
AXIOMATIC SET THEORY
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Tapani Hyttinen

In this introduction to set theory we will concentrate, in addition to the basic
theory of ordinals and cardinals, to the theory of constructible hierarchy L and to
the theory of forcing. Both of these are techniques for showing consistency results i.e.
that some claim is consistent with the theory ZFC of sets. In both cases we are more
interested in how to apply the techniques than all the details in the development of
the theories and thus we occasionally skip some proofs. Most of the skipped proofs
can be found from K. Kunen’s excellent book [Ku] which uses the approach to our
topics mostly used also in these notes.
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1. Preliminaries

Set theory ZFC is a formal theory in the first-order language in the vocabulary
{∈} , where ∈ is a binary relation symbol (i.e. a predicate). However, for an obvious
reason, we will not give formal proofs, instead our approach is semantic i.e. we
pretend that we have a model V of ZFC and then work inside it using natural
language and assume that the reader knows that these proofs can be translated to
the proofs in the first-order logic. In fact, we will use natural language as much as
possible (there are cases in which first-order formulas give the most convenient way
of expressing claims). However, there are moments in which we can not avoid the use
of the formal language and then we simply return to it. Also when we study forcing,
we really need V and this is a potential problem, since even ZFC, and thus current
mathematics, can not prove the existence of V (by Gödel’s second incompleteness
theorem). Similarly, for partially ordered sets P , we will assume the existence of so
called P -generic filter G over V . And in general ZFC can not prove the existence of
G either. We will address these problems when convenient, not necessarily as soon
as they arise.

Elements of V are called sets and subsets of V , which are first-order definable
with parameters, are called classes. If ϕ(v0, ..., vn) is a first-order {∈}-formula and
a1, .., an are sets, then the expression ϕ(v0, a1, ..., an) is called a property and for a
set x , we write ϕ(x, a1, ..., an) (in the beginning of these notes, later we need to be
more specific) if, using the notation from the course Mathematical Logic,

V |=s(x/0)(a1/1),...,(an/n) ϕ

and say that x has the property ϕ(v0, a1, ..., an). Often we do not mention the
parameters and just say that x has the property ϕ and write just ϕ(x). So the
classes are families of all sets that have some fixed property ϕ .

1.1 Axioms

We start by giving the axioms of ZFC.

I Extensionality: If sets a and b have the same elements, then a = b .

Notice, that also the inverse of the implication in Extensionality holds (by iden-
tity axioms). And that from now on to determine a set, it is enough to describe its
elements, e.g. {3, 8, i} , {n ∈ IN| n is even} ,..., and of course ∅ . Also we extend the
idea in Extensionality to classes i.e. two classes are considered the same if they have
the same elements and a class and a set are considered the same if they have the
same elements.

1.1.1 Exercise. Show that every set is a class.
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II Foundation: Every non-empty set a has an ∈-minimal element i.e. there is
x ∈ a such that for all y ∈ a , y ̸∈ x .

III Pairing: For all sets a and b , (the class) {a, b} is a set (i.e. there is a set x
such that for all y , y ∈ x iff y = a or y = b).

Notice, that from Pairing it follows that for every set a , {a} is a set.

1.1.2 Exercise. Show that there is no set a such that a ∈ a or sets a and b
such that a ∈ b ∈ a .

IV Separation (aka Comprehension): If a is a set and ϕ is a property, then {x ∈
a| ϕ(x)} is a set.

Notice that from Separation it follows that for all sets a and b , a ∩ b is a set,
since a ∩ b = {x ∈ a| x ∈ b} .

V Union: For every set a , the union ∪a of the elements of a is a set (x ∈ ∪a if
x ∈ b for some b ∈ a).

We will write a ∪ b for ∪{a, b} .

1.1.3 Exercise.

(i) Show that if a, b, c, d and e are sets, then {a, b, c, d, e} is a set.

(ii) We write (a, b) for the set {a, {a, b}} . Show that

(a) (a, b) is indeed a set,

(b) if (a, b) = (c, d) , then a = c and b = d .

VI Power Set: For every set a , the power set P (a) of a is a set (x ∈ P (a) if x ⊆ a
i.e. for every set y , if y ∈ x , then y ∈ a).

So far we have had no axiom that states that there exists even a single set. The
next axiom says that there is an infinite set. However, it seems to assume that the
empty set already exists. So should we not have an axiom that says this? There is
no need for this: Even without any assumptions, in first-order logic one can always
prove that there exists x such that x = x . So in the case of set theory, one can
always prove the existence of at least one set.

1.1.4 Exercise.

(i) Show that the empty set ∅ exists.

(ii) For sets a and b , show that a× b = {(x, y)| x ∈ a, y ∈ b} is a set.
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VII Infinity: There exists an inductive set i.e. a set a such that ∅ ∈ a and if x ∈ a ,
then also x ∪ {x} ∈ a (exercise: show that x ∪ {x} is a set).

When we talk about functions f from a set a to a set b , we always mean that
f = {(x, f(x))| x ∈ a} is a set i.e. f ∈ V . We talk also about class functions:

1.1.5 Definition. Let C be a class. We say that a function F : C → V is a
class function if the graph of F is a class i.e. there is a property ϕ such that for all
sets x , x has the property ϕ iff x = (a, F (a)) for some set a ∈ C .

Notice the following: For all classes C and formulas ϕ(v0, ..., vn) there is a for-
mula ψ(v1, ..., vn) such that for all a1, ..., an , ϕ(v0, a1, ..., an) defines a class function
from C to V iff ψ(a1, ..., an).

VIII Replacement: If a is a set and F : a→ V is a class function, then {F (x)| x ∈
a} is a set.

1.1.6 Exercise.
(i) Show that if a is a set and F : a→ V is a class function, then F is a function

i.e. {(b, F (b))| b ∈ a} is a set.
(ii) Show that if a and b are sets and f : a → b is a function, then it is a class

function.
(iii) Suppose a is an inductive set. Show that there are no class functions

f : a→ V such that for all x ∈ a , f(x ∪ {x}) ∈ f(x) .

IX Choice: If a is a set and every x ∈ a is non-empty, then there is a function
f : a→ ∪a such that for all x ∈ a , f(x) ∈ x .

The theory that consists of all these axioms is called ZFC. If the Choice is left
out, the resulting theory is called just ZF. Unless we state otherwise, we work in
ZFC.

1.2 Recursive definitions

Notice that Choice is not used in this subsection.

1.2.1 Definition.
(i) If C is a class, then a class < is called a partial ordering of C if the elements

of < are of the form (x, y) , x, y ∈ C , and the following holds: if (x, y) ∈< , then
(y, x) ̸∈< and if (x, y), (y, z) ∈< , then (x, z) ∈< . Instead of writing (x, y) ∈< , we
will simply write x < y .

(ii) A partial ordering < is a linear ordering, if in addition, for all x, y ∈ C ,
x < y or x = y or y < x .

(iii) A partial ordering is well-founded if for all x ∈ C , {y ∈ C| y < x} is a set
and if a is a non-empty set such that every element of it belongs to C , then a has
a <-minimal element. If in addition the partial ordering is a linear ordering, it is
called a well-ordering.
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If < is a partial ordering of C , then by ≤ we mean the relation a ≤ b if a < b
or a = b .

1.2.2 Theorem. Suppose C is a class and < is a well-founded partial ordering
of C . Let ϕ be a property and assume that for all x ∈ C , if every element of
{y ∈ C| y < x} has the property ϕ , then also x has it. Then every element of C
has the property ϕ .

Proof. Suppose not. Let x ∈ C be such. We show first that we can choose x
so that it is <-minimal element of C among those that do not have the property ϕ :
If x is not such then the class a of all element of C which are smaller than x and
do not have the property ϕ is non-empty and a set. Since < is well founded, a has
a <-minimal element. Clearly this is as wanted.

But if x is a minimal among those that do not have the property ϕ , then every
element of {y ∈ C| y < x} has the property, and so also x has it, a contradiction.

1.2.3 Theorem. Suppose C is a class, < is a well-founded partial ordering of
C and G : V 2 → V is a class function, where V 2 is the class of all pairs of elements
of V . Then there is a unique class function F : C → V such that for all x ∈ C ,
F (x) = G(F � Cx, x) , where Cx = {y ∈ C| y < x} . In particular, if G : V → V is
a class function, then there is a unique class function F : C → V such that for all
x ∈ C , F (x) = G(F � Cx) .

Proof. We say that A ⊆ C is downward closed if x < y ∈ A implies x ∈ A .
We start with an exercise:

1.2.3.1 Exercise. Suppose that a set A ⊆ C is downward closed and f, g :
A → V (recall Exercise 1.1.6) are such that for all z ∈ A , f(z) = G(f � Cz, z) and
g(z) = G(g � Cz, z) (notice that Cz ⊆ A). Show that f = g . Conclude that if F
exists, it is unique.

Now let ϕ be the following property of sets a : a is of the form (x, y) where
x ∈ C and y is such that there is a function fx : Cx → V such that y = G(fx, x)
and for all z ∈ Cx , fx(z) = G(fx � Cz, z). We will show that for every x ∈ C , there
is a set y such that (x, y) has the property ϕ . Then since by Exercise 1.2.3.1, such
y is unique (since fx is unique), ϕ defines a class function C → V .

To see that y exists, it is enough to show that fx exists. We prove this by
induction i.e. by using Theorem 1.2.2. So suppose that the claim holds for every
z ∈ Cx . We notice

(*) if z, w ∈ C and fz and fw exist, then fz � (Cz ∩ Cw) and fw � (Cz ∩ Cw)
satisfy the requirements of Exercise 1.2.3.1 for A = (Cz ∩ Cw) and thus fz � (Cz ∩
Cw) = fw � (Cz ∩ Cw).
So by (*), if Cx does not have maximal elements (z ∈ Cx is maximal if there
are no y ∈ Cx such that z < y ) fx =

∪
z∈Cx

fz is as wanted. (Notice that we
use replacement axiom here.) On the other hand, if Cx has maximal elements, we
simply let fx = (

∪
z∈Cx

fz)∪ {(z,G(fz, z))| z ∈ Cx is maximal} . Again by (*), fx is
as wanted.
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So we are left to prove that for all x ∈ C , F (x) = G(F � Cx, x). By Theorem
1.2.2 it is enough to prove this under the assumption that this holds for all z ∈ Cx .
Let fx be as in the definition of ϕ . Then by Exercise 1.2.3.1, F � Cx = fx . Thus
F (x) = G(fx, x) = G(F � Cx, x).

1.2.4 Exercise.
(i) Suppose C is a set and < is a partial ordering of C . Show that < and Cx

are sets for all x ∈ C .
(ii) Show that {(z,G(fz, z))| z ∈ Cx is maximal} from the proof of Theorem

1.2.3, is a set.

1.3 Ordinals

1.3.1 Definition.
(i) We say that a set a is transitive if x ∈ y ∈ a implies x ∈ a (i.e. ∪a ⊆ a and

notice that if a and b are transitive, then so is a ∩ b).
(ii) We say that a set α is an ordinal if it is transitive and linearly ordered by

∈ . For ordinals α and β , one usually writes α < β instead of α ∈ β and α ≤ β for
α < β or α = β .

(iii) The class of all ordinals is denoted by On .

1.3.2 Exercise.
(i) Show that ordinals are well-ordered by ∈ .
(ii) Show that 0 = ∅ is an ordinal.
(iii) Show that if α is an ordinal, then also α+ 1 = α ∪ {α} is an ordinal.
(iv) Show that if a is a set of ordinals and for all α, β ∈ a , either α ⊆ β or

β ⊆ α , then ∪a is an ordinal.
(v) Show that if α is an ordinal and β ∈ α , then β is an ordinal.
(vi) Show that if α and β are ordinals, then so is α ∩ β .

1.3.3 Lemma. Let α and β be ordinals.
(i) If α ⊆ β , then either α = β or α ∈ β .
(ii) Either α ⊆ β or β ⊆ α .

Proof. (i): Suppose α ̸= β . Then β − α is not empty and thus it has the least
element γ . If δ ∈ γ , then δ ∈ β and so by the choice of γ , δ ∈ α . On the other
hand, if δ ∈ α , then γ ̸≤ δ , because otherwise γ ∈ α and this is against our choice
of γ . Thus since ∈ linearly orders β , δ ∈ γ . It follows that α = γ and so α ∈ β .

