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1 Introduction

Types of models

q ’soft’, statistical models. ’Black box’ calibration of existing data:

î + Easy computations, problems in interpretation

î - Limitations: not for predictions of essentially new situations
(scale-up, new processes, etc).

î Methodology employed: regression analysis.

q ’hard’, mathematical models based on physics

î - Require knowledge of numerical methods, modelling often more
demanding.

î + Enable accurate prediction of new phenomena (new process
conditions, scale-up, etc)

î Methodology employed: Simulation and optimization algorithms.
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Choice of modelling approach

The choice of the model is dictated by the aim of the project. A model should
be ’as simple as possible - but not more simple than that’ (A.Einstein).

An empirical model is chosen, if

q a ’local’ description (calibration of measurements) of the process is enough

q the mechanism of the process is not known

A mechanistic model is chosen, if

q the mechanism is understood well enough - or the aim is to understand it

q the quality of the data is good enough for identification and validation of
the model

q the model is needed outside the available experimental region.
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Mechanistic /first principles modelling Example; radioactive decay

A → B → C

Modelling by mass (energy, etc) balances leads to an ODE system

dA

dt
= −θ1A

dB

dt
= θ1A− θ2B

dC

dt
= θ2B

Note that mass preserves: d/dt(A + B + C) = 0, A + B + C = constant.
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Additional tasks

q Solution of the model numerically by an (e.g., ODE) solver.

Various numerical approaches for more complex models (e.g., CFD:
Computational Fluid Dynamics)

î FD, Finite Difference

î FEM, Finite Elements

q The model nonlinear with respect to unknown parameters θ. LSQ by
optimization algorithms
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Model predictions are always uncertain, due to

q Incomplete understanding of the process

q Numerical etc approximations in implementation

q Measurement noise in data

The model is calibrated to data by ’fitting’ the unknown parameters.
Uncertainty in data implies uncertainty in fitted values. The task of statistical
analysis is to quantify this.

Problem: Classical statistics for linear /empirical models !
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Nonlinear models, Monte Carlo (MCMC) methods

Goal: proper statistical analysis for nonlinear models. How reliable are the
model predictions?

No formulas exists for statistics of nonlinear models. But the probability
distributions may be created by random number simulation methods.

The (only) way to go is sampling: we computationally approximations of the
distributions as histograms, of the unknown parameters as well as model
predictions.

Instead of one ’best fitting’ solution, we produce ’all’ the solutions that
reasonably – statistically well enough, taking noise in data into account – fit the
data. This is the essence of the Bayesian approach: to find the distribution of
solutions, instead of one solution.

A problem, solved by MCMC: we do not know the distribution from which to
sample – but still can sample from it!
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Example: Modelling an Algae bloom in a lake

The Algae concentration: data, fit, model prediction distribution.
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2 Linear Models

Consider a linear model, for example

y = b0 + b1x1 + b2x2

With given data at xi, i = 1, 2, ..., n the system is written in the form
y = Xb + ε, where X is the design (observation) matrix ( extended with the 1’s
in the first column), y denotes the measured data, and ε represents the
measurement noise. The task is to estimate the coefficients b together with their
statistical uncertainty.

Often a linear model can not explain the data: the optimum inside the
experimental region requires some higher terms to be added in the model.
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Basic concepts

The Residual of a fit is the difference between data and the model values, for
regression models given as:

res = y −Xb̂

These values should be compared to the size of the experimental error, the
noise in the measurements.

The basic statistical requirement is that a model should fit the data with same
accuracy as the measurements are obtained, the residual of the fit should
roughly equal the estimated size of the measurement noise:

res ' noise.
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LSQ solution, measurement noise, uncertainty of estimates

The LSQ objective function has the form

n∑

i=1

(yi − (xi)T b)2 = ||y −Xb||22

It can be shown (Exercise), that the LSQ estimate is obtained as the solution of
the normal equation XT Xb = XT y,

b̂ = (XT X)−1XT y

The most typical assumption for the measurement noise is that the covariance
of it is given by cov(y) = σ2I: the noise is independent between
measurements, with equal size everywhere, given by std σ. Before discussing
the uncertainty of the estimates, let us recall some concepts from basic
statistics.
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Variance and covariance

Consider an observation matrix X . Each row gives values of the variables
x1, ..., xp:

X =




x1 x2 . . . xp

x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp




,
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We need the following basic concepts :

The mean value

x̄k =
1
n

n∑

i=1

xik

The variance

var(xk) =
1

n− 1

n∑

i=1

(xik − x̄k)2 := σ2
xk

The standard deviation

std(xk) =
√

var(xk) := σxk

The covariance

cov(xk, xl) =
1

n− 1

n∑

i=1

(xik − x̄k)(xil − x̄l) := σxkxl
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The correlation

cor(xk, xl) =
σxkxl

σxk
σxl

:= ρxkxl

The covariance matrix

cov(X) =




σ2
x1

σx1x2 . . . σx1xp

σx1x2 σ2
x2

...
. . .

σx1xp σ2
xp
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Note that if X0 denotes the centered version of X , obtained by substracting the
mean value from each column of X , then

cov(X) =
1

n− 1
X ′

0X0

The diagonal of cov(X) gives the variances of of the columns of X . Recalling
how the angle between vectors in a Euclidean space is defined by the
normalized inner product of the vectors, we see the geometric interpretation for
correlation: the correlation coefficients, the off–diagonals of the correlation
matrix, are given as the cosine of angles between the centered column vectors
x0k, x0l,

corrcoef(x0k, x0l) = cos(x0k, x0l) =
x′0kx0l

||x0k||||x0l||
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If y denotes a n dimensional random vector – each component is a scalar
random variable – the covariance matrix is defined as

cov(y) = E[(y − Ey)(y − Ey)′],

where E denotes the expected value (note that y here is a column vector,
while the realizations/observations in the observation matrix notation are
given as rows). If the vector y is multiplied by a matrix S, it is easy to see that

cov(Sy) = Scov(y)S′.

Especially, cov(y) = I , we have cov(Sy) = SS′. We will return to this fact a
bit later, as we learn how to generate samples from multinormal distributions.
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Basic distributions

The probability density function, PDF, of the Normal (or Gaussian) distribution
with center point x0 and variance σ2 is given by the formula

p(x) =
1√
2πσ

e−
1
2 (

x−x0
σ )2 (1)

For a random variable x we write x ∼ N(x0, σ
2) if it obeys the distribution

given by the above density. An often used fact is that 95% of the probability
mass (area under the above function) lies in the interval between the points
x0 ± 1.96σ.

