Asteroid orbital inversion using a virtual-observation Markov-chain Monte Carlo method

Karri Muinonen^{1,2}, Mikael Granvik¹, Dagmara Oszkiewicz^{1,3}, Tuomo Pieniluoma¹, & Hanna Pentikäinen¹

¹Department of Physics, University of Helsinki, Finland ²Finnish Geodetic Institute, Masala, Finland ³Nordic Optical Telescope, La Palma, Canary Islands, Spain

Planetary-System Research Seminar, January 16, 2012

Introduction

- Asteroid orbit determination is one of the oldest inverse problems
- Paradigm change from deterministic to probabilistic treatment near the turn of the millennium
- Uncertainties in orbital elements, ephemeris uncertainties, collision probabilities, classification
- Identification of asteroids, linkage of asteroid observations
- Incorporation of statistical orbital inversion methods into the Gaia/DPAC data processing pipeline
- Markov-chain Monte Carlo (MCMC, Oszkiewicz et al. 2009)
- > OpenOrb open source software (Granvik et al. 2009)

Statistical inversion

> Observation equation

$$\boldsymbol{\Psi} = \boldsymbol{\Psi}(\boldsymbol{P}, \boldsymbol{t}) + \boldsymbol{\varepsilon}$$

- A posteriori probability density function (p.d.f.)
- > A priori p.d.f., Jeffreys or uniform

$$p_p(\mathbf{P}) \propto p_{pr}(\mathbf{P})p(\mathbf{\psi}|\mathbf{P})$$

$$p_{pr}(\mathbf{P}) \propto \sqrt{\det \Sigma^{-1}(\mathbf{P})}$$

Observational error p.d.f., multivariate normal

$$p(\varepsilon;\Lambda) = \frac{1}{(2\pi)^{2N} \sqrt{\det \Lambda}} \exp\left[-\frac{1}{2}\varepsilon^{T}\Lambda^{-1}\varepsilon\right]$$

Statistical inversion

> A posteriori p.d.f. for orbital elements

Linearization

$$p_{p}(\mathbf{P}) \propto \sqrt{\det \Sigma^{-1}(\mathbf{P})} \exp \left[-\frac{1}{2}\chi^{2}(\mathbf{P})\right]$$
$$\chi^{2}(\mathbf{P}) = \Delta \Psi^{T}(\mathbf{P})\Lambda^{-1}\Delta \Psi(\mathbf{P})$$
$$\Psi(\mathbf{P},t) = \Psi(\mathbf{P}_{ls},t) + \sum_{j=1}^{6}\Delta P_{j}\frac{\partial \Psi}{\partial P_{j}}(\mathbf{P}_{ls},t)$$

> A posteriori p.d.f. in the linear approximation

$$p_{p}(\mathbf{P}) \propto \sqrt{\det \Sigma^{-1}(\mathbf{P}_{ls})} \cdot \exp \left[-\frac{1}{2}\Delta \mathbf{P}^{T} \Sigma^{-1}(\mathbf{P}_{ls})\Delta \mathbf{P}\right]$$

Covariance matrix for orbital elements

$$\Sigma(\mathbf{P}_{ls}) = \left(\frac{\partial \mathbf{P}}{\partial \psi}\right)_{ls}^{T} \Sigma(\psi) \left(\frac{\partial \mathbf{P}}{\partial \psi}\right)_{ls}$$

MCMC ranging

Initial orbital inversion using exiguous astrometric data (short observational time interval and/or a small number of observations)

Ranging algorithm

- Select two observation dates
- Vary topocentric distances and values of R.A. and Decl.
- From two Cartesian positions, compute elements and χ^2 against all the observations
- In MC ranging, systematic sampling and weighted sample elements
- How to sample using MCMC?

