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Tutorial 
Ø  Markov-Chain Monte-Carlo methods (MCMC) 

allow sampling of multivariate probability density 
functions (p.d.f.) that are difficult to sample 
directly 

Ø  Metropolis-Hastings algorithm is a practical 
rejection sampling algorithm for MCMC 
(Metropolis et al. 1953, Hastings 1970) 
l  Random-Walk Metropolis-Hastings 
l  Independence-Chain Metropolis-Hastings 

Ø  Single requirement: a value proportional to p.d.f. 
can be computed for a given set of parameters 
(avoiding p.d.f. normalization) 
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Tutorial 
Ø  For a proposal p.d.f. q(x,xj) centered at xj with 

the proposed new value x, a new set of 
parameters is accepted as xj+1=x if for a random 
deviate y within [0,1]  y < [p(x)q(x,xj)] / 
[p(xj)q(xj,x)],  where p(x) is the p.d.f. to be 
sampled; if the proposed set is rejected, xj+1=xj  

Ø  If q is symmetric, the acceptance criterion 
reduces to y < p(x)/p(xj) for a uniform random 
deviate y within [0,1] 

Ø  Typical proposal p.d.f.: Gaussian p.d.f. with 
standard deviations to be tuned 
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Tutorial 
Ø Example: 3D Rosenbrock Function  
Ø Non-convex function widely used in testing 

optimization algorithms (with extensions to 
higher dimensions) 
l  f(x,y) = (1-x2)+100(y-x2)2  
l  global minimum at x=y=1, in a long flat 

parabolic valley 
l  converted to a p.d.f. 

Ø Source for this example: Wikipedia 
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Tutorial 
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Tutorial 

Ø Optimum proposal p.d.f. coincides with the 
one to be sampled (but typically not 
available) 

Ø Challenges in tuning proposal p.d.f. 
parameters: how to guarantee global 
coverage in a finite amount of computing 
time? 

Ø “Optimum acceptance rate” around 
10-40% 
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Introduction 
Ø For arbitrary multivariate probability 

distributions, efficient direct sampling 
methods do not exist 

Ø MCMC provides the facility to draw 
dependent samples from a posteriori 
distributions 

Ø MCMC constitutes the major reason for 
the increasing application of Bayesian 
methods  
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Introduction 
Ø MCMC methods simulate a discrete-time 

homogeneous Markov chain 
Ø Markov chain has only a one-step memory 
Ø Asymptotically, under certain 

requirements, the Markov chain 
represents a sample from the a posteriori 
distribution 

Ø MCMC constitutes a (pseudo-)random-
number generator for an arbitrary 
probability density 
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Introduction 

Ø How can we ensure that the invariant 
distribution of a Markov chain is the 
distribution that we wish to sample from? 

Ø How can we ensure that the Markov chain 
satisfies the conditions for the distribution 
of parameters to converge to the invariant 
distribution? 

(9/30)	




Introduction 

Ø How long do we need to run the chain 
before we can suppose that the 
distribution of parameters is (sufficiently 
close to) the invariant distribution? 

Ø How long do we need to run the chain in 
order to get a sufficiently large sample to 
compute the required summaries of the 
distribution? 
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Introduction 

Ø Markov chain theory and methods for 
constructing Markov chains 

Ø Metropolis-Hastings method and Gibbs 
sampler 

Ø Optimization of MCMC methods 
Ø Convergence diagnostics 
Ø Presence of model uncertainty 
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Markov Chains 
Ø  A discrete-time homogeneous Markov chain is 

defined by a transition kernel that specifies the 
conditional distribution for xi+1 given xi and is 
independent of i 

Ø  Target distribution = a posteriori distribution 
Ø  Detailed balance equations ensure that the 

Markov chain has the a posteriori distribution as 
its invariant (or stationary) distribution 

Ø  A Markov chain that satisfies the detailed 
balance equations is said to be reversible 
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Markov Chains 
Ø  If P is the transition kernel of a Markov chain 

which has invariant distribution f then provided 
that it is f-irreducible, aperiodic, and Harris 
recurrent it is said to be ergodic. 

Ø  An ergodic Markov chain tends to produce a 
sample of the a posteriori distribution as the 
number of transitions of the chain tends to 
infinity. 

Ø  The time it takes for the chain to approximately 
achieve its equilibrium distribution is often called 
the burn-in. 

(13/30)	




Markov Chains 
Ø  We require the central limit theorem for Markov 

chains, that is, that the difference between the 
ergodic sample average of a function of the 
parameters and the ensemble average tends to 
normality as the number of samples tends to 
infinity 

Ø  This is true when the chain is reversible and a 
certain variance (sum of covariances along the 
chain) remains finite 

Ø  The variance can, in principle, be estimated from 
the output of the MCMC sampler 
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Markov Chains 
Ø  “Irreducible” means that, for any starting value 

of the chain, the chain can eventually reach 
every region of the parameter space with 
positive probability 

Ø  The chain is periodic if it cycles between disjoint 
subsets of the parameter space. Any chain that 
is not periodic is aperiodic. 

