Virtual-observation MCMC

$>$ Random errors are simulated for all observations, resulting in a set of virtual observations
> Virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method
$>$ Repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements
$>$ This orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm
> Mathematics of virtual-observation MCMC

$$
\begin{aligned}
& \boldsymbol{\psi}_{\mathrm{v}}=\boldsymbol{\psi}+\boldsymbol{\epsilon}_{\mathrm{v}} \\
& \chi_{\mathrm{v}}^{2}(\boldsymbol{P})=\left(\Psi(\boldsymbol{P})-\boldsymbol{\psi}_{\mathrm{v}}\right)^{\mathrm{T}}\left(\Lambda+\Lambda_{\mathrm{v}}\right)^{-1}\left(\Psi(\boldsymbol{P})-\boldsymbol{\psi}_{\mathrm{v}}\right) \\
& p\left(\boldsymbol{P}_{\mathrm{v}}\right)=\int d \boldsymbol{\psi}_{\mathrm{v}} \delta\left(\boldsymbol{P}_{\mathrm{v}}-\boldsymbol{P}_{\mathrm{v}}\left(\boldsymbol{\psi}_{\mathrm{v}}\right)\right) p\left(\boldsymbol{\psi}_{\mathrm{v}}\right) \\
& p_{\mathrm{t}}(\Delta \boldsymbol{P})=\iint d \boldsymbol{P}_{\mathrm{v} 1} d \boldsymbol{P}_{\mathrm{v} 2} \delta\left(\Delta \boldsymbol{P}-\left(\boldsymbol{P}_{\mathrm{v} 1}-\boldsymbol{P}_{\mathrm{v} 2}\right)\right) p\left(\boldsymbol{P}_{\mathrm{v} 1}\right) p\left(\boldsymbol{P}_{\mathrm{v} 2}\right) \\
& p_{\mathrm{t}}(\Delta \boldsymbol{P})=\int d \boldsymbol{P}_{\mathrm{v}} p\left(\boldsymbol{P}_{\mathrm{v}}\right) p\left(\boldsymbol{P}_{\mathrm{v}}-\Delta \boldsymbol{P}\right) \\
& \Delta \boldsymbol{P}^{(j k)}=\boldsymbol{P}_{\mathrm{v}}^{(j)}-\boldsymbol{P}_{\mathrm{v}}^{(k)}, j, k=1,2,3 \ldots, N_{\mathrm{v}} ; j \neq \boldsymbol{k} .
\end{aligned}
$$

Example: $1998 \mathrm{OX}_{4}$

> Discovery apparition only: 21 observations spanning 9.1 days in July-August 1998
> Single outlier observation omitted
> Standard deviations for R.A. and Dec.: 0.57 arcsec and 0.34 arcsec
> See Virtanen et al. (lcarus, 2001) and Muinonen et al. (CMDA, 2001)
> 10,000 sample elements using MCMC ranging and virtual-observation MCMC in 17 min 54 s and 16 min 15 s , respectively

Virtual-observation MCMC

MCMC Orbital Ranging

Virtual-observation MCMC

Conclusions

$>$ Virtual-observation MCMC is a promising new random-walk Metropolis-Hastings algorithm
> Concept to be proven for sampling wellknown distributions (Gaussian, curved bivariate Gaussian)
$>$ Concept to be studied for cases with large numbers of unknowns