MCMC ranging

- Gaussian proposal p.d.f. in the space of two Cartesian positions
- Complex proposal p.d.f. in the space of the orbital elements (not needed!)
- Jacobians and cancellation of symmetric proposal p.d.f.s

$$a_r = \frac{p_p(\mathbf{P}')}{p_p(\mathbf{P}_t)} \frac{p_t(\mathbf{Q}_t; \mathbf{Q}') J_t}{p_t(\mathbf{Q}'; \mathbf{Q}_t) J'}$$
$$J = \det \left| \frac{\partial \mathbf{Q}}{\partial \mathbf{P}} \right|$$

$$a_r = \frac{p_p(\mathbf{P}')}{p_p(\mathbf{P}_t)} \frac{J_t}{J'}$$

If
$$a_r \ge 1$$
, then $\mathbf{P}_{t+1} = \mathbf{P}'$.
If $a_r < 1$, then $\begin{cases} \mathbf{P}_{t+1} = \mathbf{P}', \text{ with probability } a_r, \\ \mathbf{P}_{t+1} = \mathbf{P}_t, \text{ with probability } 1 - a_r. \end{cases}$

Examples

Observations					
Data set	Parameter	2004 HA ₃₉	2004 QR	2002 CX_{224}	
Full	Nr of observations	57	19	20	
	First observation	2004 Apr 25	2004 Aug 16	2001 Oct 21	
	Last observation	2004 Sep 16	$2004~{\rm Sep}~23$	2003 Oct 24	
	Time interval [day]	144.7	38.3	733.2	
Used	Nr of observations	5	10	6	
	First observation	2004 May 2	2004 Aug 16	2002 Nov 7	
	Last observation	2004 May 6	2004 Aug 18	2002 Nov 28	
	Time interval [day]	4.75	2.04	20.98	

Table 1: The full observational data sets and the data sets used in the computation.

Table 2. Least-squares orbits.

Object	2004 HA ₃₉	2004 QR	2002 CX ₂₂₄
a (AU)	2.1493040(34)	2.33155(74)	46.404(57)
e	0.5368719(72)	0.30163(21)	0.1329(49)
<i>i</i> (°)	36.2085(3)	6.3566(36)	16.8447(63)
Ω (°)	204.154337(44)	314.82(1)	42.2592(56)
ω (°)	67.32116(11)	330.701(26)	132.51(1.07)
$M_0(^{\circ})$	345.02807(39)	28.4223(89)	$256.12(1.73)^2$

²The 1– σ standard deviations for the orbital elements are given after each element in the units of the last digit shown.

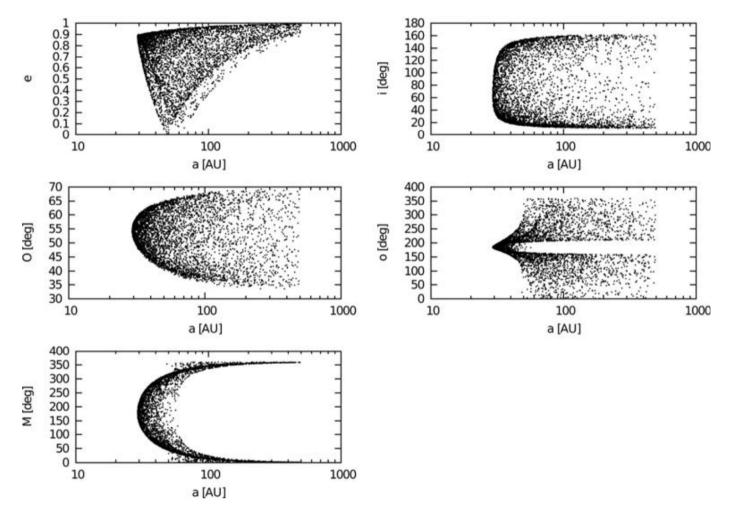


Fig. 1. A sample of 5000 different orbit solutions for TNO 2002 CX₂₂₄ (observational time interval 20.98 d) obtained with MCMC ranging. The following proposal standard deviations were used: $\sigma_{\alpha_A} = \sigma_{\delta_A} = \sigma_{\alpha_B} = \sigma_{\delta_B} = 0.5''$ for the angular coordinates, $\sigma_{\rho_A} = \sigma_{\rho_B} = 2.0$ AU for the ranges, and high correlation *Cor* (ρ_A , ρ_B) = 0.999 between the ranges.