If x = (x1, ..., xn) is a n–dimensional random vector, each component of
which is independently N(0, 1) distributed, we have covx = I , and write
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x ∼ N(0, I). By independence, the density function of the vector is the product
of the density functions of the components, so we have

p(x) =
1

(
√

2πσ)n
e−

1
2

∑n
i=1 x2

i

This leads us to another standard distribution, the chi-square distribution with
’n degrees of freedom’. Indeed, the (central) χ2

n distribution is defined as the
sum of squares of n independent N(0, 1) distributed random variables,

t =
n∑

i=1

x2
i = xT x ∼ χ2

n,

if each xi ∼ N(0, 1).
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Sampling from multinormal distribution

Let us return to the formula cov(Sy) = SS′, valid if cov(y) = I . It gives us an
algorithm to generate Gaussian random vectors r with a given covariance C:
determine S for which SS′ = C. Numerically, the ’square root’ S = C1/2 is
computed be the Cholesky decomposition of C. We get the algorithm

q generate Gaussian N(0, I) random vectors y

q decompose C = SS′, compute r = Sy.

In Matlab, we use the function RANDN to get N(0, I) vectors. Note that for
the one dimensional case – generate Normally distributed samples with given
variance s2 – the procedure boils down to the usual computation (with y by
RANDN in Matlab),

r = s y
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Criteria for multinormality

Let us denote by C1/2 and C−1/2 the ’square roots’ of C and the inverse of C,
both obtained by the Cholesky decomposition of the respective matrix. Then if
covx = C, we get for y = C−1/2x the covariance

covy = C−1/2C(C−1/2)′ = C−1/2C1/2(C−1/2C1/2)
′
= I.

So y is N(0, I) distributed (we use here the known fact that if x is Normal, so
is Ax if A is a fixed matrix).

Substituting the expression y′y = x′C−1/2′C−1/2x = x′C−1x in the PDF of
N(0, I) above, we get the density function of a general multinormal
distribution. It assumes the form

p(x) = const e−
1
2 x′C−1x

and we write x ∼ N(0, C). The normalizing constant may be obtained by a
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direct integration or by the above change of variables in the N(0, I) density
function (Exercise).

Non-zero centered Gaussian samples x ∼ N(x0, C) are obtained by adding the
constant x0 to N(0, C)–distributed samples .

Since the expression y′y = x′C−1x is a sum of n independent Normal N(0, 1)
variables it is χ2

n distributed, i.e.,

x′C−1x ∼ χ2
n.

This result gives us a way to quantify how well a given (sampled) set of vectors
x follows a Gaussian distribution with known covariance.
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Linear regression

Let us return to the linear system y = Xb. We can show that (Exercise)

cov(b̂) = σ2(XT X)−1.

Especially, the diagonal of the above matrix gives the variances of the
estimated b̂.

In case of Gaussian measurement error we can say more. Since the LSQ
estimator b̂ is obtained by a matrix multiplication of a Gaussian variable y, b̂

also is Gaussian, with the center point and covariance given by the above
formulae. Moreover, for C = cov(b̂),

(b̂− b)T C−1(b̂− b)) ∼ χ2
n.
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3 Monte Carlo methods

The above formulae only are valid for linear models. Several ’classical’ Monte
Carlo methods exist for analyzing linear or nonlinear models, such as:

q Adding noise to data

q Bootstrap

q Jack-knife

q Crossvalidation
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Monte Carlo by adding noise to data

Uncertainty in the model parameters θ in a model

y = f(x, θ) + ε

is caused by the noise ε. The LSQ fit with given data leads to a single estimated
value θ̂. So, to obtain a distribution for values of θ a natural idea might be to
generate new random noise and repeatedly fit different values θ̂ by the new data
sets.

This works if the noise is correctly generated, so that it agrees with the ’real’
measurement noise.
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But

q Often the noise structure is not properly known, so the generation of new
data is questionable

q For a nonlinear model f , each new θ̂ requires a new, iterative,
optimization. This might be time consuming.

q The fitted values θ̂ also depend on the optimizer stopping rules (like
maximum number of iteration, tolerances, etc), not only on the statistics of
the data
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Bootstrap

Wikipedia: Bootstrapping alludes to a German legend about Baron
Münchhausen, who was able to lift himself out of a swamp by pulling himself
up by his own boot straps.

Try to generate the distribution of the model parameters by creating new
samples of the data and repeatedly estimating the parameters (by LSQ fitting,
typically).

No new data is actually produced, but new combinations from the existing data
xI , yI , I = [1, ..., n] by sampling with replacement:

q Randomly choose n indices into the vector ind from 1,2,...,n (some indices
may occur more than once, some may be omitted)

q Fit the model to the data xind, yind.
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Jackknife

As crossvalidation, but without the prediction step. Used for estimating the
variability of parameter estimates.

1 Leave out part of the data from the matrixes X,Y

2 Fit the model parameters using the remaining data

Repeat the steps 1,2 so that each observation has been omitted. Compute
estimates for the variability of the parameters (Here, we skip more details)
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The R2 value

The R2 value, coefficient of determination, measures the goodness of fit. The
most simple ’model’ is just a constant,

y = b0.

The LSQ solution then is the mean value, b̂0 = ȳ (verify this!). A
non-dimensional measure for the fit is obtained by comparing with the the
trivial one given by a constant:

R2 = 1−
∑

(yi − f(xi, b̂))2∑
(yi − ȳ)2

If the model fits the data clearly better than a constant, the R2 is close to the
value 1. As a rule of thumb, values 0.7 ... 0.9 are often be considered well
enough for empirical models (but this depends on both data and noise!).
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Crossvalidation

The R2 value does not tell the whole truth: the R2 of a fit may be fine but the
model might predict poorly. But with given, fixed data we have nothing to
predict. The ability to predict may be tested by crossvalidation:

1 Leave out part of the data from the matrixes X,Y

2 Fit the model using the remaining data

3 Using the model obtained, predict the values that were left out

Repeat steps 1,2,3 so that each response value in the matrix Y will be
’predicted’

The goodness of the predictions may be quantified using exactly the same
formula as in computing the R2 value. The fitted values are just replaced with
the predicted ones.

The number so obtained is called the Q2 value.
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Variants

Crossvalidation may be performed in several ways:

q In Leave-one-out crossvalidation the observations are omitted
deterministically, one by one

q Several observations may be omitted deterministically at each step (1)

q Several observations may be omitted randomly at each step (1)

Even so, the the crossvalidation might give an overly optimistic picture of
prediction. One can yet divide the (large enough) data set in two parts: a
learning data set and a prediction set. The model is constructed using only the
learning set, the prediction is only tested using the prediction set.
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4 Mathematical/’Physicochemical’ Modelling

Example A chemical reaction (or radioactive decay): A → B → C. Assume
that the reaction rates are proportional to the amounts of the components A, B.
They may then be written as the expressions k1A, k2B where k1, k2 are the
reaction rate constants. Modelling by material balances leads us to a system of
’ordinary differential equation’ (ODE):

dA

dt
= −k1A

dB

dt
= k1A− k2B

dC

dt
= k2B

Note that the mass balance always is satisfied: d/dt(A + B + C) = 0,
A + B + C = constant.
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In this example, the solution may be obtained integrating ’by hand’. However,
typically a solution only is available by numerical methods. Using MATLAB,
this requires the steps

q write a m–file (a script file) that gives all the necessary initial information
and calls an ODE solver.

q write a m-file (a function file ) that contains the model equations.