(ii): Now by Exercise 1.3.2 (vi), γ = α ∩ β is an ordinal. Then γ = α or γ = β
because otherwise by (i), γ ∈ α ∩ β = γ . In the first case α ⊆ β and in the other
case β ⊆ α .

1.3.4 Exercise.
(i) Show that On is well-ordered by ∈ .
(ii) Show that α+ 1 is the least ordinal strictly greater than the ordinal α .
(iii) For a set a of ordinals show that ∪a is the supremum of a (in particular,

∪a is an ordinal).
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1.3.5 Definition.
(i) We say that an ordinal α is a successor ordinal if α = β+1 for some ordinal

β and otherwise α is called a limit ordinal. However, usually 0 is not considered a
limit ordinal. (Obviously, it is not a successor ordinal either.)

(ii) By ω we denote the least limit ordinal ̸= 0 (if such ordinal exists).

1.3.6 Lemma. For every ordinal β there is a limit ordinal α > β .

Proof. We show first that ω exists. By Infinity, there is an inductive set b . Let
a = b ∩ On and α = ∪a . By Exercise 1.3.4 (iii), α is an ordinal. Also it is easy to
see that a is inductive and thus α can not be a successor ordinal. So in particular
ω exists.

Now for given ordinal β , choose a function f : ω → On so that f(0) = β and
for successor ordinals γ + 1 ∈ ω , f(γ + 1) = f(γ) + 1 (exercise: show that f exists
and rng(f) ⊆ On , keep in mind that every ordinal in ω excluding 0, is a successor
ordinal). Let α = ∪rng(f). Clearly α is as wanted.

1.3.7 Exercise.
(i) Show that ω is the ⊆ -least inductive set (i.e. that it is an inductive set and

if also a is an inductive set, then ω ⊆ a). Conclude that there is no class function
f : ω → V such that for all n ∈ ω , f(n+ 1) ∈ f(n) .

(ii) Suppose C is a class and < is a partial ordering of C such that for all
x ∈ C , Cx = {y ∈ C| y < x} is a set. Show that < is not well-founded iff there is
f : ω → C such that for all α ∈ ω , f(α+ 1) < f(α) .

1.3.8 Theorem. For every set a there are an ordinal α and a one-to-one and
onto function f : α→ a .

Proof. Let b be the set of all non-empty subsets of a and g be the choice
function for b . We define a class function G : V → V so that for all ordinals β and
functions h : β → a with rng(h) ̸= a , G(h) = g(a − rng(h)) and for all other sets
x , G(x) = a . Let F : On→ V be such that for all ordinals γ , F (γ) = G(F � γ) (by
Theorem 1.2.3) and suppose that for some ordinal γ , F (γ) = a . Then by letting α
be the least such ordinal, α and f = F � α are clearly as wanted.

So it is enough to show that for some γ , F (γ) = a . Suppose not. Then
(by Separation) F−1 is a class function from a subset of a onto On . Thus by
Replacement On is a set. Thus β = ∪On is an ordinal. So β ∈ β + 1 ∈ On and
thus β ∈ β , a contradiction.

1.3.9 Exercise. (Zermelo’s well-ordering theorem) Every set can be well-
ordered.

In fact, under e.g. ZF, Zermelo’s well-ordering theorem is equivalent with Choice:
To get Choice, simply choose a well-ordering < for ∪a and then for every x ∈ a , let
f(x) be the < -least element of x . There are a lot of claims that in ZF are equivalent
with Choice, e.g. Zorn’s lemma and the claim that every vector space has a basis.

The sets Vα in the next exercise form so called cumulative hierarchy.
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1.3.10 Exercise. We define Vα for all ordinals α as follows: V0 = ∅ , Vα+1 =
P (Vα) , and for limit ordinals α , Vα = ∪γ<αVγ . Show that

(i) α 7→ Vα is a class functions,
(ii) for γ < α , Vγ ⊆ Vα ,
(iii) for all sets a there is an ordinal α such that a ∈ Vα ,
(iv) for all α , Vα is transitive,
(v) for all α , Vα ∩On = α .

1.3.11 Exercise. For all x let TC(x) be the class of those y for which there
are 0 < n < ω and xi , i ≤ n , such that x0 = y , xn = x and for all i < n , xi ∈ xi+1

(i.e. TC(x) is the least transitive set a such that x ⊆ a).
(i) Show that for all x , TC(x) is a set.
(ii) Show that the relation x ∈ TC(y) is a well-founded partial ordering of V .

1.3.12 Exercise. Prove Exercise 1.3.10 (iii) by induction on the relation
x ∈ TC(y) .

1.3.13 Exercise. Show that a set is an ordinal iff it is a transitive set of
transitive sets. Hint: Show first that if a is a transitive set of transitive sets, then
every b ∈ a is a transitive set of transitive sets.

1.3.14 Exercise. Show that a ∈ Vω iff TC(a) is finite.

1.3.15 Exercise. Suppose C is a set and < is a well-founded partial order
of C . Show that there is a well-ordering <∗ of C such that for all x, y ∈ C , x < y
implies x <∗ y . Hint: start by looking function ht : C → On such that ht(x) = 0 if
x is <-minimal and otherwise ht(x) = ∪{ht(y) + 1| y < x} (ht=height).

1.4 Cardinals

1.4.1 Definition. We say that sets a and b have the same cardinality, if there
is a one-to-one and onto function f : a→ b .

1.4.2 Exercise.
(i) Show that the equicardinality relation from Definition 1.4.1 is an equivalence

relation.
(ii) Show that if there is an onto function f : a → b , then there is a one-to-one

function g : b→ a and vice versa assuming that b ̸= ∅ .
1.4.3 Theorem. (Cantor-Bernstein) For all sets a and b , if there are one-to-

one functions f : a→ b and g : b→ a , then a and b have the same cardinality.

Proof. For all n ∈ ω , we define sets An and Bn as follows: A0 = a , B0 = b ,
An+1 = g(f(An)) and Bn+1 = f(g(Bn)). Finally, let A =

∩
n<ω An and B =∩

n<ω Bn . Clearly, for n < ω , An+1 ⊆ An and Bn+1 ⊆ Bn . Also (e.g. draw a
picture) f � (An−g(Bn)) is one-to-one function from An−g(Bn) onto f(An)−Bn+1 ,
g−1 � (g(Bn) − An+1) is one-to-one function from g(Bn) − An+1 onto Bn − f(An)
and f � A is one-to-one function from A onto B . By putting these together, the
required one-to-one and onto function is found.

9



1.4.4 Definition.
(i) We say that an ordinal α is a cardinal if there are no β < α and a one-to-one

function from α to β .
(ii) We say that a set a is finite, if for all one-to-one functions f : a → a ,

rng(f) = a .

1.4.5 Lemma. ω and every n ∈ ω are cardinals. In fact, every n ∈ ω is
finite.

Proof. We start by proving the claim for the elements of ω . Clearly it is enough
to show that they are finite. We prove this by induction (i.e. using Theorem 1.2.2,
keeping in mind that all elements of ω , excluding 0, are successor ordinals and, in
fact, the claim we prove is that every ordinal α is either finite or ≥ ω ).

For n = 0, this is clear. So suppose that this holds for n and let f : n+1 → n+1
be one-to-one. For a contradiction suppose that rng(f) ̸= n + 1. By applying a
transposition, we may assume that n ̸∈ rng(f). But then f � n is a one-to-one
function from n to a proper subset of n , a contradiction.

If ω is not a cardinal, then there are n ∈ ω and a one-to-one function f : ω → n .
But then f � n+ 1 contradicts what we just proved.

1.4.6 Exercise.
(i) Show that an ordinal α is finite iff α ∈ ω .
(ii) Show that all infinite cardinals are limit ordinals.
(iii) Show that if a is a set of cardinals, then ∪a is a cardinal.

1.4.7 Lemma. For every set a , there is a unique cardinal κ for which there
is a one-to-one function from κ onto a .

Proof. Clearly there cannot be more than one such cardinal. So we prove just
the existence: Let κ be the least ordinal such that there is a one-to-one function f
from κ onto a (such κ exists by Theorem 1.3.8). It is enough to show that κ is
a cardinal. If not, then there is α < κ and a one-to-one function g : κ → α . By
Cantor-Bernstein, we can choose g so that it is also onto. But then α and f ◦ g−1

contradict the choice of κ .

1.4.8 Definition. Let a be a set. The unique cardinal κ for which there is a
one-to-one function from κ onto a , is called the cardinality of a and is denoted by
|a| . If the cardinality of a set is ≤ ω , we say that the set is countable.

1.4.9 Exercise.
(i) Show that a set a is finite iff |a| ∈ ω .
(ii) Show that |a| ≤ |b| iff there is a one-to-one function f : a→ b .
(iii) Show that if a and b are finite, then so are a ∪ b and a× b .

The elements of ω are called natural numbers (i.e. this is how we interpret
natural numbers in set theory) and thus ω is called also the set of natural numbers
i.e. IN. We also write 0 = ∅ as already mentioned and 1 = 0+1 = 0∪{0} , 2 = 1+1,
3 = 2 + 1 etc. Recall that for all n ∈ ω , n = {0, 1, ..., n− 1} .
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1.4.10 Theorem. For all non-empty sets a and b , if one of them is infinite,
then |a× b| = max{|a|, |b|} .

Proof. Clearly, it is enough to prove that for all infinite cardinals κ , |κ×κ| = κ .
For this it is enough to find a one-to-one function from κ × κ to κ . We order the
elements of On×On so that (α, β) < (γ, δ) if one of the following holds:

(i) max{α, β} < max{γ, δ} ,
(ii) α < γ ≤ max{α, β} = max{γ, δ} ,
(iii) α = max{α, β} = max{γ, δ} = γ and β < δ .

1.4.10.1 Exercise. Show that < is a well-ordering of On×On .

Using Theorem 1.2.3, define Γ : On × On → On so that for all x ∈ On × On ,
Γ(x) is the least ordinal (strictly) greater than every element in rng(Γ � (On×On)x)
(for this notation, see Theorem 1.2.3).

1.4.10.2 Exercise. Show that Γ is strictly increasing and that if Γ(α, β) = γ
and γ′ < γ , then there is (α′, β′) < (α, β) such that Γ(α′, β′) = γ′ .

By Exercise 1.4.10.2, it is enough to show that for infinite cardinals κ , rng(Γ �
(κ× κ)) ⊆ κ . We do this by induction. The case when κ = ω is left as an exercise.
So suppose κ > ω . For a contradiction suppose that there are α, β < κ such that
Γ(α, β) ≥ κ . Let λ = max{|α|, |β|, ω} < κ . Then by Exercise 1.4.10.2, Γ−1 � κ :
κ → (On × On)(α,β) is one-to-one and by the induction assumption (from which it
follows that if |a|, |b| ≤ λ , then |a× b| ≤ λ), |(On×On)(α,β)| ≤ |(max{α, β}+ 1)×
(max{α, β}+ 1)| ≤ |λ× λ| = λ < κ , a contradiction.

As a hint for the item (i) in next exercise we want to mention that the claim in
the item can not be proved without Choice. If Choice is not assumed, it is possible
that the set of reals is a countable union of countable sets and we will see later that
the set of reals is not countable and this can be proved without Choice.

Also, instead of talking about functions f : I → X for some sets I and X , it
is sometimes notationally convenient to talk about indexed sequences (xi)i∈I . So by
an indexed sequence (xi)i∈I we simply mean a function f : I → V such that for all
i ∈ I , f(i) = xi . Thus for x : a→ V , we sometimes also write xi in place of x(i).

1.4.11 Exercise.
(i) Suppose κ is an infinite cardinal and a is a set of cardinality ≤ κ such that

also every element of it is of cardinality ≤ κ . Show that | ∪ a| ≤ κ . In particular,
for all sets a and b , if one of them is infinite, then |a ∪ b| = max{|a|, |b|} .