Ø  The chain is Harris recurrent if any subset of the 
parameter space with positive probability is 
visited infinitely often by the chain. 

(15/30)	




Metropolis-Hastings 
Algorithms 

Ø A proposal parameter value is generated 
from a proposal density and accepted/
rejected on the basis of a straightforward 
criterion (see earlier). 

Ø Unnormalized probability densities can be 
readily utilized. 

Ø Extremely general method for sampling 
from a general posterior distribution 
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Random Walk Algoritms 
Ø  In a random walk algorithm, a zero-mean 

random increment with, e.g., multivariate normal 
probability density function is added to current 
value of the chain independently of the value 

Ø  If the distribution is symmetric, the proposal 
density drops off completely 

Ø  In a random-walk algorithm, the chain will spend 
more time in regions of high probability 
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Random Walk Algorithms 
Ø  If the proposal variance is set to a small value, 

proposals have a high probability of being 
accepted, but successive realizations of the 
chain will be very close to one another, leading 
to a slow transition between distant areas of the 
parameter space. 

Ø  If the variance is large, larger transitions are 
proposed. If the variance is too large, proposed 
values may be in areas of the parameter space 
with low posterior probability and hence likely to 
be rejected. 
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Random Walk Algorithms 
Ø  Correlation structure and/or the relative 

variances in the proposal covariance can be 
chosen based on an approximation to the 
posterior distribution. 

Ø  The overall scale is nevertheless likely to be 
crucial in determining the convergence of the 
chain. 

Ø  Acceptance rates between 0.1 and 0.4 ought to 
perform close to optimal. 

Ø  Advisable to spend some time tuning the scale 
of the proposal distribution.  
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The Independence Sampler 
Ø  In the independence sampler, the proposal 

distribution is fixed and independent of the value 
of the chain. 

Ø  Dependence in the transition distribution arises 
through the dependence of the acceptance 
probability on the current value of the chain. 

Ø  Independence sampler can fail to converge. It 
should be designed to have strong tails. 

Ø  The independence sampler should mimic the 
target posterior density as closely as possible. 
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Combining MCMC Samplers 
Ø The Markov chain transition kernel can be 

a mixture kernel that is a weighted sum of 
a number of transition kernels (with 
individual probabilities). 

Ø A mixture proposal will exhibit generally 
superior convergence properties to the 
mixture kernel. 

Ø A mixture proposal is, however, less 
efficient to generate. 
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Single Variable and Block 
Updates 

Ø  In the variable-at-a-time Metropolis-
Hastings algorithm, single parameter is 
proposed transitions for. 

Ø By updating blocks or individual 
components, it is often possible to 
construct mobile samplers 

Ø  It remains as a challenge to obtain an 
ergodic sampler.  
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Gibbs Sampling 
Ø  For the Gibbs sampler, the proposal probability 

density is the conditional a posteriori density of 
the block parameters given the current values of 
the other parameters 

Ø  Proposal is always accepted 
Ø  Gibbs sampler among the most popular MCMC 

methods  
Ø  Paper on the Gibbs sampler by Gelfand and 

Smith (1990) marks the real beginning of MCMC 
in Bayesian computation 
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Sampling from the 
Conditional Distributions 

Ø The form of the conditional distributions is 
immediately available by examining the 
form of the unnormalized joint density 
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Rejection Methods 
Ø  Let s(x) be a density from which we can 

conveniently sample x and let the ratio g(x)/s(x) 
be bounded, A ≥ g(x)/s(x), for all x. 

Ø  Sampling from g can proceed in the following 
way: take two independent random draws, x 
from s(x) and y from the uniform distribution on 
[0,1]. If Ay ≤ g(x)/s(x) retain the draw x, 
otherwise reject and draw fresh x and y, and 
continue doing so until succeeding. 

Ø  Note that rejection sampling could be applied to 
the a posteriori distributions directly. But, as 
stated earlier, the implementation is hard without 
obtaining enormous numbers of rejections. 
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MCMC Optimization 
Ø  Empirical systems for asteroid brightness and 

polarization phase curves 
l  Revision of the H, G magnitude system of the 

International Astronomical Union 
l  Revision of the trigonometric polarization system 

Ø  Instead of pre-determined basis functions, utilize 
MCMC in a search of optimum functions via 
large numbers of parameters 

Ø  MCMC can yield an arbitrary number of systems 
to choose from  
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Asteroids’III, p.123, obs. ref. therein	
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Magnitude system 
Solid lines:	

H, G system	


Symbols:	

revised	

system	


Number of	

parameters:	

18	
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Polarization system 

Solid lines:	

trigonometric	

system	


Symbols:	

revised 	

system	


Number of	

parameters:	

18	
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MCMC Case Study 1 

Ø Determine the parameters of a linear-
exponential model for the disk-integrated 
brightness of atmosphereless solar-
system objects near opposition. 
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