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The term inverse method is used quite widely and loosely, and in general 

this means all the situations where we have 

 model f  that uses data x and parameters θ to produce results/to model 

observations y, i.e. 

  f(x; θ) → y 

 which is the direct problem. 

 Inverse problem is to find parameters θ when result y is known. 

However, there are vast amount of different methods for that, depending on 

the problem. Next page shows my own „classification‟ of inverse methods. 

With background in statistics, I tend to feel that „inverse method‟-people are 

trying to assimilate statistics as a small special case of inverse methods, 

whereas I feel that most of the „inverse methods‟ are just statistical methods 

with a new name. In any case, do not try to „invent the wheel again‟. 

1.2.2012 2 Antti Penttilä / Introduction to statistical inference 

What are inverse methods? 
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“inverse methods” 

inverse methods 

f(x;θ) typically arising 

from theory – physics 

or e.g. from medical 

imaging. The model is 

often some PDE or 

integral equation. 

Randomness and/or 

error in result y does 

not play major role. 

e.g. Radon-transform 

f(x;θ)=y f(x;θ)=y+ε 

statistical inference/inversion/modeling 
Result includes random error 

frequentist inference 
Maximum likelihood, 

linear and nonlinear 

models, parameter 

estimation, … 

Bayesian inference 
parameter has a priori 

probability distribution. 

Posterior distribution is 

searched 

closed-form solution to max. 

likelihood estimates 

computational methods 

closed-form solution with 

conjugate prior 

computational methods, 

MCMC the most used 
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I would like to go through the basic concepts in statistical (classical and 
Bayesian) inference. These include 

• probability model 

• likelihood and log-likelihood function 

• maximum likelihood estimate 

• a priori and a posteriori distributions 

• Bayesian maximum probability estimate 

• conjugate priori 

• linear and non-linear models 

 

All together these subjects sum to well over 20 study credits in the 
department of mathematics and statistics… 
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Purpose of this lecture 
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Frequentist inference, e.g. 

maximum likelihood principle 

Philosophical grounds – all information from the observed 

data via the statistical model about the event. These two 

will give the most likely estimate of the true, unknown 

parameter. 

 

In its essence there are no assumptions about Gaussian 

distribution etc. 
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…ML principle 

We can start with very simple example which will introduce the 

concepts. Let‟s say that we have the heights of n people and we 

are interested in the distribution parameters of height in the 

population. 

We can define our model by assuming that the population height 

is Gaussian distributed, and our n people are independently 

sampled 

or 

we know y and we want to estimate the parameters µ and σ. 
 

(see section 6.3 ’Yleinen malli’ in Juvela’s notes) 



According to our model, the probability of observation yi is given 

by the Gaussian probability density function p(yi;µ,σ). Because 
the observations are independent, their joint probability is 
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Likelihood function 

This is, essentially, the likelihood function L of the model and 

observations. One can clean up any term not involving the 

parameters away from L, so 



The likelihood principle is simple – the parameter values that are 
the most likely, given the observations, are the best guess. So, 
we need to maximize the likelihood function L(µ,σ;y) for the 

unknown parameters using the known data y. 
 

For practical purposes, it is often easier to maximize the 
logarithm of the L (products become sums, exponential functions 

are canceled, …). This is called the log-likelihood function l. In 
our example 
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Log-likelihood function 

where     is the mean of y and s2 is the observed variance. y



The maximum likelihood estimate (MLE) of the unknown model 

parameters is now the values that maximizes l. By looking at l 
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Maximum likelihood estimate 

we can see that the value that maximizes l for µ, called     is 
 

For the MLE of σ2 we can take the 1st derivative of l in respect to 

σ2 and solve its root. It turns out that 

µ̂ y

So, quite as expected, our answer to this problem is that we will 

guess that the population mean is the sample mean and the 

population variance is the (biased) sample variance. Obvious, but 

the same ML principle applies to more complicated problems, too. 



ML estimate is a point estimate for the (unknown) parameter 

value. Often error estimate is needed – confidence intervals. 
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Maximum likelihood inference 

10 observations from N(0,1) and 

ML-estimate of the mean value 

with 95% confidence interval. 

Where is the Gaussian assumption? 

The correct distribution of the ML-estimate cannot always be 

(analytically) derived. However, central limit theorem states that it 

approaches Gaussian. Confidence intervals etc. can be found 

using that assumption. 
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Bayesian inference 

Philosophical difference to „classical‟ frequentist statistics – 

parameter θ is random variable. Furthermore, there is a way to 

include subjective information via a priori distribution. 

The Bayes theorem  

Probability of B given A is proportional to probability of B (a priori 

information) times probability of A given B (model). 
 

Note that (subjective) decision about a priori information is 
always done in Bayesian inference, at least implicitly. 