(ii) For all infinite cardinals κ , show that there are sets Xi ⊆ κ , i ∈ κ , such
that for all i , the cardinality of Xi is κ and for all i ̸= j , Xi ∩Xj = ∅ .

(iii) Show that the set of rational numbers is countable.

For sets a and b , by ab we mean the set of all functions from b to a (e.g. INn ).
If b = β is an ordinal we also write a<β for

∪
α<β a

α and a≤β for
∪
α≤β a

α . On the
level of notation, we also identify f : 2 → X with (f(0), f(1)) and thus think that
X ×X is the same as X2 , see the discussion on indexed sequences above.
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1.4.12 Lemma. For all cardinals κ , |P (κ)| = |2κ| and if κ is infinite, then
|2κ| = |(2κ)κ| = |2(κ×κ)| = |κκ| .

Proof. For |P (κ)| = |2κ| , just map every a ⊆ ω to its characteristic function.
|2κ| = |2κ×κ| is clear by Lemma 1.4.10. To find a one-to-one function F from 2κ×κ

onto (2κ)κ , simply for η ∈ 2κ×κ let ξ = F (η) be such that for all n,m < κ ,
(ξ(n))(m) = η(n,m). Since 2κ ⊆ κκ , |2κ| ≤ |κκ| . Finally since κ ≤ |2κ| , it is easy
to see that |κκ| ≤ |(2κ)κ| .

One often denotes |2κ| by just 2κ and similarly for κλ and κ<λ . It is clear from
the context which possibility we mean.

1.4.13 Theorem. For all sets a , |P (a)| > |a| .

Proof. Clearly it is enough to prove the claim in the cases when a is some
cardinal κ , i.e. that 2κ > κ . For finite cardinals the claim is clear and so suppose
κ is infinite. For a contradiction, suppose 2κ ≤ κ . Clearly, 2κ ≥ κ and thus, under
the counter assumption, there is a one-to-one function f from κ onto 2κ . Denote
f(α) by ξα .

Let g : κ → 2 be such that for all α < κ , g(α) = 1 − ξα(α). Then g ∈ 2κ and
so for some γ < κ , g = ξγ . Now g(γ) = 1− ξγ(γ) = 1− g(γ), a contradiction.

1.4.14 Definition. Let γ be a limit ordinal.
(i) The cofinality cf(γ) of γ is the least ordinal α such that there is a function

f : α→ γ such that ∪rng(f) = γ .
(ii) γ is called regular if cf(γ) = γ .

1.4.15 Exercise.
(i) Show that for all limit ordinals γ , cf(γ) is a regular cardinal. Conclude that

regular ordinals are cardinals.
(ii) Show that ω is a regular cardinal.

1.4.16 Definition. If κ is a cardinal, then the least cardinal strictly greater
than κ is denoted by κ+ . If κ is λ+ for some cardinal λ , it is called a successor
cardinal and otherwise it is a limit cardinal.

1.4.17 Exercise.
(i) Show that for all ordinals α , there is a cardinal κ > α .
(ii) Show that every infinite successor cardinal is regular.

We finish this section by defining a class function α 7→ ωα (sometimes ωα is
also denoted by ℵα ).

1.4.18 Definition. We define ωα for all ordinals α as follows: ω0 = ω ,
ωα+1 = ω+

α and for limit ordinals α , ωα = ∪γ<αωγ .

1.4.19 Exercise. Show that for all infinite cardinals κ , there is α ∈ On such
that κ = ωα .
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1.5 Recursive definitions revisited

1.5.1 Definition. Suppose X is a set.
(i) Suppose α is an ordinal, f : Xα → X is a function and C ⊆ X . We say

that C is closed under f if for all x ∈ Cα , f(x) ∈ C .
(ii) Suppose Y ⊆ X and for all i ∈ I , αi is an ordinal and fi : X

αi → X is
a function. Then by C(Y, fi)i∈I we mean the ⊆-least subset C of X such that it
contains Y and is closed under every fi , i ∈ I (if such C exists).

1.5.2 Lemma. Let X , Y , I and αi and fi , i ∈ I , be as in Definition 1.5.1
(ii). Then C(Y, fi)i∈I exists.

Proof. Just let C(Y, fi)i∈I be the intersection of all sets C ⊆ X which contain
Y and are closed under every fi (notice that X is such a set).

1.5.3 Lemma. Let X , Y , I and αi and fi , i ∈ I , be as in Definition 1.5.1
(ii). Suppose that ϕ is a property, every element of Y has it and for all k ∈ I and
x ∈ C(Y, fi)

αk

i∈I the following holds: If every xj , j < αk , has the property, then also
fk(x) has the property. Then every element of C(Y, fi)i∈I has the property ϕ .

Proof. Let C be the set of all elements of C(Y, fi)i∈I that have the property
ϕ . Then C contains Y and is closed under every fi . Thus C(Y, fi)i∈I ⊆ C .

1.5.4 Definition. Let X , Y , I and αi and fi , i ∈ I , be as in Definition
1.5.1 (ii). For all ordinals α , we define Cα(Y, fi)i∈I as follows:

(i) C0(Y, fi)i∈I = Y ,
(ii) Cα+1(Y, fi)i∈I = Cα(Y, fi)i∈I ∪ {fi(x)| i ∈ I, x ∈ (Cα(Y, fi)i∈I)

αi} ,
(iii) if α is limit, then Cα(Y, fi)i∈I =

∪
β<α Cβ(Y, fi)i∈I .

1.5.5 Exercise. Show that α 7→ Cα(Y, fi)i∈I is a class function from On
to P (X) and that for all ordinals α < β , Y ⊆ Cα(Y, fi)i∈I ⊆ Cβ(Y, fi)i∈I ⊆
C(Y, fi)i∈I .

1.5.6 Lemma. Let X , Y , I and αi and fi , i ∈ I , be as in Definition 1.5.1
(ii) and κ be a regular cardinal. Suppose further that for all i ∈ I , αi < κ . Then
C(Y, fi)i∈I = Cκ(Y, fi)i∈I .

Proof. By Exercise 1.5.5, it is enough to show that Cκ(Y, fi)i∈I is closed under
every fk , k ∈ I . For this let x ∈ (Cκ(Y, fi)i∈I)

αk . Since κ is regular, there is γ < κ
such that x ∈ (Cγ(Y, fi)i∈I)

αk (Exercise, think of function g : αk → κ such that
for all β < αk , g(β) is the least ordinal δ for which xβ ∈ Cδ(Y, fi)i∈I ). But then
fi(x) ∈ Cγ+1(Y, fi)i∈I ⊆ Cκ(Y, fi)i∈I .

2. Object theory

When one studies e.g. the theory of groups, one can use all the tools of ZFC in
doing this i.e. one can use ZFC as a meta theory. However due to its foundational
role, when one studies ZFC , it is the meta theory that is under study. So one has
no tools to prove e.g. the existence of V unlike in the case of the theory of groups,
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using set theory one can construct all kinds of groups. However we still want, for
technical reasons, to have both the meta theory, ZFC as introduced in Section 1, and
the object theory as introduced in this section.

We start by introducing the first-order logic for the object theory. The formulas
of this logic are like the Gödel numbers in the course ’Matemaattinen logiikka’ but
since we are working with set theory, we can choose the codes to be more formula-like
than natural numbers, they will be functions from natural number to ω (in particular
they are sets i.e. elements of V ): First we choose codes for symbols of the first-order
logic as follows: Code for ( is 0, for ) it is 1, for ¬ it is 2, for ∧ it is 3, for ∃ it is
4, for = it is 5, for ∈ it is 6 and for vi it is 7+ i . Then we define the set of (object)
formulas as follows: ϕ is a formula if

(i) dom(ϕ) = 3 and ϕ(0), ϕ(2) > 6 and ϕ(1) ∈ {5, 6}
or

(ii) there is formula ψ such that ϕ = ¬ψ (i.e. dom(ϕ) = dom(ψ) + 1, ϕ(0) = 2
and for all i < dom(ψ), ϕ(i+ 1) = ψ(i)),
or

(iii) there are formulas ψ and θ such that ϕ = (ψ ∧ θ)
or

(iv) there is a formula ψ and i < ω such that ϕ = ∃xiψ .
By Lemma 1.5.2, this definition gives a set, in fact, a subset of Vω . We will denote
this set as Lωω .

The following remark is also a hint for Exercise 3.2.

2.1 Remark. There are two technically convenient ways of defining Lωω
(exercise: Show that the two ways indeed define Lωω , Lωω ⊆ Vω and Lωω is first-
order definable in the structure (Vω,∈)).

The first one is the following: ξ ∈ Lωω if there is F : dom(ξ) + 1 → P (ω<ω)
such that ξ ∈ F (dom(ξ)) and

(a) F (0) = F (1) = F (2) = ∅ ,
(b) ϕ ∈ F (3) if (i) above holds,
(c) ϕ ∈ F (n+ 1) , 3 ≤ n ≤ dom(ξ) , if ϕ ∈ F (n) or dom(ϕ) = n+ 1 and one of

(ii)-(iv) above holds with the additional requirement that ψ, θ ∈ F (n) .
The second one is: ξ ∈ Lωω if there is F : dom(ξ) + 1 → P (ω<ω) such that

ξ ∈ F (dom(ξ)) , for all n ≤ dom(ξ) , F (n) is finite and
(a’) F (0) = F (1) = F (2) = ∅ ,
(b’) if ϕ ∈ F (3) , then (i) above holds,
(c’) if ϕ ∈ F (n + 1) , 3 ≤ n < dom(ξ) , then ϕ ∈ F (n) or dom(ϕ) = n + 1 and

one of (ii)-(iv) above holds with the additional requirement that ψ, θ ∈ F (n) .
The first of these is convenient e.g. when one defines the truth of the formulas

of Lωω .

Notice also that for every formula ϕ on the meta level, there is a natural
corresponding (i.e. ’Gödel number’) ϕ∗ ∈ Lωω . E.g. if ϕ = ∃x0x0 = x0 , then
dom(ϕ∗) = 5, ϕ∗(0) = 4, ϕ∗(1) = 7, ϕ∗(2) = 7, ϕ∗(3) = 5 and ϕ∗(4) = 7. We
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will refer to ϕ∗ as a code for ϕ or as the Gödel number of ϕ although ϕ∗ is not a
number. Notice also that the other direction may fail i.e. that there may be formulas
ϕ ∈ Lωω such that ϕ is not a code of any formula from the meta level (under the
assumption that is needed to make sense to this claim i.e. that V actually exists).

Now we can continue as in the course ’Matemaattinen logiikka’: We can write
the definition of ZFC as a formula on the meta level and it defines a subset of Lωω
which is our object ZFC , which we will denote ZFC∗ . Notice that if ϕ is an
axiom of ZFC , then it’s Gödel number ϕ∗ belongs to the object theory. We can
also write the definition of being provable from ZFC as a formula on the meta
level and this gives the notion of being provable on the object level. Notice that if
ZFC ⊢ ϕ on the meta level, the same is true on the object level i.e. ZFC ⊢ ϕ
implies ZFC ⊢ ”ZFC∗ ⊢ ϕ∗”. (However, again assuming V exists, V may contain
proofs that do not correspond any proofs on the meta level. E.g. V may think
that ZFC∗ is contradictory, while the existence of V guarantees that ZFC is not
contradictory.)

Suppose M is a non-empty class. We can think M as a model in the vocabulary
{∈} by interpreting ∈ as the membership relation of V restricted to M . We will
denote this model as (M,∈) and call it an ∈-model. If M is a proper class, then
by Tarski’s theorem, the truth in (M,∈) need not be definable but if M is a set, it
is: Just write the usual Tarski’s truth definition as a formula Θ(x, y, z) on the meta
level. (Using e.g. Lemma 1.5.6 or one can first define a function FM : ω → V so that
FM (0) = FM (1) = FM (2) = ∅ and for n+1 > 2, (ϕ, a) ∈ FM (n+1) if (ϕ, a) ∈ FM (n)
or dom(ϕ) = n + 1 and e.g. if ϕ is of the form ∃viψ , then (ϕ, a) ∈ FM (n + 1) iff
there is b ∈Mk , k < ω , such that a � (dom(a)−{i}) ⊆ b and (ψ, b) ∈ FM (n). Then
Θ(M,ϕ, a) says that there is FM as above such that (ϕ, a) ∈ FM (dom(ϕ)). Notice
that we can do the same as in Remark 2.1, i.e. also for truth, it is enough to have
FM only upto dom(ϕ) + 1.) For an ∈ -model M , ϕ(x) ∈ Lωω , x = (x0, ..., xn), and
a = (a0, ..., an) ∈Mn we write (M,∈) |= ϕ(a) for the formula Θ(M,ϕ, a).