Note that the ODE solver may remain a ’black box’ for the user - it is usually
enough to know just which solver to use.
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Parameter estimation for nonlinear models

Generally, a model may be written in the form

s = f(x, θ, const)

y = g(s)
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where

s state

x experimental conditions

θ estimated parameters

const known constants

y the observables

f the model function

g the observation function

MCMC
Physicum Feb 2010



The model may be directly given as a (’algebraic’) formula, or it may require a
numerical solver.

Example 1 Consider again the reaction A → B → C, modelled as the ODE
system

dA

dt
= −k1A

dB

dt
= k1A− k2B

dC

dt
= k2B

The data y consists of the values of (any of) the components A,B, C, measured
at some sampling instants, the x points ti, i = 1, 2, ...n. The unknowns to be
estimated are rate constants, θ = (k1, k2).
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Example: Matlab solution

The standard way to estimate the parameters of a model is to minimize the LSQ
function ` with respect to θ,

`(θ) =
n∑

i=1

(f(xi, θ)− yi)2.

The parameter estimation will be done by the FMINSEARCH optimizer. Let us
first suppose that only values of B have been measured, with an initial values
A(0) = 1.0, B(0) = C(0) = 0. To do the LSQ fitting, we have to write a script
file for initializations, a call of the optimizer, and plots for the solution:

%SCRIPT file for commands to call FMINSEARCH optimizer

k1 = 0.3; %initial guesses of the unknown

k2 = 0.2; %parameters for optimizer

teta = [k1 k2]; %just collect in 1 vector
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t = 0:1:10; %the sampling instants

data = [t y]; %data for the fitting:

%sampling instants t and measured B

s0 = [1 0 0]; %initial values for ODE
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% Call the optimizer:

teta_opt = fminsearch(@my1lsq,teta,[],s0,data);

% INPUT: my1lsq, the filename of the objective function

% teta, the starting point for optimizer

% [] options (not used)

% s0,data parameters needed in ’my1lsq’

% OUTPUT: teta_opt, the optimized value for teta

%ODE solver called once more, to get the optimized solution

k1 = teta_opt(1);

k2 = teta_opt(2);

[t,s] = ode23(@myfirstode,t,s0,[],k1,k2);

plot(t,y,’o’,t,s) %plot the data vs solution
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The LSQ objective function is coded in the ’my1lsq’ function:

function lsq = my1lsq(teta,s0,data);

%INPUT teta, the unknowns k1,k2

% s0, data the constants needed:

% s0 initial values needed by the ODE

% data(:,1) time points

% data(:,2) responses: B values

%OUTPUT lsq value

t = data(:,1);

y_obs = data(:,2); %data points

k1 = teta(1); k2 = teta(2);
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%call the ODE solver to get the states s:

[t,s] = ode23(@myfirstode,t,s0,[],k1,k2);

%the ODE system in ’myfirstode’

%at each row (time point), s has

%the values of the components [A,B,C]

y_cal = s(:,2); %separate the measured B

%compute the expression to be minimized:

lsq = sum((y_obs-y_cal).^2);
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function ds = myfirstode(t,s,k1,k2);

%input t the time variable (not used in this case)

% s the state vector

% k1,k2 model parameters

%output ds the derivative ds/dt at time t

A = s(1); %for clarity & readability, write the

B = s(2); %model using the notation A,B,C for the

C = s(3); %components

dA = -k1*A; %the ODE system equations

dB = k1*A - k2*B;

dC = k2*B;

ds = [dA;dB;dC]; %collect the output in vector ds
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4.1 Approximative error analysis

Finding a ’fit’ between data and a model is not enough, one should be able to
evaluate the reliability of the results produced by a model. As presented above,
direct methods exist for linear models. For nonlinear models the situation is
different.

For the LSQ estimator θ̂ of a linear model y = Xθ + ε we have seen that

covθ̂ = σ2(X ′X)−1,

(so θ̂ ∼ N(Eθ̂, (X ′X)−1σ2)), if the measurement error ε ∼ N(0, σ2).

For a nonlinear model y = f(x, θ) + ε it is customary to employ an
approximative approach by linearizing the model and then simply use the
above formula.
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Linearization

The Taylor expansion of a function `(θ) of several variables may in general be
written as

`(θ) = `(θ̂) +∇`(θ̂)T (θ − θ̂) +
1
2
(θ − θ̂)T H(θ − θ̂) + ...

where H denotes the Hessian matrix of the second derivatives of `.

Recalling the specific form of the LSQ function,

`(θ) =
n∑

i=1

(f(xi, θ)− yi)2

we easily see that the second derivatives assume the form

∂2`(θ̂)
∂θp∂θq

= 2
n∑

i=1

∂f(xi, θ̂)
∂θp

∂f(xi, θ̂)
∂θq

+ 2
n∑

i=1

(f(xi, θ̂)− yi)
∂2f(xi, θ̂)
∂θp∂θq
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The expression may be simplified if we assume that the residual terms
f(xi, θ̂)− yi are ’small’ and thus the second sum on the right hand side may be
omitted – the rather heuristic argument on behalf on this operation is that the
residuals are just minimized. Using this approximation we arrive at the
expression

Hpq =
∂2`(θ̂)
∂θp∂θq

' 2
n∑

i=1

∂f(xi, θ̂)
∂θp

∂f(xi, θ̂)
∂θq

.

The Jacobian matrix J of the first derivatives is defined by

Jip =
∂f(xi; θ)

∂θp
|θ=θ̂ .

So we see that the Hessian may be approximated in matrix form as

H ' 2JT J.
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Substituting the above approximation to a truncated form of the Taylor
expansion we get

`(θ) ' `(θ̂) + (θ − θ̂)T JT J(θ − θ̂)

This expression may be compared to that we get for the linear case, where
`(θ) = ||Xθ − y||2 = θT XT Xθ − 2yT Xθ + yT y is a quadratic polynomial in
θ. We may write it as a quadratic polynomial of θ − θ̂, too. Comparing the
second degree terms we see that the formula has to take the form

`(θ) = (θ − θ̂)T XT X(θ − θ̂) + D,

where D does not depend on θ. In fact, the substitution θ = θ̂ yields
D = `(θ̂) = ||X(XT X)−1Xy − y||, so in the linear case we have the equality

`(θ) = `(θ̂) + (θ − θ̂)T XT X(θ − θ̂)
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So in the linear approximation the Jacobian matrix assumes the role of the
design matrix X of a linear model, and we can write

cov(θ̂) ' σ2(J ′J)−1

Here we may know the std of the measurement error, σ, by, for instance,
replicate measurements. Often, however, σ must be estimated by the residuals
of the fit. Note that then one has to assume that the fit fulfills the requirement
residuals ' measurement error.

