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Introduction 
Ø  Asteroid orbit determination is one of the oldest inverse 

problems 
Ø  Paradigm change from deterministic to probabilistic 

treatment near the turn of the millennium 
Ø  Uncertainties in orbital elements, ephemeris 

uncertainties, collision probabilities, classification 
Ø  Identification of asteroids, linkage of asteroid 

observations 
Ø  Incorporation of statistical orbital inversion methods into 

the Gaia/DPAC data processing pipeline 
Ø  Markov-chain Monte Carlo (MCMC, Oszkiewicz et al. 

2009) 
Ø  OpenOrb open source software (Granvik et al. 2009) 



Statistical inversion 
Ø  Observation equation 

Ø  A posteriori probability 
density function 
(p.d.f.) 

Ø  A priori p.d.f., Jeffreys 
or uniform 

Ø  Observational error p.d.f., 
multivariate normal 



Statistical inversion 

Ø  A posteriori p.d.f. for 
orbital elements 

Ø  Linearization 

Ø  A posteriori p.d.f. in the linear approximation 

Ø  Covariance matrix for 
orbital elements 



MCMC ranging 
Ø  Initial orbital inversion using exiguous 

astrometric data (short observational time 
interval and/or a small number of observations) 

Ø  Ranging algorithm 
l  Select two observation dates 
l  Vary topocentric distances and values of R.A. and 

Decl.  
l  From two Cartesian positions, compute elements and 
χ2 against all the observations 

Ø  In MC ranging, systematic sampling and 
weighted sample elements 

Ø  How to sample using MCMC? 



MCMC ranging 
Ø  Gaussian proposal p.d.f. in 

the space of two Cartesian 
positions 

Ø  Complex proposal p.d.f. in 
the space of the orbital 
elements (not needed!) 

Ø  Jacobians and cancellation 
of symmetric proposal 
p.d.f.s 

 



Examples 













Gaia/DPAC DU456 demonstration 

Ø DU456, development unit entitled “Orbital 
inversion” 

Ø MCMC ranging as standalone Java 
software including GaiaTools 

Ø Potential for a future online computational 
tool with a friendly interface 



Intermediate conclusions 

Ø MCMC ranging more efficient than MC 
ranging 

Ø Operational within the Gaia/DPAC pipeline 
and as stand-alone software 

Ø How to improve the efficiency of MCMC 
ranging?  



Virtual-observation MCMC 
Ø  Random errors are simulated for all 

observations, resulting in a set of virtual 
observations 

Ø  Virtual least-squares orbital elements are 
derived using the Nelder-Mead downhill simplex 
method  

Ø  Repeating the procedure two times allows for a 
computation of a difference for two sets of virtual 
orbital elements  

Ø  This orbital-element difference constitutes a 
symmetric proposal in a random-walk 
Metropolis-Hastings algorithm  
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3.2 Virtual-observation MCMC

In asteroid orbital inversion, the solution phase space is known to exhibit varying morpholo-
gies, including regular Gaussian shapes, thin curved shapes, and extremely complex shapes
spanning vast regimes of the phase space. In the virtual-observation MCMC method, the
volume of the orbital-element phase space containing plausible orbit solutions is mapped
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Due to the elegance of the Metropolis-Hastings criterion, none of these integrals need to
be numerically evaluated. Instead, the proposal in the Markov chain can be computed by
repeating the determination of the virtual least squares orbital elements twice and taking
the di↵erence in the elements as the proposal.

Whereas the procedure above clearly fulfils the mathematical requirements for a symmetric
proposal p.d.f. in a Metropolis-Hastings algorithm (O’Hagan and Forster, 2004), it can be
computationally challenging to generate such proposals during the actual MCMC sampling.
In what follows, a straightforward discrete approximation is described: it is based on large
numbers of orbital-element di↵erences �P prepared before MCMC sampling.
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set to another in the phase space. Notice that there are of the order of N

v

⇥N
v

di↵erences
available, that is, a number that can become extremely large for reasonable values of N

v

.
Notice also that an alternative continuous proposal p.d.f. can follow with the help of kernel
estimation in the six-dimensional phase space of the orbital-element di↵erences (Silverman,
1989).

Thus, for large numbers of virtual least-squares solutions, a discrete approximation emerges
for the generation of transitions in a Markov chain: one may utilize the di↵erences themselves
as symmetric proposals. Due to the symmetry, the proposal p.d.f.s do not show up in the
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Ø  Mathematics of virtual-observation MCMC 



Example: 1998 OX4 

Ø  Discovery apparition only: 21 observations 
spanning 9.1 days in July-August 1998 

Ø  Single outlier observation omitted 
Ø  Standard deviations for R.A. and Dec.:          

0.57 arcsec and 0.34 arcsec 
Ø  See Virtanen et al. (Icarus, 2001) and Muinonen 

et al. (CMDA, 2001) 
Ø  10,000 sample elements using MCMC ranging 

and virtual-observation MCMC in 17 min 54 s 
and 16 min 15 s, respectively  



Figure 1. Statistical inversion for (85640) 1998 OX
4

using MCMC orbital ranging (top) and virtu-
al-observation MCMC (bottom) for the original observations in 1998: Eccentricity vs. semimajor
axis. Least-squares orbital elements corresponding to all existing observations of (85640) 1998 OX

4

are marked with the dotted line.

12



Figure 2. As in Fig. 1 for inclination.
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Figure 6. Number of repetitions in MCMC orbital ranging (top) and virtual-observation MCMC
(bottom) vs. semimajor axis.
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Conclusions 

Ø Virtual-observation MCMC is a promising 
new random-walk Metropolis-Hastings 
algorithm 

Ø Concept to be proven for sampling well-
known distributions (Gaussian, curved 
bivariate Gaussian) 

Ø Concept to be studied for cases with large 
numbers of unknowns 