On the meta level, there is another way of talking about the truth in an ∈ -model
and this time M may be a proper class: Let θ(x0, b) define M . For each formula
ϕ(x) on the meta level we define another formula ϕM (x) = ϕM (x, b) as follows:

(i) If ϕ is atomic, then ϕM = ϕ ,

(ii) if ϕ = ¬ψ , then ϕM = ¬(ψM ),

(iii) if ϕ = (ψ0 ∧ ψ1), then ϕM = (ψM0 ∧ ψM1 ),

(iv) if ϕ = ∃xiψ , then ϕM = ∃xi(θ(xi, b) ∧ ψM ).

If X is a class defined by ϕ , then by XM we mean the class of all elements of
M that satisfy ϕM (e.g. OnM ). Notice that XM is a class.

Notice also that ϕ↔ ϕV .

2.2 Exercise. Suppose that M is a non-empty set. Show that for all formulas
ϕ(x) , x = (x0, ..., xn) , and a ∈ Mn+1 , ϕM (a) ↔ M |= ϕ∗(a) , where ϕ∗ ∈ Lωω is
the Gödel number of ϕ .

Foundational remark: Exercise 2.2 will not be needed in the form we stated it.
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It is enough that we can prove the statement for each formula ϕ separately i.e. we do
not need any induction priciples when we work with the finite sequences of symbols
called first-order formulas.

2.3 Exercise. Let M be a non-empty set and F a collection of formulas
closed under subformulas. Suppose that for all ψ(x) = ∃xiϕ(xi, x) ∈ F and a ∈Mn ,
if ψ(a) holds in V then there is b ∈M such that ϕ(b, a) holds in V . Show that for
all ϕ(x) ∈ F and a ∈Mn , ϕ(a) ↔M |= ϕ∗(a) , where ϕ∗ is the Gödel number of ϕ .

2.4 Exercise. Suppose F is a finite subset of ZFC . Show that there is
α ∈ On such that Vα |= ϕ∗ for all ϕ ∈ F .

2.5 Exercise. ZFC proves compactness theorem for Lωω , in particular, if
for all finite F ⊆ ZFC∗ , F has a model, then ZFC∗ has a model. Also by Gödel’s
incompleteness theorem, ZFC does not prove the existence of a model of ZFC∗ .
Why these do not contradict Exercise 2.4?

2.6 Exercise. Suppose M ∈ V is transitive (i.e. x ∈M implies x ⊆M ) and
non-empty.

(i) OnM =M ∩On ∈ On .
(ii) If Vω ⊆M , then VMn = Vn for all n < ω .
(iii) If ω ∈M , then ωM = ω .

From now on, formulas on the meta level are called just formulas and if the
formula ϕ is on the object level we point this out by writing ϕ ∈ Lωω (or sometimes
talk about Gödel numbers).

3. Constructible hierarchy

In this section we construct constructible hierarchy, originally due to K. Gödel,
and prove the basic properties of it. In the text books L is usually constructed using
Gödel functions but we will use more intuitive notion of being definable by a formula
from Lωω (this is common in the literature in general). It is easy to see that the two
approached give the same L .

3.1 Definition.
(i) For all ∈ -models M ∈ V , we let Def(M) be the set of all X ⊆M for which

there are ϕ(x, y) ∈ Lωω and a ∈Mn such that X = {b ∈M | M |= ϕ(b, a)} .
(ii) We let L0 = ∅ , L1 = {∅} , Lα+1 = Lα ∪Def(Lα) (for α ≥ 1) and for limit

γ , Lγ = ∪α<γLα .
(iii) We let L = ∪α∈OnLα .

3.2 Exercise.
(i) Show that FL : On→ V , FL(α) = Lα is a class function.
(ii) Show that L is a class.
(iii) Show that for all α ∈ On , Lα is a transitive set (i.e. x ∈ Lα implies

x ⊆ Lα ). Conclude that L is transitive and that Lα+1 = Def(Lα) for all α > 0 .
(iv) Show that for α < β , Lα ∈ Lβ .
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(v) Show that Lα ∩On = α = OnLα and for all α ≤ ω , Lα = Vα .
(vi) Show that Lωω ∈ Lω+1 and Lωω = (Lωω)

Lα for all α > ω .
(vii) Show that if α > ω is a limit ordinal, M ∈ Lα is an ∈ -model, ϕ(x) ∈ Lωω

and a ∈Mn , then M |= ϕ(a) iff (M |= ϕ(a))L iff (M |= ϕ(a))Lα .
(viii) Show that there is a formula ϕ(x, y) such that the following holds:
(a) If α > ω is a limit ordinal, β < α and FL � β ∈ Lα , then for all a ∈ Lα ,

Lα |= ϕ∗(a, β) iff a = FL � β (here ϕ∗ is the Gödel number of ϕ and for FL , see (i)
above).

(b) If β is an ordinal and FL � β ∈ L , then for all a ∈ L , ϕL(a, β) iff a = FL � β .
(ix) Suppose α > ω is a limit ordinal. Show that for all β < α , FL � β ∈ Lα .

Conclude that for all limit ordinals α > ω and β < α , (Lβ)
Lα = Lβ (for FL , see (i)

above). Hint: Prove the claim by induction on α and for each α , by induction on
β . For limit β , use induction assumption for α and for successor β = γ + 1 , show
that FL � γ ∪ {(γ, Lγ)} is as needed.

(x) Show that for all finite sets F of formulas and α ∈ On , there is a limit
ordinal β > α such that for all ϕ(x) ∈ F and a ∈ Lnβ , ϕ

L(a) holds iff Lβ |= ϕ∗(a)

(i.e. ϕLβ holds). Hint: See Exercises 2.3 and 2.4.

The foundational remark from the previous section applies also to the following
theorem.

3.3 Theorem. For all axioms ϕ of ZF , ϕL holds.

Proof. We prove this for the separation axiom, the rest are straight forward
(exercise). Let ψ(x, y) be a formula, X ∈ L and a ∈ Ln . We need to show that the
set Y = {b ∈ X| ψL(b, a)} belongs to L . By Exercise 3.2 (x), there is β such that
X ∈ Lβ and Y = {b ∈ X| Lβ |= ψ∗(b, a)} and thus Y ∈ Lβ+1 ⊆ L .

To show that ϕL holds when ϕ is the choice, additional work is needed.

3.4 Definition.
(i) Let <∗ be the lexicografical ordering of Lωω i.e. for f : n→ ω and g : m→

ω , f <∗ g if n < m or n = m and there is x < n such that f(x) ̸= g(x) and for the
least such x , f(x) < g(x) . (Exercise: This is a well-ordering of Lωω .)

(ii) For X ∈ L , let rk(X) be the least ordinal α such that X ∈ Lα (notice that
rk(X) is a successor ordinal) and fm(X) be the <∗ -least formula ϕ(x, y) ∈ Lωω
such that for some a ∈ Lrk(x)−1 , X = {b ∈ Lrk(x)−1| Lrk(x)−1 |= ϕ(b, a)} .

(iii) We define a binary relation <L on L as follows: for X,Y ∈ L , X <L Y if
one of the following holds:

(a) rk(X) < rk(Y ) ,
(b) rk(X) = rk(Y ) and fm(X) <∗ fm(Y ) ,
(c) rk(X) = rk(Y ) and fm(X) = fm(Y ) = ϕ(x, y) and there is a ∈ Lnrk(X)−1

(y = (y1, .., yn)) such that X = {b ∈ Lrk(X)−1| Lrk(X)−1 |= ϕ(b, a)} and for all
a′ ∈ Lnrk(X)−1 , if Y = {b ∈ Lrk(X)−1| Lrk(X)−1 |= ϕ(b, a′)} , then a is smaller than

a′ in the lexicografical ordering of L<ωrk(X)−1 that one gets from <L restricted to
Lrk(X)−1 .
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Notice that the property above is indeed a property i.e. expessable in the first-
order logic and thus <L is a class.

We define Flim : On→ On so that for all α ∈ On , Flim(α) is the least (infinite)
limit ordinal > Flim(β) for all β < α .

3.5 Exercise.
(i) Show that <∗ is a well-ordering of Lωω .
(ii) Show that <L is a well-ordering of L (in particular that it is a class).
(iii) Show that if Flim(α) = α and a, b ∈ Lα , a <L b iff (a <L b)L iff (a <L

b)Lα . Hint: See Exercises 3.2 (viii) and (ix) and prove that for all α ∈ On , F< � α ∈
LFlim(α+1) , where F<(β) =<L� Lβ for all β ∈ On .

(iv) Show that for all cardinals κ > ω , Flim(κ) = κ and that for all α < κ there
is α < β < κ such that Flim(β) = β .

3.6 Theorem. Let ϕ be the axiom of choice. Then ϕL holds.

Proof. Suppose that X ∈ L is a set of non-empty sets. Let Y be the set of
all (x, y) ∈ X × ∪X such that y is the <L -least element of x . By Exercise 3.5, if
κ is an infinite cardinal such that X ∈ Lκ , Y ∈ Lκ+1 ⊆ L . Clearly Y is a choice
function.

By V = L we mean the axiom ∀x∃y(y ∈ On ∧ x ∈ (FL � (y + 1))(y)).

3.7 Corollary.
(i) (V = L)L holds.
(ii) If α > ω is a limit ordinal, then Lα |= (V = L)∗ .

Proof. Immediate by Exercises 3.2 (viii) and (ix).
For theories T and T ′ on the meta level, we write Con(T ) implies Con(T ′) if

the following holds: If there is a proof of contradiction from T ′ , then there is a proof
of contradiction also from T .

3.8 Theorem. Con(ZFC) implies Con(ZFC + V = L) .

Proof. Suppose that there is a proof of contradiction from ZFC + V = L .
Then there is a finite subset T of ZFC + V = L from which the contradiction can
be proved. Let T ∗ = {ϕ∗| ϕ ∈ T} . By Exercise 3.2 (x) and Corollary 3.7 (ii), there is
a limit ordinal α such that Lα |= T ∗ . Since ZFC proves soundness (’eheyslause’ in
the course Matemaattinen logiikka), ZFC proves that there is an ∈ -model M ∈ V
for ϕ∗ where ϕ is the contradiction, e.g. ∀x(x = x) ∧ ¬∀x(x = x) (as mentioned
above, if T ⊢ ϕ , then ZFC ⊢ ”T ∗ ⊢ ϕ∗”). Clearly, ZFC proves also that there is
no ∈ -model M ∈ V for ϕ∗ . Thus ZFC proves a contradiction.

From now on in this section, excluding Exercises 3.14 and 3.15, we assume
ZFC + V = L . By GCH we mean the following axiom: For all infinite cardinals κ ,
2κ = κ+ . We finish this section by showing that ZFC + V = L ⊢ GCH (and thus
Con(ZFC) implies Con(ZFC +GCH)).

By ZF − P we mean ZF without the power set axiom.

18



3.9 Theorem.
(i) For all regular cardinals κ > ω and ϕ ∈ ZF − P + V = L , Lκ |= ϕ∗ .
(ii) There is finite T ⊆ ZF − P + V = L such that if M ∈ V is a transitive

∈ -model and for all ϕ ∈ T , M |= ϕ∗ , then for some limit ordinal α > ω , M = Lα ,
in fact, one can choose α =M ∩On .

Proof. (i) Just go carefully through the proofs of ϕL holds for all ϕ ∈ ZFC +
V = L . For Replacement, one needs to know that for all x ∈ Lα , α ≥ ω , |x| ≤ |α| .
For this, see Exercise 3.10 below.