By using the standard notations, the estimate is obtained by the formula

MSE = RSS/(n− p)

where RSS (Residual Sum of Squares) is the fitted value of the least squares
objective function, and MSE (Mean Square Error) is computed as an average
value of residual squares, corrected by the ’degrees of freedom’, the number of
parameters p.
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5 Bayesian modelling and Monte Carlo-methods

In the Bayesian approach the unknown vector θ is interpreted as a random
variable. The aim of the analysis is to find the distribution of it. Before an
experiment θ has a prior distribution p(θ). The observations y update the
distribution p(θ) to the posterior distribution π(θ) = p(θ|y):

π(θ) =
p(y|θ)p(θ)∫
p(y|θ)p(θ) dθ

The Bayes formula, (2)

Here
p(θ) the prior distribution

π(θ) the posterior distribution

p(y|θ) the likelihood function, contains the model
∫

p(y|θ)p(θ) dθ the normalizing constant, due to which
∫

θ
π(θ) dθ = 1
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The likelihood function p(y|θ) is the probability distribution of the observations
when the parameter values are given. The most ’likely’ values of the parameters
are those that give high values for the posterior p(θ|y) = p(y|θ)p(θ).

In MAP (maximum a posteriori) estimation one maximizes the posterior,

max
θ

p(θ|y) = max
θ

p(y|θ)p(θ).

If we do not want to specify the prior – or we want to use the ’uninformative
prior’– we may set p(θ) = 1. The above task reduces to the ML, maximum
likelihood, estimation:

max
θ

p(y|θ).

The least squares estimate θ̂ often (but not always!) is the maximal value or
mode of the distribution π(θ).
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Example Let y = f(x; θ) + ε, where the experimental error ε ∼ N(0, σ2I). So
the error terms εi = yi − f(xi; θ) are independent, and each normally
distributed:

p(yi|θ) =
1√

2πσ2
e−(yi−f(xi;θ))2/2σ2

.

By independence, the combined probability p(y|θ) is obtained as the product

p(y|θ) =
n∏

i=1

1√
2πσ2

e−(yi−f(xi;θ))2/2σ2

=
1

(2πσ2)n/2
e−

∑n
i=1(yi−f(xi;θ))2/2σ2

.

So we arrive at the familiar LSQ function, and maximizing the likelihood
function turns out to be equivalent to minimizing the LSQ function.
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Problems with the Bayes formula

In principle, the Bayes formula solves the estimation problem in a fully
probabilistic sense: we find the peak, the MAP point, of the parameter
distribution and determine a required portion of the probability mass – typically
some 95% or 99% of the mass – around it. However, we face the problems

q how to define the a prior distribution

q how to calculate the integral of the normalizing constant

The integration for the normalizing constant, especially, is a difficult task in
high dimensional, nonlinear cases (dimension higher than 2 or 3!). Only
recently the approach has become truly accessible, due to various Monte Carlo
methods.
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MCMC methods

Markov chain Monte Carlo (MCMC) algorithms generate a sequence of
parameter values θ1, θ2, ... whose empirical distribution, in the ’histogram
sense’, asymptotically approaches the posterior distribution.

Note the problem here: we can not directly sample form an unknown
distribution. The way around the problem is to somehow generate ’candidate’
points, and then suitably accept or reject them. Intuitively, a correct distribution
of points θ is generated by favoring points with high values of π(θ).

The generation of the vectors in the chain θn, n = 1, 2, ... is done by random
numbers - Monte Carlo generally refers to methods based on random number
generation. Each new point θn+1 may only depend on the previous point θn.
This is the Markov property.
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Accept–Reject methods

The idea of sampling from a distribution by an ’accept–reject’ may be done by
the following simple idea: if we generate a uniform sample on a set B and
A ⊂ B, then the restriction of the sample on A is a uniform sample on A.

Suppose, for simplicity, that f is a positive (but non-normalized) function on
the interval [a, b], bounded by M. If we generate a uniform sample of points
(xi, ui) on the box [a, b]× [0,M ], the points that satisfy ui < f(xi) form a
uniform sample under the graph of f - the area of any slice
{(x, y)|xl < x < xu, y ≤ f(x)} is proportional to the number of sampled
points in it. So the (normalized) histogram of the points xi gives an
approximation of the (normalized) PDF given by f .
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The method is not restricted to 1D, the interval [a, b] may have any dimension.
We arrive at the following algorithm:

q Sample x ∼ U([a, b]), u ∼ U([0,M ]).

q Accept points x for which u < f(x)

So, we have a (very!) straightforward method that, in principle, solves ’all’
sampling problems. However, difficulties arise in practice: how to choose M

and the interval [a, b]. M it must be larger that the maximum of f , but a too
large value leads to many rejected samples. The interval [a, b] should contain
the support of f – which generally is unknown. A too large interval again leads
to many rejections. Moreover, uniform sampling in a high dimensional interval
is inefficient in any case, if the support of f only is a small subset (e.g., a thin
’banana’) of it.
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A more effective way for accept/reject is to somehow choose an –as such
artificial – auxiliary proposal distribution, sample from it, and then apply a
suitable accept/reject rule. This is the core idea of MCMC (Markov chain
Monte Carlo) methods. The most simple MCMC method is the Metropolis
algorithm:

q 1 Initialize by choosing a starting point θ1

q 2 Choose a new candidate θ̂ from a suitable proposal distribution q(.|θn),
that may depend on the previous point of the chain.

q 3 Accept the candidate with probability

α(θn, θ̂) = min

(
1,

π(θ̂)
π(θn)

)
.

If rejected, repeat the previous point in the chain. Go back to item 2.
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So points with π(θ̂) > π(θn) are always accepted (go ’upwards’). If
π(θ̂) < π(θn) (go ’downwards’), the point may still be accepted, with
probability that is given by the ratio of the π values. In practice, this is done by
generating a uniformly distributed random number u ∈ [0, 1] and accepting θ̂ if
u ≤ π(θ̂)/π(θi).

Note that only the ratios of π at different points are needed – so the ’difficult’
normalizing constant cancels out and is not needed!
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Problem: the proposal distribution should be chosen so that the ’sizes’ of the
proposal q and target suitably match. This often may be difficult. An unsuitable
proposal leads to inefficient sampling, typically due to

q the proposal is too large. Then the new candidates mostly miss the essential
support π, they are chosen at points where π ' 0 and only rarely accepted.

q the proposal is too small. The new candidates mostly are accepted, but
from a small neighborhood of the previous point. So the chain moves only
slowly, and may, in finite number of steps, not cover the target π.