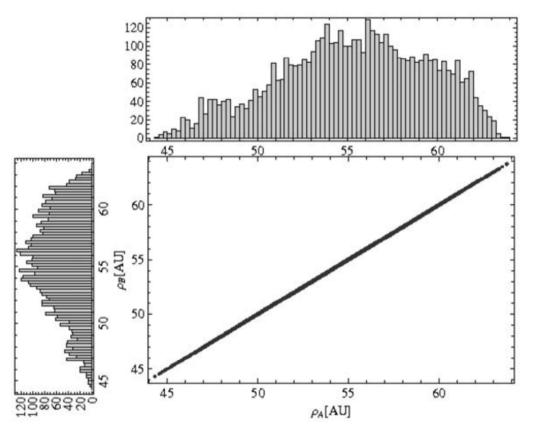
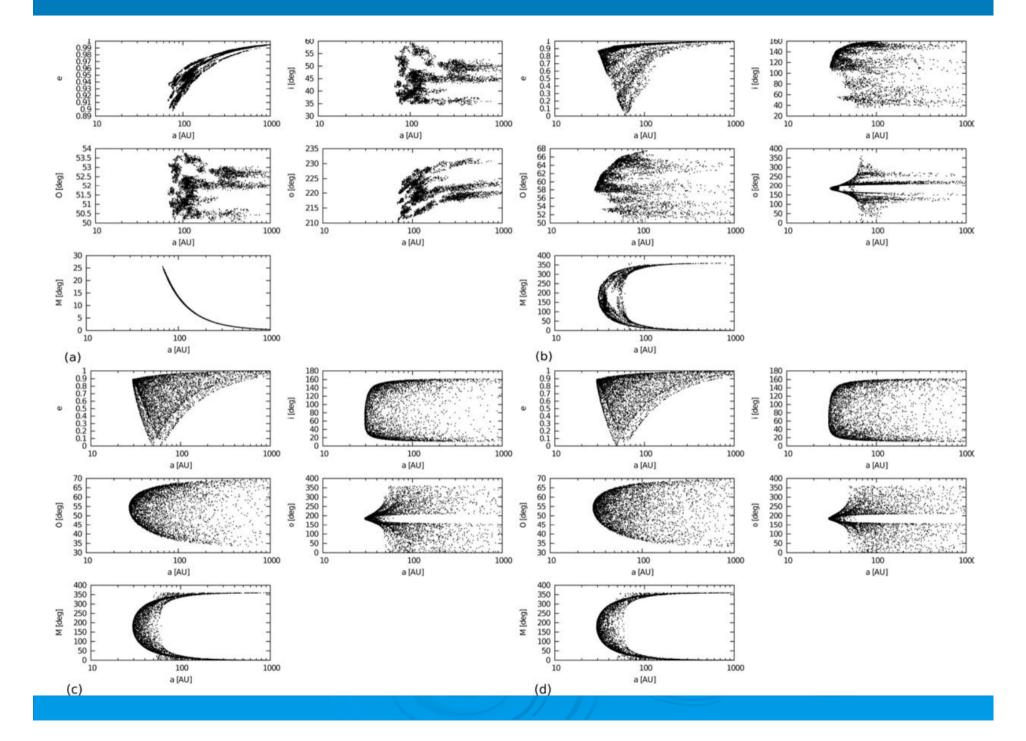


Fig. 2. Distribution of ranges for the observation dates A and B for TNO 2002 CX_{224} (observational time interval 20.98 d) obtained with MCMC ranging (Parameters as in Fig. 1).



Object	Parameter	
2004 HA ₃₉	Computation time Acceptance ratio	
2004 QR	Computation time Acceptance ratio	
2002 CX ₂₂₄	Computation time Acceptance ratio	
³ Comparison of MCMC ranging and MC ranging methods.		

MCMC ranging	MC ranging
0 min 19.417 s	0 min 48.663 s
0.17	0.05
0 min 6.344 s	1 min 19.170 s
0.54	0.03
0 min 4.525 s	0 min 14.155 s
0.45	0.09 ³

Gaia/DPAC DU456 demonstration

- > DU456, development unit entitled "Orbital inversion"
- MCMC ranging as standalone Java software including GaiaTools
- Potential for a future online computational tool with a friendly interface

Intermediate conclusions

MCMC ranging more efficient than MC ranging

> Operational within the Gaia/DPAC pipeline and as stand-alone software

> How to improve the efficiency of MCMC ranging?