(ii) Just go through carefully the proof that for all limit ordinals α > ω , Lα |=
(V = L)∗ (i.e. show that FML (α) = FL(α) for all α ∈ OnM ) and choose T so that
V = L ∈ T . Notice that Separation for the formula that defines the truth covers most
of the use of Separation and that Union and Pairing alone quarantee that Vω ⊆M .

3.10 Exercise.
(i) Show that for all infinite ordinals α , |Lα| = |α| .
(ii) Suppose ϕ is an axiom of ZFC got from the axiom skeema of replacement

and κ > ω is regular. Show that Lκ |= ϕ∗ .

3.11 Definition. Let M ∈ V . We define Mostowski collapse CM : M ∪
{M} → V by letting CM (x) = {CM (y)| y ∈ x ∩M} .

We say that an ∈ -model M is extensional if it satisfies the axiom of extension-
ality i.e. for all x, y ∈M , if {z ∈M | z ∈ x} = {z ∈M | z ∈ y} , then x = y .

3.12 Exercise.
(i) Show that CM exists and is unique. Hint: Find a suitable well-founded

partial order on M ∪ {M} .
(ii)Show that CM (M) is a transitive set and if M is extensional, then CM �M

is an isomorphism between ∈ -models (M,∈) and (CM (M),∈) .

3.13 Theorem. ZFC + V = L proves GCH .

Proof. Let κ be an infinite cardinal. By exercise 3.10, it is enough to prove
that if X ⊆ κ , then X ∈ Lκ+ . Notice that since V = L , V and L have the same
cardinals, in particular (k+)L = κ+ .

Since X ∈ L , there is a regular cardinal λ > κ such that X ∈ Lλ . By the
downwars Löwenhein-Skolem theorem, we can find M ∈ V such that κ+1∪ {X} ⊆
M , |M | = κ and (M,∈) is an elementary submodel of (Lλ,∈) (i.e. for all ψ(z) ∈
Lωω and c ∈Mm , M |= ψ(c) iff Lλ |= ψ(c) and we write M ≼ Lλ for this). Notice
that M is extensional. Then by Theorem 3.9 (i) CM (M) is a transitive model of
T ∗ , where T is as in Theorem 3.9 (ii) and thus by Theorem 3.9 (ii), there is a limit
ordinal α such that CM (M) = Lα . Since κ+1 ⊆M , CM (X) = X . Thus X ∈ Lα .
Since |M | = κ , α < κ+ .

We say that a cardinal κ is weakly inaccessible if it is a regular limit cardinal
> ω . A weakly inaccessible κ is inaccessible if for all λ < κ , 2λ < κ .
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3.14 Exercise.
(i) Show that ZFC∗ ∈ Lω+1 . (For ZFC

∗ , see page 15.)
(ii) Suppose V = L . Show that if κ is weakly inaccessible, then it is inaccessible

and Vκ = Lκ .

3.15 Exercise. Suppose that ZFC ̸⊢ ”ZFC∗ is consistent” (cf. Gödel’s
second incompleteness theorem).

(i) Show that ZFC does not prove the existence of an inaccessible cardinal.
Hint: Show that Vκ |= ZFC∗ for inaccessible κ .

(ii) Show that ZFC does not prove the existence of a weakly inaccessible car-
dinal. Hint: Apply (i) to ZFCL = {ϕL| ϕ ∈ ZFC} and use Exercise 3.14 or prove
directly that Lκ |= ZFC∗ for weakly inaccessible κ .

4. Diamonds

In this section we study diamonds that give a systematic method of making good
guesses and they exists in L . Throughout this section we assume that V = L .

We start by defining cub and stationary set. We will take a closer look at these
in Section 8.

The following definitions are usually made only for (regular) cardinals, but we
will need the definition of cub also for limit ordinals (if e.g. cf(α) = ω , the definition
of a stationary set does not make much sense).

4.1 Definition. Let α > ω be a limit ordinal.
(i) C ⊆ α is called cub (in α) if it is unbounded in α (i.e. for all γ < α there

is β ∈ C such that β > γ ) and for all γ < α , if ∪(C ∩ γ) = γ , then γ ∈ C .
(ii) S ⊆ α is stationary if for all cub C ⊆ α , S ∩ C ̸= ∅ .

4.2 Definition.
(i) We define a class function F⋄ : On→ V . For all α , F⋄(α) is a pair (Xα, Cα)

where Xα, Cα ⊆ α and Cα is cub if α is a limit ordinal. And then the exact values
can be define recursively as follows: We let F⋄(α) = (Xα, Cα) be the <L -least pair
such that for all β ∈ Cα , Xβ ̸= Xα ∩ β if α is a limit ordinal and such a pair exists
and otherwise we let F⋄(α) = (∅, α) .

(ii) We let C⋄ ⊆ On be the class of all limit ordinals α such that for all β < α ,
F⋄ � β ∈ Lα and Flim(α) = α .

4.3 Exercise.
(i) Show that F⋄ is a class function.
(ii) Show that for all regular cardinals κ > ω , C⋄ ∩ κ is cub in κ . Hint: By

induction on α < κ , show that F⋄ � α ∈ Lβ for some β < κ and for limit cases apply
(iii) below.

(iii) Show that there is a formula ϕ(x, y) such that for all limit ordinals α > ω ,
if Flim(α) = α , then the following holds: for all β < α and a ∈ Lα , if F⋄ � β ∈ Lα ,
then Lα |= ϕ∗(a, β) iff a = F⋄ � β .
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For all regular cardinals κ > ω , we write ⋄κ for the sequence (Xα| α < κ),
where Xα is such that F⋄(α) = (Xα, Cα) for some Cα .

4.4 Theorem. Suppose κ > ω is a regular cardinal and ⋄κ = (Xα)α<κ . For
all X ⊆ κ , the set {α < κ| X ∩ α = Xα} is stationary.

Proof. Suppose not. Then there is a pair (X,C) such that X,C ⊆ κ , C is
cub and for all α ∈ C , X ∩ α ̸= Xα . Choose these so that, in addition, (X,C) is
the <L -least such pair. Notice that (X,C) ∈ Lκ+ and in Lκ+ the defining property
of the pair (X,C) can be expressed by a formula Φ(X,C, κ) as follows (i.e. for all
C ′, X ′ ∈ Lκ+ , Lκ+ |= Φ∗(X ′, C ′, κ) iff X ′ = X and C ′ = C ): ”(X,C) is the <L -
least pair such that C is a cub in κ and for all β ∈ C and all a , if ϕ(a, β+1) holds
and a(β) = (X ′, C ′), then X ′ ̸= X ∩ β ”, where ϕ is as in Exercise 4.3 (iii). Notice
also that being <L -least is expressible in Lκ+ by a formula by Exercise 3.5 (iii).

Now choose an ∈-model M ≼ Lκ+ such that M ∩ κ = α ∈ κ , α > ω , |M | =
|α| , X,C,C⋄ ∩ κ, κ ∈ M (exercise: show that M exists) and let γ be such that
CM (M) = Lγ . Then γ is a limit ordinal > ω and Flim(γ) = γ , CM � (M ∩κ) = id ,
CM (κ) = α , CM (Y ) = Y ∩ α for all Y ∈ {X,C,C⋄ ∩ κ} and CM (Y ) is a cub in α
for all Y ∈ {C,C⋄∩κ} (exercise). In particular, ∪(C ∩α) = ∪(C⋄∩α) = α and thus
α ∈ C ∩ C⋄ (and so F⋄ � β ∈ Lγ for all β < α). Finally, Lγ |= Φ∗(X ∩ α,C ∩ α, α)
and thus by Exercises 4.3 (iii) and 3.5 (iii) (Exercise: show that Flim(γ) = γ ),
(X∩α,C∩α) is the <L -least pair such that C∩α is cub in α and for all β ∈ C∩α ,
X ∩ β ̸= Xβ . So F⋄(α) = (X ∩ α,C ∩ α) i.e. Xα = X ∩ α . Since α ∈ C , we have a
contradiction.

We will give two examples of the use of diamonds. The first contains a part of
the combinatorial core behind a theorem from generalized descriptive set theory (this
idea is used also elsewhere) and the other is a simplified version of a result due to S.
Shelah from the theory of abstract elementary classes.

Let κ > ω be a regular cardinal. We make 2κ a topological space by letting
open sets be all the unions of basic open sets Nη = {ξ ∈ 2κ| η ⊆ ξ} , η ∈ 2<κ .

We let Ens be the equivalence relation on 2κ for which ηEnsξ if the set {α ∈
κ| η(α) ̸= ξ(α)} is not stationary (exercise: show that Ens is an equivalence relation,
see Exercise 4.10).

We have also another equivalence relation E ⊆ (2κ)2 of which we assume the
following: for all α < κ , there is an equivalence relation Eα ⊆ (2α)2 such that for
all η, ξ ∈ 2κ the following holds:

(*) if ηEξ , then the set {α < κ| (η � α)Eα(ξ � α)} contains a cub and if
(η, ξ) ̸∈ E , then the set {α < κ| (η � α, ξ � α) ̸∈ Eα} contains a cub.

4.5 Theorem. Suppose E and Ens are as above. Then there is a continuous
function F : 2κ → 2κ such that for all η, ξ ∈ 2κ , ηEξ iff F (η)EnsF (ξ) .

Proof. Let (Xα| α < κ) be ⋄κ and for all α < κ , denote the characteristic
function of Xα by fα (i.e. fα : α → 2, fα(γ) = 1 if γ ∈ Xα ). Now we can define
F : F (η)(α) = 1 if (η � α)Eαfα (and otherwise F (η)(α) = 0). Exercise: Show that
F is continuous. We are left to prove that ηEξ iff F (η)EnsF (ξ).
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⇒ : Suppose ηEξ . Then there is cub C ⊆ κ such that for all α ∈ C , (η �
α)Eα(ξ � α). Thus for all α ∈ C , F (η)(α) = F (ξ)(α) and thus F (η)EnsF (ξ).

⇐ : Suppose that η and ξ are not E -equivalent and we prove that F (η) and
F (ξ) are not Ens -equivalent. Now there is cub C ⊆ κ such that for all α ∈ C ,
(η � α, ξ � α) ̸∈ Eα . Let S be the stationary set {α < κ| η � α = fα} . Then
S∗ = S∩C is stationary (exercise) and for all α ∈ S∗ , F (η)(α) = 1 and F (ξ)(α) = 0.
Thus F (η) and F (ξ) are not Ens -equivalent.

For two structure (in the same vocabulary) A and B , we say that a function
f : A → B is an embedding if for all atomic formulas ϕ(x) and a = (a1, ..., an) ∈ An ,
A |= ϕ(a) iff B |= ϕ(f(a)), where f(a) = (f(a1), ..., f(an)). If identity function from
A to B is an embedding, we say that A is a submodel of B and write A ⊆ B . If
Ai , i < α , are such that for all j < i < α , Aj ⊆ Ai , then by ∪i<αAi we mean the
structure A such that the universe dom(A) of A is ∪i<αdom(Ai), for all relation
symbols R (from the vocabulary), the interpretation RA of R in A is ∪i<αRAi ,
for all function symbols f , fA = ∪i<αfAi and for all constant symbols c , cA = cA0

(=cAi for any i < α).

Now for the second example, let us fix a class K of structures in a countable
vocabulary L . We assume that K has the following four properties:

(1) If A ∈ K and B ∼= A (i.e. A and B are isomorphic), then B ∈ K .

(2) If Ai , i < α , are models from K and for all i < j < α , Ai ⊆ Aj , then
∪i<αAi ∈ K .

(3) K is ω -categorical i.e. if A,B ∈ K are countably infinite, then A ∼= B .

(4) The countable models of K do not have the amalgamation property (AP)
i.e. there are countably infinite A,B, C ∈ K such that A ⊆ B, C but there is no
countable D ∈ K and an embedding f : C → D such that B ⊆ D and f � A = id .

We start by an exercise that tells that with diamonds one can guess much more
than just sets.

4.6 Exercise.

(i) Show that there is ((Xα, gα, fα)| α < ω1) such that for all X ⊆ ω1 , g ∈ 2ω1

and f ∈ ωω1
1 the set {α < ω1| Xα = X ∩ α, gα = g � α, fα = f � α} is stationary.