Naturally, the ’size’ of the proposal distribution is not a sufficient specification.
In higher dimensions, especially, the shape and orientation of the proposal are
crucial. The most typical proposal is a multidimensional Gaussian (Normal)
distribution. In the (most typical) random walk version, the center point of the
Gaussian proposal is chosen to be the current point of the chain. The problem
then is to find a covariance matrix that produces efficient sampling.
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Standard nonlinear model

The above algorithm is valid for any distribution π, but typical examples deal
with parameter estimation by least squares. We then mostly assume Gaussian
measurement noise.

So consider a nonlinear model, with independent and Gaussian noise,

y = f(x, θ) + ε, ε ∼ N(0, σ2I).

As was shown earlier, the (normalized) likelihood function assumes the form

p(y|θ) = const exp
{
− 1

2σ2
SSθ

}
,

where

SSθ =
n∑

i=1

(yi − f(xi, θ))2

and const is the normalizing constant that cancels out.
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If we employ the noninformative prior p(θ) = 1 and a known constant for σ2,
the Metropolis-algorithm assumes the form

q Initializations. Choose θ0, the chain length M and the proposal distribution
q

q Generate θnew from the distribution q(θold, ·) and compute SSnew. The
new value is accepted, if SSnew < SSold or if

u ≤ exp
{
− 1

2σ2
(SSnew − SSold)

}

where u ∼ U(0, 1)

q Return to the previous item until M samples has been created.

MCMC
Physicum Feb 2010



Ergodicity

The theoretical correctness of MCMC methods may be expressed by the
following ’ergodicity’ theorem (we skip the theory so far, however, and only
present a formal theorem as an example).

Let θ0, θ1, ...θn be the samples produced by a MCMC algorithm. The following
should be valid (and indeed is, for example for the Metropolis algorithm with a
fixed proposal):

Theorem Let π be the density function of a target distribution in the Euclidean
space Rd. Then the MCMC algorithm simulates the distribution π correctly: for
an arbitrary bounded and measurable function f : Rd → R it (’almost surely’)
holds that

lim
n→∞

1
n + 1

(f(θ0) + f(θ1) + . . . + f(θn)) =
∫

Rd

f(θ)π(dθ).
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Intuitively, ergodicity (typically) means that, for a function that depends both
on time and space, the time average at a fixed point in space equals the space
average at a given time point.

Here, the ’time’ average – the left hand side of the equation – is obtained via
the discrete sampling by the algorithm, the ’space’ average – the right hand side
– by the integration over the probability distribution. The theorem simply states
that the sampled values asymptotically approach the theoretically correct ones.

Note the role of the function f . If f is the characteristic function of a set A, i.e.
f(θ) = 1 if θ ∈ A, f(θ) = 0 otherwise, then the right hand side of the equation
gives the probability measure of A, while the left hand side gives the frequency
of ’hits’ to A by the sampling.

But f might also be our model, f(θ) the model prediction at the parameter
value θ. The theorem then states that the values calculated at the sampled
parameters correctly gives the distribution of the model predictions.
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Classical theorems on convergence of random samples are given in several text
books – or may be easily found by, e.g., Google. Below are a few sites to recall
the Law of Large Numbers and the Central Limit Theorem:

http://en.wikipedia.org/wiki/Law_of_large_numbers

http://en.wikipedia.org/wiki/Central_limit_theorem

http://mathworld.wolfram.com/WeakLawofLargeNumbers.html

http://mathworld.wolfram.com/CentralLimitTheorem.html
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5.1 Metropolis-Hastings algorithm

So far we have (implicitly!) supposed that the proposal distribution is
symmetric, q(θ, θ̂) = q(θ̂, θ) - proposing θ̂ from θ is as likely as proposing θ

from θ̂.

With the Metropolis acceptance probability

α(θ, θ̂) = min(1,
π(θ̂)
π(θ)

),

the probability for the move will then be

p(θ, θ̂) = q(θ, θ̂)α(θ, θ̂)

Now it is straightforward to check that the so called detailed balance equation
holds:

π(θ)p(θ, θ̂) = π(θ̂)p(θ̂, θ),
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From here it follows that π is a stationary (invariant) distribution of the chain:
∫

π(θ)p(θ, θ̂) dθ = π(θ̂).

This is a key ingredient (while more theory is needed!) for proving the
ergodicity, that the sampling theoretically produces correct results.

The procedure can be generalized for nonsymmetric proposals. The acceptance
probability proposed by Hastings reads as

α(θ, θ̂) = min(1,
π(θ̂)q(θ̂, θ)

π(θ)q(θ, θ̂)
).

Again, is is easy to verify that the detailed balance equations holds. Various
other MC algorithms can be constructed by ’weighting’ the acceptance ratio so
that the detailed balance holds.
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Example: heat transfer. A glass of beer is at t = 0 in temperature T0 in a
glass. It will be cooled from outside by water, which has a fixed temperature
Twater. We measure temperatures and get the data (ti, Ti), i = 1, . . . , n. Based
on this data we want to fit parameters in a model that describes the heat transfer
between the the glass (’reactor’) and water (’cooler’). Note that the heat
transfer takes place both through the glass, and via the air/water surface:

dT/dt = −k1(T − Twater)− k2(T − Tair)

The solution may be obtained either by an ODE solver, or by integrating the
equation by hand:

T (t) = (T0 − Tinf )e−(k1+k2)t + Tinf

Here Tair is the temperature of the air, Tinf = (k1Twater + k2Tair)/(k1 + k2)
is the ’steady state’ temperature (T ′ = 0) and k1, k2 are the unknown
parameters to be fitted.
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An example fit as a nonlinear LSQ problem, solved by (for example) the
FMINSEARCH optimizer in MATLAB:

0 5 10 15 20 25 30 35 40 45
0
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(Note the non–ideality of the data!) For the LSQ fit we have coded an objective
function ’lsqbeer’. The same function is now used in running the MCMC chain
for the problem. We may start the chain at the LSQ fit point and might use
approximative covariance cov(θ̂) = σ2(J ′J)−1, or select some other proposal
by trial and error.
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2D posterior and 1D marginal posteriors for k1 and k2 by the MCMC-chain.
The empirical contour curves at 50%, 90% ja 95% probability levels.
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%%% Statistical analysis by MCMC simulation

nsimu = 10000; % length of chain

sigma2 = 0.2; % variance of meas.error

% call of the optimizer:

par0 = fminsearch(’lsqbeer’,[0.1,0.1],[],t,T);

npar = 2; % n of parameters,k1 ja k2

chain = zeros(nsimu,npar); % initialize the chain

qcov = [1e-6 0;0 1e-6]; % covariance for Gaussian proposal

R = chol(qcov); % Cholesky decomposition

xdata = t; ydata = T; oldpar = par0;

ss = lsqbeer(oldpar,xdata,ydata);% first SS value

rej = 0; % initialized count for rejections

chain(1,:) = oldpar;

for i=2:nsimu % simulation loop

newpar = oldpar+randn(1,npar)*R; % new candidate

ss2 = ss; % old SS

ss1 = lsqbeer(newpar,xdata,ydata);% new SS

if (ss2<ss1 & (rand(1,1) > exp(-0.5*(ss1-ss2)/ sigma2)))

MCMC
Physicum Feb 2010



chain(i,:) = oldpar; % reject

rej = rej+1;

else

chain(i,:) = newpar; % accept

oldpar = newpar;

ss = ss1;

end

end

accept = 1-rej./nsimu; % acceptance rate
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Suppose that the data has been sampled too late, in the sense that the reaction
has already reached a steady–state equilibrium at the sampling times. It is clear
that from such data the values of the parameters can not be separately
determined, only the ratio k1/k2 may be identified, as well as lower bounds for
k1 and k2. Without priors, the possible values for k1 and k2 would lie in a
practically infinite “zone” in a direction where k1/k2 is constant.
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5.2 Adaptive methods, AM

The bottleneck in MCMC (Metropolis) calculations often is to find a proposal
that ’matches’ the target distribution, so that the sampling will be effective.
This may lead to a time-consuming trial-and-error ’tuning’ of the proposal.

Various adaptive methods have been developed in order to improve the
proposal during the run. One relatively simple way is to compute the
covariance matrix of the chain and use it as the proposal, i.e., use a Gaussian
proposal distribution whose covariance is the covariance matrix so computed.

Now the new point depends not just on the previous point, but on the earlier
history of the chain. So the algorithm no more is Markovian. However, if the
adaptation is based on an increasing part of the chain, one can indeed prove
that the algorithm produces a correct (ergodic) result. Intuitively, the adaptation
slows down with the chain length, and the process approaches the usual
Metropolis algorithm.
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The crucial point regarding the AM adaptation is how the covariance of the
proposal distribution depends on the history of the chain. We take, possibly
after an initial non–adaptation period, the Gaussian proposal to be centered at
the current position of the Markov chain, Xn, and set its covariance to be:
Cn = sdCov(X0, . . . , Xn−1) + sdεId, where sd is a parameter that depends
only on the dimension d of the sampling space, and ε > 0 is a constant that we
may choose very small.

In order to start the adaptation procedure an arbitrary strictly positive definite
initial covariance, C0, is chosen according to a priori knowledge (which may be
quite poor). A time index, n0 > 0, defines the length of the initial
non–adaptation period and we let

Cn =





C0, n ≤ n0

sdCov(X0, . . . , Xn−1) + sdεId, n > n0.
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Recall the definition of the empirical covariance matrix determined by points
X0, . . . ,Xk ∈ Rd :

Cov(X0, . . . , Xk) =
1
k

(
k∑

i=0

XiX
T
i − (k + 1)Xk X

T

k

)
,

where Xk = 1
k+1

∑k
i=0 Xi and the elements Xi ∈ Rd are considered as

column vectors.

The covariance Cn satisfies the recursive formula:

Cn+1 =
n− 1

n
Cn +

sd

n

(
nXn−1X

T

n−1 − (n + 1)XnX
T

n + XnXT
n + εId

)
.

which permits the calculation of the covariance matrix without excessive
computational cost (the mean, Xn, also has an obvious recursive formula).
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This form of adaptation can proved to be ergodic. Note that the same
adaptation, but with a fixed update length for the covariance, is not ergodic.

The choice for the length of the initial non–adaptive portion of the simulation,
n0, is free. The larger it is, the longer it takes for adaptation to start. IT has been
found that the adaptation might not be done at each time step, but only at given
time intervals. This form of adaptation improves the mixing properties of the
algorithm, especially for high dimensions. So the index n0, in fact, can be used
to define the length of non–adaptation periods during the whole chain.

The role of the parameter ε is just to ensure that, theoretically, Cn will not
become singular. In most practical cases ε can be safely set to zero. The scaling
parameter usually is taken as sd = 2.42/d.
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As a pseudocode:

q Choose the lenght of the chain, Nchain, and initialize θ1, C1 - for example,
choose the θ1 given by a LSQ fitting and take C1 as the approximative
covariance calculated at θ1 by linearization.

q For k=1,2,...,Nchain

î the Metropolis step, using proposal N(θk, Ck).

î update Ck+1 = cov[θ1, ..., θk].

The algorithm may be implemented in several variations. One may compute the
covariance by the whole chain [θ1, ..., θk] or by an increasing part of it, for
instance [θk/2, ..., θk]. The covariance may also be updated only after a given
number of steps k, instead of every step.
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5.3 DR, the Delayed Rejection algorithm

Suppose the current position of a sampled chain is θn = θ. As in a regular MH,
a candidate move, θ̂1, is generated from a proposal q1(θ, ·) and accepted with
the usual probability

α1(θ, θ̂1) = 1 ∧ π(θ̂1)q1(θ̂1, θ)

π(θ)q1(θ, θ̂1)
(3)

Upon rejection, instead of retaining the same position, θn+1 = θ, as we would
do in a standard MH, a second stage move, θ̂2, is proposed. The second stage
proposal is allowed to depend not only on the current position of the chain but
also on what we have just proposed and rejected: q2(θ, θ̂1, ·).
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It can be shown that an ergodic chain is created, if the second stage proposal is
accepted with probability

α2(θ, θ̂1, θ̂2) = 1 ∧ π(θ̂2)q1(θ̂2, θ̂1)q2(θ̂2, θ̂1, θ)[1− α1(θ̂2, θ̂1)]

π(θ)q1(θ, θ̂1)q2(θ, θ̂1, θ̂2)[1− α1(θ, θ̂1)]
(4)

This process of delaying rejection can be iterated to try sampling from further
proposals in case of rejection by the present one. However, in many cases the
essential benefit – more accepted point in a situation where one (e.g., Gaussian)
proposal does not seem to work properly – is already reached by the above ’2
stage’ DR algorithm. Moreover, more proposals introduce more ’tuning’ work
to get the algorithm working.
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5.4 DR with adaptation: DRAM

It is possible to combine the ideas of adaptation and delayed rejection. To avoid
complications, a direct way of implementing AM adaptation with an m–stage
DR algorithm is suggested:

q The proposal at the first stage of DR is adapted just as in AM: the
covariance C1

n for the Gaussian proposal is computed from the points of
the sampled chain, no matter at which stage of DR these points have been
accepted in the sample path.

q The covariance Ci
n of the proposal for the i-th stage (i = 2, ..., m) is

always computed as a scaled version of the proposal of the first stage,
Ci

n = γiC
1
n, with a fixed scaling factor γi.
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The scale factors γi can be freely chosen: the proposals of the higher stages can
have a smaller or larger variance than the proposal at earlier stages.