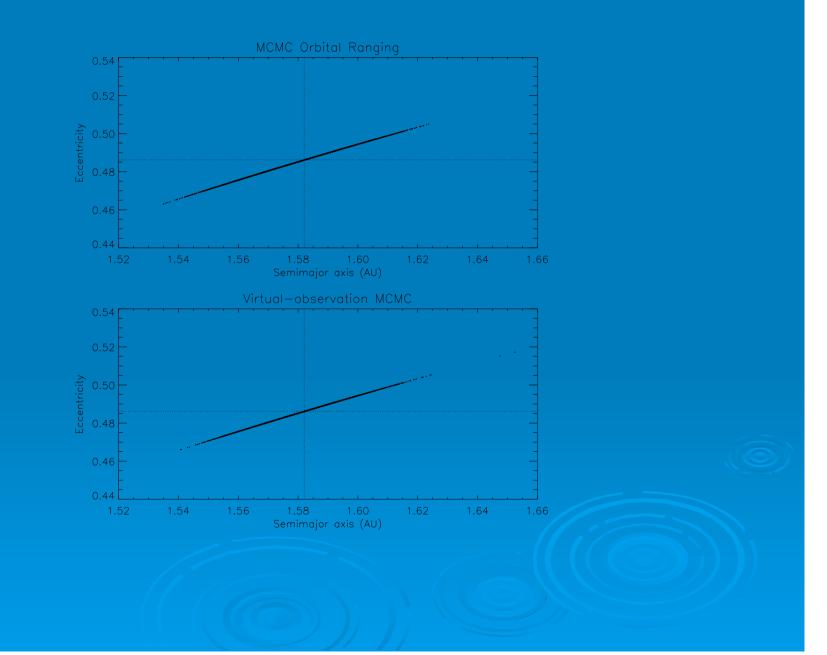
Virtual-observation MCMC

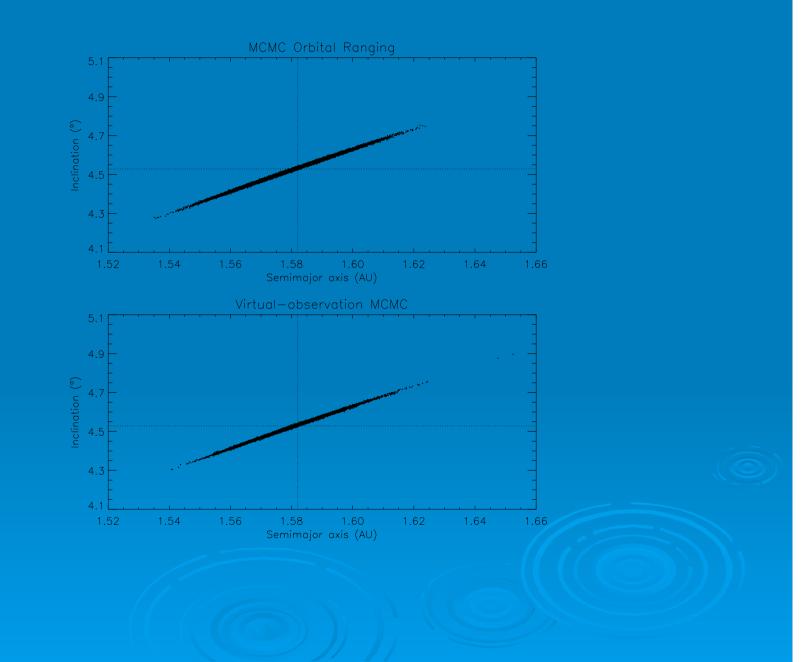
- Random errors are simulated for all observations, resulting in a set of virtual observations
- Virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method
- Repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements
- This orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm

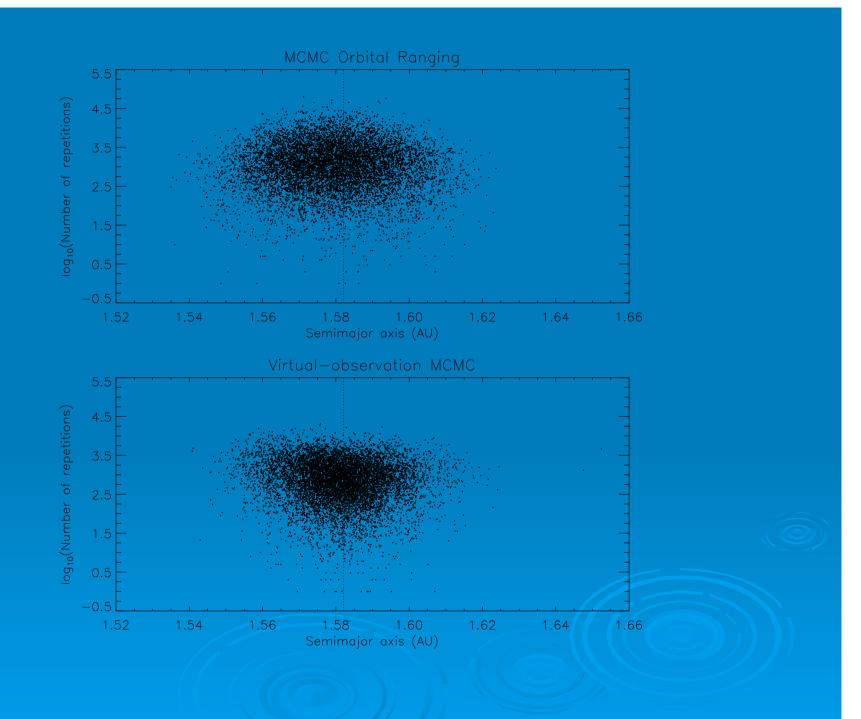
Mathematics of virtual-observation MCMC $\psi_{\mathrm{v}} = \psi + \epsilon_{\mathrm{v}}$ $\chi_{\rm w}^2(\boldsymbol{P}) = (\Psi(\boldsymbol{P}) - \boldsymbol{\psi}_{\rm w})^{\rm T} (\Lambda + \Lambda_{\rm w})^{-1} (\Psi(\boldsymbol{P}) - \boldsymbol{\psi}_{\rm w})$ $p(\boldsymbol{P}_{v}) = \int d\boldsymbol{\psi}_{v} \delta(\boldsymbol{P}_{v} - \boldsymbol{P}_{v}(\boldsymbol{\psi}_{v})) p(\boldsymbol{\psi}_{v})$ $p_{t}(\Delta \boldsymbol{P}) = \int \int d\boldsymbol{P}_{v1} d\boldsymbol{P}_{v2} \,\delta(\Delta \boldsymbol{P} - (\boldsymbol{P}_{v1} - \boldsymbol{P}_{v2})) p(\boldsymbol{P}_{v1}) p(\boldsymbol{P}_{v2})$ $p_{t}(\Delta \boldsymbol{P}) = \int d\boldsymbol{P}_{v} \ p(\boldsymbol{P}_{v}) p(\boldsymbol{P}_{v} - \Delta \boldsymbol{P})$ $\Delta \mathbf{P}^{(jk)} = \mathbf{P}_{v}^{(j)} - \mathbf{P}_{v}^{(k)}, \ j, k = 1, 2, 3 \dots, N_{v}; \ j \neq k.$

Example: 1998 OX₄

Discovery apparition only: 21 observations spanning 9.1 days in July-August 1998 Single outlier observation omitted > Standard deviations for R.A. and Dec.: 0.57 arcsec and 0.34 arcsec See Virtanen et al. (Icarus, 2001) and Muinonen et al. (CMDA, 2001) > 10,000 sample elements using MCMC ranging and virtual-observation MCMC in 17 min 54 s and 16 min 15 s, respectively







Conclusions

- Virtual-observation MCMC is a promising new random-walk Metropolis-Hastings algorithm
- Concept to be proven for sampling wellknown distributions (Gaussian, curved bivariate Gaussian)
- Concept to be studied for cases with large numbers of unknowns