Hint: Triples (X, g, f) can be coded as subsets of ω1 .

(ii) Show that there are ((gα, fα)| α < ω1) and stationary sets Si ⊆ ω1 , i < ω1 ,
such that for all i < j < ω1 , Si ∩ Sj = ∅ , and for all i < ω1 and g ∈ 2ω1 and
f ∈ ωω1

1 the set {α ∈ Si| gα = g � α, fα = f � α} is stationary. Hint: Use (i) and
guess triples ({i}, g, f) .

We will also need the following observation about K :

4.7 Exercise.

(i) Show that in (4) above, one can choose A , B and C so that in addition,
B −A and C − A are infinite. Hint: Use (2) and (3).

(ii) Let A , B and C be as in (4) above. Show that there are no countable D ∈ K
and an embedding f : B → D such that C ⊆ D and f � A = id .
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Notice that the contraposition of the following theorem looks probably more
interesting: If K satisfies (1)-(3) from above and has upto isomorphism < 2ω1 many
models of size ω1 , then the countably infinite models of K have AP.

4.8 Theorem. There are Ai ∈ K , i < 2ω1 , of power ω1 such that for all
i < j < 2ω1 , Ai ̸∼= Aj .

Proof. Let ((gα, fα)| α < ω1) and Si ⊆ ω1 , i < ω1 , be as in Exercise 4.6
(ii) (w.o.l.g. we may assume that for all α < ω1 , dom(fα) = α and gα ∈ 2α

since only such pairs guess functions g ∈ 2ω1 and f ∈ ωω1
1 at α) and let Y = {η ∈

2<ω1 | dom(η) ≥ ω} . For all η ∈ Y , we define models Aη as follows (we will construct
these so that if dom(η) is a limit ordinal, then the universe of Aη is dom(η)):

(i) If dom(η) = ω , then Aη is any model from K whose universe is ω .

(ii) If dom(η) = α+ 1 and α is a successor ordinal, then Aη = Aη�α .
(iii) If dom(η) is a limit ordinal, then Aη = ∪ω<α<dom(η)Aη�α (exercise: show

that the universe of Aη is dom(η), see (iv) below).

(iv) If dom(η) = α+1 and α is a limit ordinal, then we actually do something:
Let ξi ∈ 2α+1 , i < 2, be such that gα ⊆ ξi and ξi(α) = i . Since Agα is isomorphic
with A from (4) above, we can find Aξ0 and Aξ1 from K so that they can not be
amalgamated over Agα and their universe is α+ω (by Exercise 4.7 and α+ω is the
least limit ordinal > α). Now if η = ξi for some i < 2, Aη is defined. Otherwise,
there are two possibilities:

(a) fα is an isomorphism from Agα to Aη�α : Choose Aη so that there is an
isomorphism f : Aξi → Aη such that fα ⊆ f , where i = η(α) and the universe of
Aη is α+ ω .

(b) fα is not an isomorphism from Agα to Aη�α : We let Aη be any model from
K such that the universe of Aη is α+ ω and Aη�α ⊆ Aη .

Let (Zi)i<2ω1 list the subsets of ω1 . For all i < 2ω1 , let ηi ∈ 2ω1 be such that
for all α < ω1 , ηi(α) = 1 iff α ∈ Sj for some j ∈ Zi . Finally, for i < 2ω1 , let
Ai = ∪ω≤α<ω1Aηi�α . We show that these are as wanted.

Clearly, for all i < 2ω1 , Ai ∈ K and |Ai| = ω1 . So it is enough to show that
if i, j < 2ω1 and i ̸= j , Ai ̸∼= Aj . For a contradiction, suppose that f : Ai

∼= Aj

and by symmetry, w.o.l.g. we may assume that there is k ∈ Zj − Zi . Now there is
a cub C ⊆ ω1 such that for all α ∈ C , α is a limit ordinal and f � α is a bijection
from α to α (and thus f � α is an isomorphism from Aηi�α to Aηj�α ). So there is
α ∈ C ∩ Sk such that gα = ηi � α and fα = f � α . In addition, we can choose α so
that ηj � α ̸= gα since gα = ηi � α and we can choose α to be as large as we want
(this is to avoid spliting the proof into two cases).

Let ξn = (ηi � α) ∪ {(α, n)} for n < 2 and ξ∗ = (ηj � α) ∪ {(α, 1)} . Notice that
ξ0 ⊆ ηi and ξ∗ ⊆ ηj (since α ∈ Sk and k ∈ Zj−Zi ). Then by (iv)(a) above, there is
an isomorphism g : Aξ1 → Aξ∗ such that f � Agα = fα ⊆ g . Since Aξ∗ is countable,
there is α + 1 < γ < ω1 such that f−1(Aξ∗) ⊆ Aηi�γ . But then Aξ0 ⊆ Aηi�γ ∈ K ,
Aηi�γ is countable and (f−1 � Aξ∗) ◦ g is an embedding of Aξ1 to Aηi�γ . Also since
f � Agα = fα ⊆ g , [(f−1 � Aξ∗) ◦ g] � Agα = id . This contradicts the choice of Aξ0
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and Aξ1 i.e. (4) above.

4.9 Exercise. In ZFC , show that if κ > ω is a regular cardinal and there are
Xα ⊆ α , α < κ , such that for all X ⊆ κ , the set {α < κ| Xα = X∩α} is unbounded,
then κ<κ = κ (which is equivalent with |{A ⊆ κ| |A| < κ}| = κ , exercise).

4.10 Exercise. Suppose κ > ω is regular.
(i) Show that if C,D ⊆ κ are cub, then also C ∩D is cub.
(ii) Show that if C ⊆ κ is cub and S ⊆ κ is stationary, then C ∩S is stationary.
(iii) Show that Ens is an equivalence relation.
(iv) Supose that for all i < κ , Ci ⊆ κ is cub. We say that C ⊆ κ is the diagonal

intersection ∆i<κCi of these sets if for all α < κ , α ∈ C if α ∈ Ci for all i < α .
Show that C is cub. Conclude that for all α < κ , ∩i<αCi is cub.

5. Squares

In this section we will look at a combinatorial principle called square (aka box).
R. Jensen showed that �κ holds in L for all regular cardinals κ . We will skip this
proof but we will look at how to use the principle.

5.1 Exercise/Definition. Suppose X is a set and < is a well-ordering of X .
Show that there are unique α ∈ On and a unique bijection f : X → α such that for
all a, b ∈ X , a < b iff f(a) < f(b) . We write ot(X,<) for this α . If X ⊆ On , then
we write ot(X) for ot(X,∈) .

5.2 Definition. Suppose κ is a regular cardinal. We write �κ for the following
principle: There are cub sets Cα ⊆ α for all limit ordinals α < κ+ such that ot(Cα) ≤
κ and for all limit ordinals β < α < κ+ , if ∪(Cα ∩ β) = β , then Cβ = Cα ∩ β .

5.3 Fact. (Jensen) V = L implies that �κ holds for all infinite regular
cardinals κ .

5.4 Exercise.
(i) Suppose κ is a regular cardinal (notice that then κ is a regular cardinal in

L) and (κ+)L = κ+ . Show that �κ holds.
(ii) Show that �ω holds.

5.5 Definition. Suppose µ < κ are regular cardinals.
(i) Sκµ = {α < κ| cf(α) = µ} .
(ii) C ⊆ Sκµ is µ -cub if it is unbounded and for all α < κ of cofinality µ the

following holds: If ∪(C ∩ α) = α , then α ∈ C .
(iii) Suppose X ⊆ κ . A µ -cub-game CGκµ(X) is the following game: There are

two players I and II and the length of the game is µ . At each move i < µ , first
I chooses an ordinal αi < κ and then II chooses βi < κ so that βi > ∪j≤iαj . II
wins if ∪i<µβi ∈ X .

(iv) A winning strategy of II in Gκµ(X) is a sequence W = (fi)i<µ such that

for all i < µ , fi : κ
i+1 → κ and if II plays according to W (i.e. always chooses

βi = fi((αj)j≤i)), then II wins the game.
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5.6 Exercise.
(i) Show that if µ < κ are regular, then Sκµ is stationary and that X ⊆ Sκµ is

µ -cup iff there is a cub C ⊆ κ such that C ∩ Sκµ = X .
(ii) Suppose that κ is a cardinal, µ < κ+ is regular and X ⊆ κ+ . Show that

(a) implies (b) and that if κ<µ = κ , then (b) implies (a), where
(a) X contains a µ -cub.

(b) II has a winning strategy in CGκ
+

µ (X) .
Hint: For (a)⇒(b): Let II play an increasing sequence of elements of the µ-cub. For
(b)⇒(a): Look at the set of ordinals closed under the winning strategy.

Assuming the existence of a mahlo cardinal, it is possible to force a model in
which there are a regular cardinal κ and X ⊆ κ+ such that II has a winning strategy
in CGκ

+

κ (X) but X does not contain a κ-cub set.

5.7 Theorem. Suppose that κ is a reqular cardinal, �κ holds and X ⊆ κ+ .
Then the following are equivalent:

(i) X contains a κ-cub set.

(ii) II has a winning strategy in CGκ
+

κ (X) .

Proof. (i)⇒(ii): This follows from Exercise 5.6.
(ii)⇒(i): If κ = ω , the claim follows from Exercise 5.6. So we assume that

κ > ω . Suppose (i) fails. Then S = Sκ
+

κ − X is stationary by Exercise 5.6. Let
W = (fi)i<κ be a winning strategy of II and C = (Ci)i∈J , J = {α < κ+| α limit}
witness that �κ holds. For all i ∈ J , let C∗

i = (γik| k < ot(Ci)) be an increasing
enumaration of Ci and C∗ = (C∗

i | i ∈ J). We can choose ∈ -models Mi , i < κ+ , so
that

(a) (κ+ 1) ∪ {κ+,W,C,C∗, J} ∪ {(κ+)i+1| i < κ} ⊆M0 ,
(b) for all i < κ+ , Mi is an elementary submodel of Vκ++ (i.e. for all ϕ(x) ∈ Lωω

and a ∈ (Mi)
n , Mi |= ϕ(a) iff Vκ++ |= ϕ(a) and κ++ = (κ+)+ ),

(c) for all i < κ+ , |Mi| = κ and Mi ∩ κ+ = αi ∈ On ,
(d) for all i < j < κ+ , Mi ⊆ Mj (and thus Mi is an elementary submodel of

Mj ) and αi < αj ,
(e) for i < κ+ limit, Mi = ∪j<iMj (and thus αi = ∪j<iαj ).
Now D = {αi| i < κ+} is cub (by (e) above) and thus there is i < κ+ such that

αi ∈ S . Denote M = Mi and α = αi and notice that cf(α) = κ and α > κ . Thus
ot(Cα) = κ and then Cα = {γαi | i < κ} and recall that γαi < γαj if i < j . We write
γi for γαi .

Now we play the game CGκ
+

κ (X) the following way: II follows her winning
strategy W and I chooses at round i , the ordinal γi . Since II wins this game and
∪i<κγi = α ̸∈ X , there must be i < κ such that fi((γj)j≤i) > α .

We make the following observation: If h : Y → Vκ++ and h, Y ∈ M , then for
all x ∈ Y ∩M , h(x) ∈M . This is because M is an elemenry submodel of Vκ++ and
h(x) ∈ Vκ++ for all x ∈ Y .

Now since W, i ∈M , fi =W (i) ∈M and thus (γj)j≤i ̸∈M (because otherwise
fi((γj)j≤i) ∈ M and so fi((γj)j≤i) < α = κ+ ∩M ). On the other hand, there is a
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limit ordinal β ∈ Cα such that ∪(Cα ∩ β) = β and β > γi , and thus Cα ∩ β = Cβ
and (γj)j≤i = C∗

β � (γi + 1). Since C∗ ∈ M and β ∈ M , C∗
β ∈ M and since also

γi + 1 ∈ M , (γj)j≤i = C∗
β � (γi + 1) ∈ M since M is an elementary substructure of

Vκ++ , a contradiction.

5.8 Exercise. Suppose κ > ω is a regular cardinal.

(i) Suppose µ < κ and for i < µ , Si ⊆ κ are such that ∪i<µSi is stationary.
Show that there is i < µ such that Si is stationary. Hint: Exercise 4.10 (iv).