We have seen that AM alone typically recovers from an initial proposal that is
too small, while the adaptation has difficulties if no or only a few accepted
points are created in the start. So a good default is to use just a 2 stage version
where the second proposal is scaled down from the (adapted) proposal of the 1.
stage.
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Example: singular covariance, physical bounds on parameters

Consider a simple chemical reaction A →k1 B, B →k2 A, where a component
A goes to B in a reversible manner, with reaction rate coefficients k1 and k2.
The dynamics are given by the ODE system:

dA

dt
= −k1A + k2B,

dB

dt
= k1A− k2B,

with initial values fixed as A0 = 1, B0 = 0 at t = 0.

Estimate k1 and k2 when data for A has been obtained at given sampling times
of t, but too late, at equilibrium.
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The values of the parameters can not be separately determined, only the ratio
k1/k2 may be identified, as well as lower bounds for k1 and k2.

With given prior upper bounds for k1 and k2, start MCMC with the proposal
given by the Jacobian approximation.
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q MH: almost no accepted points, proposed points beyond the bounds (but
without prior bounds all proposals accepted!) .
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q AM: slow to start adaptation, since very few points from which to adapt.
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Solution by DRAM
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5.5 Gibbs algorithm

In high dimensional problems, especially, it may be difficult to find a good
proposal distribution q. The idea of the Gibbs algorithm is to reduce the
sampling to one dimensional distributions. The parameter vector θ1, θ2, ..., θp is
updating in sweeps, by updating one coordinate at a time. This may be done, if
the 1–dimensional or conditional distributions π(θi|θ1, ..., θi−1, θi+1, ..., θp)
are known: the distribution of any of the parameters is known if the values of
the rest of the components of θ are fixed.

Often – in nonlinear problems – the conditional distributions are not known,
and they must be approximated by sampling in the 1D directions ’sufficiently’
many values.
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Gibbs method as a pseudocode, that creates a chain of length Nchain:

q for k=1,...,Nchain

î for i=1,2,...,p

î sample θk
i from the distribution π(θi|θ1, ..., θi−1, θi+1, ..., θp)

Note that the point taken from the 1D distribution is always accepted, but the
creation of the 1D (approximative) distribution may require several evaluations
of the objective function.
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If the 1D distribution for θk is not known, it must be approximatively created.

This may be done by evaluating π(θ) with respect to the coordinate i a given
number of times. The computed values are used to create an empirical
distribution function.

The new value for θk is then sampled from the empirical distribution by using
the inverse CDF method: sample a random point uniformly on [0, 1] and
compute the inverse of the above empirical CDF at that point.
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5.6 Single Component Metropolis

A 1D sampling may also be achieved by a single component
Metropolis-Hastings (SCMH) algorithm. The proposal distribution of each
component is, e.g., a normal distribution with the present point as the center
point and with a given variance, separate for each coordinate. The coordinates
are updated in loops, similarly as in Gibb’s sampling.

Let again π denote the density of our target distribution in a d dimensional
Euclidean space, typically a posterior density distribution which we can
evaluate up to a normalizing constant. The sequence θ0, θ1, . . . denotes the full
states of the process, that is, we consider a new state updated as soon as all the
d coordinates (or components) of the state have been separately updated. When
deciding the i:th coordinate θi

t (i = 1, . . . , d) of the t:th state θt we apply the
standard 1-dimensional Metropolis step:
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1. Sample zi from 1-dimensional normally distributed proposal distribution
qi
t ∼ N(θi

t−1, v
i) centered at previous point with variance vi.

2. Accept the candidate point zi with probability

min

(
1,

π(θ1
t , . . . , θi−1

t , zi, θi+1
t−1, . . . , θ

d
t−1)

π(θ1
t , . . . , θi−1

t , θi
t−1, θ

i+1
t−1, . . . , θ

d
t−1)

)
,

in which case set θi
t = zi, and otherwise θi

t = θi
t−1.

Note that, after a full loop over the coordinates, acceptance of a changed value
for θt typically is more likely than in standard Metropolis - since each
coordinate may separately be accepted with a reasonable high probability. On
the other hand, the CPU time needed for each coordinate loop increases with
the dimension d. For certain high dimensional targets the function evaluation
may be factorized, and so it will much quicker if only one coordinate is
changed at time.
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AARJ – automatic adaptive reversible jump

Model selection using adaptive Reversible Jump MCMC.

q AARJ = Automatic RJMCMC by Green (2003) with DRAM style
adaptation.

q Uses Gaussian approximations of the target distributions to perform model
to model parameter transformations.

q Both the target approximations and proposal covariances are adapted.

q First approximations by initial DRAM runs.
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Model 1 Model 2

 

 
95% contour of the target
Gaussian approximation

Model 3

 

 
target density
Gaussian approximation

Suitable for model selection and model averaging problems with 2-10
competing models.
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RJMCMC chains and model probabilities Four different aerosol models
fitted with AARJ.
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Reducing CPU: Early Rejection

Acceptance in Metropolis: Calculate likelihood ratio α, generate r ∼ U(0, 1),
reject if r > α.

But if (as usually) the likelihood ratio αn is monotonic with respect to the
number n of calculated data points, just reverse the order: generate
r ∼ U(0, 1), monitor αn, and reject as soon as r > αn.
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MCMC for Lorenz, Solution by ER

Sampling Lorenz model coefficients:
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MCMC for Lorenz, Solution by ER

Sampling Lorenz model initial values:
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Reducing CPU: Delayed Acceptance

Suppose a cheap approximative (coarse grid, etc) version π∗ is available.
Evaluate it first, and the π only after passing the approximative acceptance:

q At θn, choose θ from a proposal distribution q(.|θn), and Promote it to θ̂

with probability

min
(

1,
π∗(θ)
π∗(θn)

)
.

otherwise set θ̂ = θn.

q Accept θ̂ with probability

α(θn, θ̂) = min

(
1,

π(θ̂)
π(θn)

)
.