The Bayesian inference is actually not that different from the 

frequentist inference with the ML principle. The Bayes theorem 

says, that 
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…Bayesian inference 

We can apply that to modeling: 

 A – observed data 

 B – parameters 

 probability of B – a priori distribution Dpr(θ) 

 prob. of observations given the parameters – same likelihood function as before 

 prob. of parameters given the observations – a posteriori distribution D(θ|y) 



Example of posterior distributions 
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Observations from normal distribution. Estimate μ in three 

cases – classical ML (left), a posteriori (middle) with correct a 

priori, and a posteriori (right) with misleading a priori 



With Bayesian inference the whole posterior distribution is the 

answer, However, if some (point)estimate for the parameters is 

needed, it is the maximum a posterior (MAP) estimate. So, 

instead of L as in freq. inference one maximizes Dpr(θ) L(θ;y). 
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Maximum a posteriori estimate 

MAP 



• Select computationally easy way – use conjugate priors 

 

• Select non-informative/vague priors 

 

• (Best way in my opinion) Use subjective decision. Try to include 

the knowledge about the possible behavior of the parameters 

and about the likely values into a priori distribution. Do not 

choose too restrictive (small variance) prior. Check the sensitivity 

of poster to prior. 
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How to choose prior distribution 



Conjugate prior Dpr(θ) for certain probability model (likelihood 

function) is such a distribution that also the posterior distribution 

D(θ|y) is of the same family as the prior. You will have only simple 

formulas to how the posterior parameters are changed from prior 

parameters. Example: 

Your model says that the observations should come from 

(discrete) Geometric distribution with parameter p. If you 

choose Beta-distribution as a priori for p: Dpr(p) = B(α,β) 

(hyperparameters α and β), your a posteriori distribution for p is 

also Beta with parameters 
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Conjugate priors 



• Use if you don‟t want to quantify prior information but still want to 

use Bayesian analysis 

• One option is „even‟ distributions 

• for location parameter, e.g. µ in Gaussian distribution an even dist. for 

large range, or some nearly even dist. like normal with huge variance 

• For scaling parameter like σ2 in Gaussian the concept of „even 

distribution‟ is more difficult, but e.g. Dpr(σ
2)=1/σ2 is used (see). 

• Use of „even‟ priors can lead to equivalent inference with the classical 

frequentist way, but not always 

• Another option is the so-called Jeffreys-prior. The idea is that the 

a priori must have the same information for all the possible re-

parametrizations of the model. This is based on the Fischer-

information of the model (see). 
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Non-informative priors 



• You can use any prior distribution you want if only you can also 

justify it to the public. 

• Sometimes it is convenient to limit the range of possible 

parameter values by using a priori that has zero probability in the 

unwanted areas of the parameter space. 

• A priori can be used to guide otherwise difficult estimation 

problem to smaller, more likely subspace. 

• Results from earlier studies can be used as a priori information 

• Sensitivity analysis is recommended. Simulate and see how 

much your choice of a priori will drive the result. If too much, 

increase the uncertainty (i.e. variance) in your prior. 

1.2.2012 18 Antti Penttilä / Introduction to statistical inference 

Subjective priors 



If you are not using conjugate priors it might be impossible to have 

a closed-form solution to a posteriori distribution. In these cases 

the MCMC algorithm is very popular and convenient. Details will 

be presented later (Muinonen and Haario), but in a nutshell, 

MCMC is an algorithm that will construct a chain of numbers. This 

chain will automatically, at some point, converge to sample from 

the a posteriori distribution. 

Now, you don‟t „know‟ the a posteriori, but you can sample it 

infinitely, and base you estimates on these samples. E.g. mean, 

standard deviation, mode, median and quantiles of the a posteriori 

can be computed. With distribution estimation techniques, e.g. 

kernel-estimation (see) you can numerically construct continuous  

posterior distribution from samples. 
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How to construct the a posteriori 



In linear/nonlinear models we have the model part, f(x;θ), which is 

not a probability model. The probability model comes from the 

random error component ε that we assume between model 

prediction y and the observed value    = y+ε. 

Usually, the error term is assumed to be Gaussian and independent. 

The squared errors are thus χ2-distributed with 1 degree of freedom, 

and the sum of squared errors χ2-distributed with n degrees of 

freedom. 

Using the ML estimation to this model produces the classical results 

for linear models: 
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How about linear/nonlinear models 

ŷ

and 

Nonlinear models have the same asymptotic behavior, but the lecture on 

these has to be left to another time… (see Juvela‟s notes, sec 4 and 6) 
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Reconstruction of simulated cross-section of human chest 

from electrical impedance tomography data using a novel 

reconstruction method (courtesy of CoE in Inverse problems 

research, Univ. of Helsinki) 
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‟even‟ distribution for location 

parameter 

‟even‟ distribution for scale 

parameter 
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Jeffreys priors for different cases 
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