(ii) Suppose µ ≤ κ is regular and sets Cα , α < κ+ limit, witness that �κ holds.

For all γ ≤ κ , let Sγ = {β ∈ Sκ
+

µ | ot(Cβ) = γ} . Show that there is γ ≤ κ such
that S = Sγ is stationary and for all limit α < κ+ of cofinality > ω , S ∩ α is not
stationary in α . (If cf(α) = ω , stationarity in α does not make much sense.) Hint:
The limit points of Cα almost witness that S ∩ α is not stationary.

5.9 Exercise. Show that for all α < ω1 the following holds: For all stationary
S ⊆ ω1 there is A ⊆ S such that ot(A) = α+ 1 and A is closed i.e. for all γ < ∪A ,
if ∪(A ∩ γ) = γ , then γ ∈ A . Hint: By induction on α , for the limit cases one can
use Exercise 5.6 (ii) for X = ω1 − S .

6. Generic extension

In forcing the strategy to show that some first-order sentence ϕ is not provable
from ZFC is to first find a suitable partial-order P = (P,<) (i.e. a set P together
with a partial-ordering < of it) and a P -generic filter G over V and then construct
a generic extension V [G] and finally show that V [G] is a model of ZFC together
with ¬ϕ . However, this construction can not be done inside V . It follows that we
will work on the object side. The first approximation for this would be to pick an
∈ -model of ZFC∗ but in fact it turns out that it is enough to assume, and this will
be important, that it is enough to assume that V |= ϕ∗ (i.e. ϕV ) for all ϕ ∈ ZFC
We call this model V . So from now on by V we mean this and not the model of
ZFC in which we pretend to be working as in Section 2. We know that ZFC does
not prove the existence of a model of ZFC∗ (assuming ZFC is consistent) and we
do not have even tools to ask if ZFC proves the existence of our V . We will return
to this problem in Section 9.

To be able to talk about V in the meta theory, we think it as a constant. Since we
assume only ϕV for ϕ ∈ ZFC , by definability in V we mean definability in the sense
of our meta language (i.e. by formulas of the form ϕV or ϕ∗ ) and not by formulas
of Lωω (we have e.g. Separation only for formulas ϕ∗ , not for all Lωω -formulas).
Notice also that if ZFC ⊢ ϕ , then ϕV holds.

Also now our meta theory knows that V is an ∈ -model and because of this, the
meta theory thinks that V is well-founded also in the following sense (below when
we talk about well-founded partial orderings of classes of V we mean in the sense of
Definition 1.3.1 applied in V ): there are no ai ∈ V , i < ω , such that for all i < ω ,
ai+1 ∈ ai in V . We also assume that the meta theory thinks that V is transitive, in
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particular, every element x of V is the set of all elements y ∈ V that V thinks are
elements of x (i.e. x = x ∩ V ).

6.1 Exercise. Show that the transitivity assumption can be made without
loss of generality.

Finally, we are going to assume that V is countable. Recall that in Section 9,
we will look at the questions: why all our additional assumptions are harmless and
why finding V [G] such that V [G] |= ¬ϕ shows that ZFC does not prove ϕ (assuming
ZFC is consistent).

Notice that since we have added V as a constant, the set of elements of V
is definable without parameters and so for all formulas ϕ , ϕV does not contain
parameters. If ϕV contains just one element, we use ϕV also to denote that element
e.g. ωV is the element of V that satisfies the definition of ω in V .

Since we have assumed that V is transitive, for many sentences ϕ (with param-
eters from V ), ϕV ↔ ϕ is true (i.e. provable from in our meta theory) and when
this is the case, we say that ϕ is absolute for V .

6.2 Exercise. Let a, b ∈ V . Show that
(i) (a ∈ b)V ↔ (a ∈ b) .
(ii) (”a is a partial order”)V ↔ (”a is a partial order”) .
(iii) (a ∈ On)V ↔ (a ∈ On) .
(iv) ωV = ω .
(v) V Vω = Vω . Hint: Show that if x ⊆ y ∈ V is finite, then x ∈ V .
(vi) ∀x(”x is a formula” ↔ (x ∈ V ∧ (”x is a formula”)V ).

For this and the next section, we fix a partial order P = (P,<) ∈ V with a
largest element 1 (these are often called po-sets). For a, b ∈ P , we write a||b if there
is c ∈ P such that c ≤ a, b . If there is no such c , we write a⊥b .

6.3 Definition.
(i) We say that D ∈ V is dense in P if D ⊆ P and for all a ∈ P , there is b ∈ D

such that b ≤ a .
(ii) We say that G ⊆ P is a filter if the following holds:
(a) 1 ∈ G ,
(b) if a ∈ G and b ≥ a , then b ∈ G ,
(c) if a, b ∈ G , then there is c ∈ G such that c ≤ a, b .
(iii) We say that G is P -generic over V if it is a filter and for all D ∈ V , if D

is dense in P , then G ∩D ̸= ∅ .

6.4 Exercise.
(i) For all D ∈ V , (”D is dense in P”)V ↔ (”D is dense in P”) .
(ii) Show that if G is P -generic over V and p ∈ P is such that for all q ∈ G ,

p||q , then p ∈ G .
(iii) Suppose that for all a ∈ P , there are b, c ∈ P such that b, c < a and b⊥c .

Show that if G is P -generic over V , then G ̸∈ V .
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(iv) Show that for all p ∈ P , there exists a P -generic G over V such that
p ∈ G .

(v) Suppose G is P -generic over V , p ∈ G and C ⊆ P , C ∈ V , is dense below
p i.e. for all q ≤ p there is r ≤ q such that r ∈ C . Show that C ∩G ̸= ∅ .

(vi) Suppose C is dense below p and q ≤ p . Show that C is dense below q .

When I talk about dense sets D or sets D dense below some p ∈ P , I mean
that in addition D ∈ V (I may forget to mension this).

6.5 Definition. The set V P of P -names is defined as follows:
(i) ∅ is a P -name.
(ii) For all α ∈ OnV , and pi ∈ P , i < α , if for all i < α , τi is a P -name and

τ = {(τi, pi)| i < α} ∈ V , then τ is a P -name.

6.6 Exercise.
(i) Show that V P is a class in V i.e. that there is a formula ϕ and a ∈ V n such

that V P = {x ∈ V | ϕV (x, a) holds} .
(ii) Show that the following binary relation <∗ on elements of V P is a well-

founded partial order: τ <∗ σ if there are n < ω , τi ∈ V P , i ≤ n , and pi ∈ P ,
i < n , such that τ0 = τ , τn = σ and for all i < n , (τi, pi) ∈ τi+1 .

(iii) Show that <∗ is a class in V .

6.7 Definition. Let G be P -generic over V .
(i) For all τ ∈ V P , τG is defined as follows: (∅G = ∅ and) τG = {σG| ∃p ∈

G such that (σ, p) ∈ τ} .
(ii) V [G] = {τG| τ ∈ V P } .

As usually, we can see that τ 7→ τG is a function and thus V [G] exists. We
think V [G] as an ∈ -model. Notice that V [G] is transitive (exercise). We use the
same notations with V [G] as with V . So e.g. ϕV [G] denotes the formula that says
that ϕ is true in V [G] .

If a ∈ V [G] , then it has a name τ i.e. a P -name such that a = τG . This name
is often denoted by ȧ (or â , see below), but we are not very strict with this. Notice
that ȧ is not unique.

6.8 Definition. For each a ∈ V , we define the standard name â for a as

follows: ( ∅̂ = ∅ and) â = {(b̂, 1)| b ∈ a} .

6.9 Exercise.
(i) Show that V [G] is transitive.
(ii) Show that for all P -generic G over V , âG = a and conclude that V ⊆ V [G] .

We finish this section by defining the forcing notion  . In the next section we
give another definition for  and we prove that the two definitions are equivalent as
well as the very basic properties of this notion.

We start by defining the forcing language, This is a language that works on the
object side only, it does not really have a counterpart on the meta side. So in the
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definition below we describe a sentence of the meta language that expresses what
it means to be a formula in the forcing language. By a forcing language we mean
the first-order logic in the vocabulary {∈} ∪ {τ | τ ∈ V P } , where the P -names τ
are considered as constants. So every Lωω -formula belongs to the forcing language.
When we write a formula of this forcing language, we usually point out what are
the constants. So ϕ(τ1, ..., τn) means a formula in which no other constants than
τ1, ..., τn appear. Notice that we can think ϕ(τ1, ..., τn) as a formula we have got
from an Lωω -formula by replacing variables by constants and then for a P -generic
G over V , ϕ((τ1)G, ..., (τn)G) is the Lωω -formula with parameters from V [G] . Also
if ϕ(x1, ..., xn) is a first-order formula in the meta language, then by ϕ(τ1, ..., τn) we
mean the formula in the forcing language that we get from ϕ∗ by replacing variables
xi by constants τi (in their free appearances). When we write ϕ(x1, ..., xn), we mean
that x1, ..., xn list all free variables of the formula ϕ (in the meta language) and then
ϕ(τ1, ..., τn) is a sentence of the forcing language. It is these sentences that we are
mainly interested in (although they do not form a nice object).

6.10 Definition. Let ϕ(τ1, ..., τn) be a sentence in the forcing language and
p ∈ P . We say that p forces ϕ(τ1, ..., τn) and write p  ϕ(τ1, ..., τn) (or, if needed,
p P ϕ(τ1, ..., τn)), if for all P -generic G over V , the following holds: If p ∈ G , then
V [G] |= ϕ((τ1)G, ..., (τn)G) .

6.11 Exercise.
(i) Suppose p  ϕ and q ≤ p . Show that q  ϕ .
(ii) Show that p  ϕ ∧ ψ iff p  ϕ and p  ψ .
(iii) Suppose p  ϕ and ⊢ ϕ→ ψ . Show that p  ψ .

By Ġ we denote the P -name {(p̂, p)| p ∈ P} .
6.12 Exercise. Show that ĠG = G and conclude that G ∈ V [G] .

6.13 Exercise. Let P ∈ V be the set of all functions f : n → ω , n < ω ,
ordered by f ≤ g if g ⊆ f and let G be P -generic over V . Suppose π : ω2 → ω
belongs to V and is one-to-one and onto (in V , but this is absolute). Let F = ∪G .
Show that F is a function from ω to ω and that for all n,m < ω , there is k < ω
such that F (π(n, k)) = m .

7. Forcing

We define an ordering <∗ to (V P )2 so that (τ, σ) <∗ (τ ′, σ′) if τ <∗ τ ′ and
σ <∗ σ′ (see Exercise 6.6 (ii)).

7.1 Exercise. Show that ≤∗ is well-founded.

7.2 Definition. For p ∈ P and P -names τ and σ , the relation p ∗ τ = σ
is defined as follows: p ∗ τ = σ if both (a) and (b) below hold:

(a) for all q ≤ p and (τ ′, s) ∈ τ , if q ≤ s , then there are r ≤ q and (σ′, t) ∈ σ
such that r ≤ t and r ∗ τ ′ = σ′ .

(b) for all q ≤ p and (σ′, t) ∈ σ , if q ≤ t , then there are r ≤ q and (τ ′, s) ∈ τ
such that r ≤ s and r ∗ τ ′ = σ′ .
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Notice that (a) above is equivalent with the following (and similarly for (b)): For
all (τ ′, s) ∈ τ if q ≤ p, s , then the set {r ∈ P | ∃(σ′, t) ∈ σ s.t. r ≤ t and r ∗ τ ′ = σ′}
is dense below q .

7.3 Exercise.

(i) Show that the set {(p, τ, σ)| p ∗ τ = σ} is a class in V . Hint: Think of the
function F such that F (τ, σ) is the set of all p ∈ P s.t. p  τ = σ .

(ii) Show that if for all q ≤ p there is r ≤ q such that r ∗ τ = σ , then
p ∗ τ = σ .

(iii) Show that if p ∗ τ = σ and q ≤ p , then q ∗ τ = σ .

7.4 Lemma. Suppose G is P -generic over V .

(i) If p ∈ G and p ∗ τ = σ , then τG = σG .