(note that α = 1 if not promoted)
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5.7 Further topics

Importance sampling

Suppose we want to estimate the expectance of a function f with respect to a
distribution given by the density function p:

Ep(f) =
∫

f(x)p(x)dx

This may be done by sampling points xj and computing a numerical
approximation for the integral. In crude Monte Carlo integration the samples
are drawn from a uniform distribution. Then every point xj is considered
’equally important’ for the evaluation of the integral. By CLT we know that the
average converges, but rather slowly, with the rate 1/

√
n. To accelerate the

convergence, the sampling should concentrate to ’important’ regions of the
target function, i.e., to those values where the functions f and p are large.
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A better way to compute the integral would be to sample xj from the
distribution given by p and compute then the averages

f̄m =
1
m

m∑

j=1

f(xj)

Suppose we can not (or it is ’expensive’) sample directly from p, but we do
know a density function g such that g(x) > 0 if p(x) > 0, and sampling from
the density g is easier. By the identity

Ef (p) =
∫

f(x)
p(x)
g(x)

g(x)dx

(where we take the integrand as zero if both p and g vanish) we may sample
from g and approximate the expectance as

f̄m =
1
m

m∑

j=1

f(xj)
p(xj)
g(xj)

=
1
m

m∑

j=1

f(xj)w(xj)
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The function g is referred to as the importance function, w as the importance
weight. The function g should be chosen so that it mimics the target
distribution, and is easy to sample from. In that case, it may speed up the
convergence of the sampling.

Naturally, the main problem here is how to find a proper importance function
for each problem.
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Population methods

So far the MC methods have been based on sampling one parameter vector at
each step. But we might equally well sample several vectors at each step, either
from the same proposal or from a set of different proposals.

The idea as called Population Monte Carlo, and may be implemented in
various ways.
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5.8 The Kalman Filter

Linear LSQ problem with general covariance and prior

Let us return to the Bayes formula

π(θ) ' p(y|θ)p(θ) (5)

where p(y|θ) is the likelihood function p(θ) is the prior distribution (we ignore
the normalizing constant). Consider a linear model y = Xb + ε (using the
notation θ = b, as usual with linear models) and suppose that both the
measurement error and the prior distribution are Gaussian with covariance
matrixes Sε and Sa, respectively. If the center point of the prior is denoted by
ba, we have

p(b) ' e−1
2
(b− ba)′S−1

a (b− ba)

and
p(y|b) ' e−

1
2 (y−Xb)′S−1

ε (y−Xb).
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Thus we get (ignoring the normalizing constants again)

−2logπ(b) = (y −Xb)′S−1
ε (y −Xb) + (b− ba)′S−1

a (b− ba)

Earlier, we have solved the linear LSQ problem with no priors and with a
diagonal covariance. But the above expression can be reduced back to that
simple form. Suppose that the inverses of the covariance matrixes may be
decomposed by (for example) the Cholesky decomposition:

S−1
ε = K ′

εKε, S−1
a = K ′

aKa.

These substitutions yield

−2logπ(b) = (Kεy −KεXb)′(Kεy −KeXb) + (Kab−Kaba)′(Kab−Kaba)

= ||KεXb−Kεy||2 + ||Kab−Kaba||2.
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But the last expression is the norm of the LSQ problem for X̃b = ỹ, where

X̃ =

(
KεX

Ka

)
, ỹ =

(
Kεy

Kaba

)

with N(0, I) as the covariance. So we may utilize the known formulas,
b̂ = (X̃ ′X̃)−1X̃ ′ỹ and S = covb̂ = (X̃ ′X̃)−1, for the solution and the
covariance. It remains to calculate the expressions:

X̃ ′X̃ = X ′K ′
εKeX + K ′

aKa = X ′S−1
ε X + S−1

a ,

X̃ ′ỹ = X ′K ′
εKεy + K ′

aKaba = X ′S−1
ε y + S−1

a ba.
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So, for the LSQ solution and the covariance we have the expressions

b̂ = (X ′S−1
ε X + S−1

a )−1(X ′S−1
ε y + S−1

a ba), (6)

S = (X ′S−1
ε X + S−1

a )−1. (7)

In other words, the posterior distribution is Gaussian with center point b̂ and
covariance S:

−2logπ(b) = (b− b̂)′S−1(b− b̂) + c,

where c is a constant.
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Linear Kalman Filter

Consider a time-dependent process, the state vector xt of which is observed at
time points t. Suppose further that the time evolution and the observation are
given by the expressions

xt = Mtxt−1 + Et

yt = Ktxt + εt.

Here the matrix Mt gives the model for the state evolution, the observation is
separately given as a function of xt, by a matrix Kt. Note the two error terms:
εt gives the ’usual’ observation error at time t, while Et denotes the modelling
error. So we assume that the model, too, may contain error. In fact, by the
choice of Et and εt we can specify how much we trust the model or data.
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In the basic form of Kalman filtering, we are interested in predicting new
values of x, and correcting the state values by new measured observations y.
This takes place iteratively, as the observations form a time series yt for
t = 1, 2, 3, ....

The process may be cast in the form of successive applications of the Bayes
formula. The prior is given by the model prediction, the likelihood by the
observation equation. In more detail, suppose the estimate x̂t−1 is obtained for
the state of the previous time point, and the covariance matrix Ŝt−1 has been
estimated. Suppose further, that the errors are Gaussian, with covariance
matrixes SEt and Sεt.
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The model equation then gives the prediction, that is used as the center point of
the prior distribution,

xat = Mtx̂t−1.

The covariance of the prior can then be computed (assuming that xt and Et are
statistically independent):

Sat = cov(Mtx̂t−1 + Et) = MtŜt−1M
′
t + SEt.

We now have all that is needed to employ the formulas of the general LSQ
problem: a given Gaussian prior distribution and a given linear equation system
for the observations. By substituting the present notations (M in place of X , xt

for b, xat for ba) in the equations (5) and (6) above, we have the solution.
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However, for computational reasons the Kalman filter usually is written in the
following form - (exercise: they may be obtained via direct but somewhat
non-trivial matrix manipulations)

Gt = SatK
′
t(KtSatK

′
t + Sε)−1

x̂t = xat + Gt(yt −Ktxat)

Ŝt = Sat −GtKtSat

Here the matrix Gt is called the Kalman gain.

Note that in Kalman filtering we do not (typically!) estimate any parameters of
the model, but the state vector itself. The uncertainty of the model is taken into
account with the modelling error terms.

MCMC
Physicum Feb 2010



Assimilation: Extended Kalman Filter, Variational methods

Assimilation: calibrate time–series type data to a model.

q Kalman filter: update states of a linear model via the Bayes formula. The
model prediction from the previous states used as a priori

q EKF, Extended Kalman Filter: model nonlinear, covariance matrixes by
approximations. Computational problems with high dimensions.

q Variational methods (for example, 4D-VAR): previous state variables
iterated to fit the new measurements. Computationally cheaper, routinely
used, e.g., for weather forecasts. Requires tedious coding for the adjoint
equations, no model error can be assumed.
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Kalman filter for nonlinear, high dimensional problems is subject to ongoing
research work.
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