(ii) If τG = σG , then there is p ∈ G such that p ∗ τ = σ .

Proof. (i): We prove this by induction on <∗ . By symmetry it is enough to
show that τG ⊆ σG . For this it is enough to show the following: If (τ ′, s) ∈ τ and
s ∈ G , then τ ′G ∈ σG . Let p′ ∈ G be such that p′ ≤ p, s . By the definition of ∗

and the definition of a P -generic filter over V , we can find (σ′, t) ∈ σ and r ∈ G
such that r ≤ p′, t and r ∗ τ ′ = σ′ (exercise, hint: use the remark after Definition
7.2 and Exercise 6.4 (v)). By the induction assumption, τ ′G = σ′

G and thus τ ′G ∈ σG .

(ii): We prove this by induction on <∗ . We show that there is p ∈ G such that
(a) from Definition 7.2 holds. Similarly we see that there is p ∈ G such that (b) from
Definition 7.2 holds. This suffices (exercise). For a contradiction suppose that there
is no such p ∈ G .

For all p ∈ P , let q(p) and (τ ′(p), s(p)) witness the failure of (a) in the case that
these elements exists (keep in mind that q(p) ≤ p). If they do not exists, we say that
p is good. Now {q ∈ P | ∃p ∈ P, p is not good and q ≤ q(p)} ∪ {q ∈ P | q is good} is
dense in P (exercise). Since we assumed that there is no good p ∈ G , there must be
p ∈ G (since G is a generic filter) such that q(p) ∈ G (if q ∈ G and q ≤ q(p) ≤ p ,
then q(p), p ∈ G).

But then for all (σ′, t) ∈ σ such that t ∈ G , for no r ∈ G , r ∗ τ ′(p) = σ′ (by
Exercise 7.3 (iii)). Thus by the induction assumption, for all (σ′, t) ∈ σ such that
t ∈ G , τ(p)G ̸= σ′

G . Since τ ′(p)G ∈ τG , we have a contradiction.

7.5 Definition. Suppose p ∈ P and τ and σ are P -names. We define
p ∗ τ ∈ σ as follows: p ∗ τ ∈ σ if for all q ≤ p , there are r ≤ q and (σ′, t) ∈ σ
such that r ≤ t and r ∗ τ = σ′ .

7.6 Exercise.

(i) Show that the set {(p, τ, σ)| p ∗ τ ∈ σ} is a class in V .

(ii) Show that if for all q ≤ p there is r ≤ q such that r ∗ τ ∈ σ , then
p ∗ τ ∈ σ .

(iii) Show that if p ∗ τ ∈ σ and q ≤ p , then q ∗ τ ∈ σ .
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7.7 Lemma. Suppose G is P -generic over V .
(i) If p ∈ G and p ∗ τ ∈ σ , then τG ∈ σG .
(ii) If τG ∈ σG , then there is p ∈ G such that p ∗ τ ∈ σ .

Proof. As the proof of Lemma 7.4 (using Lemma 7.4).

7.8 Definition. Let p ∈ P and ϕ = ϕ(τ1, ..., τn) be a sentence in the forcing
language. We define p ∗ ϕ as follows:

(i) If ϕ is an atomic formula, we have already defined p ∗ ϕ .
(ii) If ϕ = ¬ψ , then p ∗ ϕ if there is no q ≤ p such that q ∗ ψ .
(iii) If ϕ = ψ ∧ θ , then p ∗ ϕ if p ∗ ψ and p ∗ θ .
(iv) If ϕ = ∃vkψ(vk, τ1, ..., τn) , then p ∗ ϕ if for all q ≤ p there are a P -name

τ and r ≤ q such that r ∗ ψ(τ, τ1, ..., τn) .

Recall from Section 6, that if ϕ(x1..., xn) is a formula (in the meta language),
then ϕ(τ1, ..., τn) is the formula one gets from ϕ∗ by replacing variables xi by P -
names τi .

7.9 Exercise.
(i) Show that for all formulas ϕ(xi, ..., xn) , the set

{(p, τ1, ..., τn)| p ∗ ϕ(τ1, ..., τn)}

is a class in V .
(ii) Show that if p ∗ ϕ and q ≤ p , then q ∗ ϕ .
(iii) Show that if for all q ≤ p there is r ≤ q such that r ∗ ϕ , then p ∗ ϕ .

7.10 Theorem. Suppose G is P -generic over V .
(i) If p ∈ G and p ∗ ϕ(τ1, ..., τn) , then V [G] |= ϕ((τ1)G, ..., (τn)G) .
(ii) If V [G] |= ϕ((τ1)G, ..., (τn)G) , then for some p ∈ G , p ∗ ϕ(τ1, ..., τn) .

Proof. We prove the claims simultaneously by induction on ϕ . If ϕ is an atomic
formula, then we have already proved this. We prove the claims in the case ϕ = ¬ψ ,
the two other cases are left as an exercise.

(i): For a contradiction suppose V [G] |= ψ . Then by the induction assumption,
there is q ∈ G such that q ∗ ψ . By Exercise 7.9, we may assume that q ≤ p , a
contradiction.

(ii): For a contradiction, suppose that there is no such p ∈ G i.e. for all p ∈ G
there is qp ∈ P such that qp ≤ p and qp ∗ ψ . But then as in the proof of Lemma
7.4, we can find p ∈ G such that qp ∈ G . By the induction assumption V [G] |= ψ ,
a contradiction.

7.11 Corollary. p  ϕ iff p ∗ ϕ .

Proof. From right to left the claim follows immediately from Theorem 7.10 (i).
For the other direction, by Exercise 7.9 (ii), it is enough to show that for all q ≤ p ,
there is r ≤ q such that r ∗ ϕ . But this is clear by Theorem 7.10 (ii).

We finish this section by showing that V [G] satisfies all the axioms of ZFC.
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7.12 Theorem. Let ϕ be an axiom of ZFC. Then ϕV [G] holds.

Proof. For extensionality, foundation and infinity, the claim is immediate by
our construction of V [G] . We prove separation, the rest are similar.

Let τ and τ1, ..., τn be P -names and ϕ(v0, ..., vn) be a formula. Let G be
P -generic over V . We need to show that the set

a = {x ∈ τG| ϕ(x, (τ1)G, ..., (τn)G)V [G]}

is in V [G] . For this we need to find a P -name for a .
We let σ be the set of all pairs (δ, p) such that
(i) p ∈ P and for some q ≥ p , (δ, q) ∈ τ ,
(ii) p  ϕ(δ, τ1, ..., τn).

Notice that by Exercise 7.9 (i), σ is a P -name (i.e. is in V ). We are left to show
that σG = a .

σG ⊆ a : Suppose δ′G ∈ σG . Then there are p ∈ G and δ such that (δ, p) ∈ σ
and p  δ′ = δ . But then δ′G = δG ∈ τG and ϕ(δG, (τ1)G, ..., (τn)G)

V [G] holds i.e.
δ′G ∈ a .

a ⊆ σG : Suppose δ′G ∈ a . Then δ′G ∈ τG and so there are p ∈ G and δ such that
p  δ′ = δ and (δ, q) ∈ τ for some q ≥ p . Also for some p′ ∈ G , p′  ϕ(δ′, τ1, ..., τn).
Clearly we may assume that p′ = p . But then by Exercise 6.11, p  ϕ(δ, τ1, ..., τn)
and thus δG ∈ σG and so also δ′G ∈ σG .

7.13 Exercise.
(i) Show that the pairing axiom is true in V [G] .
(ii) Show that the union axiom is true in V [G] .
(iii) Show that the power set axiom is true in V [G] .

7.14 Exercise.
(i) Suppose that ∃vkψ is a formula (of the meta language). Show that if p 

∃vkψ(vk, τ1, ..., τn) , then there is a P -name τ such that p  ψ(τ, τ1, ..., τn) . Hint: For
all q ∈ P pick σq such that q  ψ(σq, τ1, ..., τn) if there is such a name. Enumerate
these σq as σi , i < α . We say that q is good if there is i < α such that q 
ψ(σi, τ1, ..., τn) and for all r ≤ q , if r  ψ(σj , τ1, ..., τn) , then j ≥ i . Start by
showing that good conditions are dense below p . By looking the beginning of Section
8, another method can be found.

(ii) Suppose C ∈ V is a set of P -names. Show that in V [G] there is a function
f : C → V [G] such that for all τ ∈ C , f(τ) = τG .

7.15 Lemma. Let G be P -generic over V . Then OnV [G] = OnV .

Proof. Clearly OnV ⊆ OnV [G] . So for a contradiction, suppose that there is
α ∈ OnV [G] such that α ̸∈ OnV . Then OnV ⊆ α . Let τ be a P -name such that
τG = α and let A be the set of all P -names σ such that (σ, q) ∈ τ for some q ∈ P .
Let κ ∈ V be a cardinal for which there is a bijection f : A × P → κ (in V ). Let
κ+ be the successor of κ in V .
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Then there is some p ∈ P such that p  κ̂+ ⊆ τ . And so for all γ ∈ κ+ there
is (δγ , pγ) ∈ A × P such that pγ  δγ = γ̂ . By Corollary 7.11 and Exercise 7.9 (i),
we can choose δγ and pγ so that the function g : κ+ → A × P , g(γ) = (δγ , pγ)
is in V and clearly it is an injection. Thus f ◦ g is an injection from κ+ to κ , a
contradiction.

8. Negation of continuum hypothesis

In this section we prove the consistency of the negation of the continuum hy-
pothesis.

8.1 Definition. Let P = (P,<) be a partial order.
(i) We say that A ⊆ P is an antichain if for all p, q ∈ A , if p ̸= q , then p⊥q .

For B ⊆ P , we say that A ⊆ B is a maximal antichain in B if it is an antichain and
no antichain A′ ⊆ B is a proper extension of A (equivalently there is no p ∈ B such
that A ∪ {p} is an antichain, which is absolute). A is a maximal antichain below
p ∈ P if it is a maximal antichain in {q ∈ P | q ≤ p} . A is a maximal antichain if it
is a maximal antichain in P (equivalently a maximal antichain below 1).

(ii) For a cardinal κ , we say that P has κ -cc (chain condition) if |A| < κ for
all antichains A ⊆ P .

Again when we talk about antichains A we mean that in addition A ∈ V .

8.2 Exercise.
(i) Suppose A ⊆ {q ∈ P | q ≤ p} is an antichain (in V ). Show that A is a

maximal antichain below p iff D = {r ∈ P | ∃q ∈ A(r ≤ q)} is dense below p .
(ii) Show that if A ⊆ P is a maximal antichain below p (and in V ), G is

P -generic over V and p ∈ G , then G ∩A is a singleton.
(iii) Show that for all B ⊆ P and antichain A ⊆ B (both in V ), there is a

maximal antichain C in B such that A ⊆ C .
(iv) Suppose that B ⊆ {q ∈ P | q ≤ p} is dense below p and A ⊆ B is a maximal

antichain in B . Show that A is a maximal antichain below p .

Recall that by ω1 we denote the least cardinal > ω i.e. ω+ . ω1 -cc is usually
called ccc (countable chain condition, which, of course, should be called countable
antichain condition but that is not the case).

8.3 Theorem. Suppose that in V the following holds: P has κ -cc and
cf(λ) = γ ≥ κ . Let G be P -generic over V . Then in V [G] , cf(λ) = γ .

Proof. For a contradiction, suppose that in V [G] there are θ < γ and f : θ → λ
such that ∪(rng(f)) = λ . Let ḟ be a P -name such that ḟG = f . When this happens,
we say that ḟ is a P -name for f .

8.3.1 Exercise. Show that there is a P -name τ and p ∈ G such that p 
τ = ḟ and 1 forces that τ is a function from θ̂ to λ̂ .

So we may assume that 1 forces that ḟ is a function from θ̂ to λ̂ .
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8.3.2 Exercise. Show that for all α < θ , there is a maximal antichain Aα ⊆ P
such that for all p ∈ Aα , there is βp for which p  ḟ(α̂) = β̂p .

For all α < θ , let δα = ∪{βp + 1| p ∈ Aα} . By κ-cc and the assumption that
cf(λ) ≥ κ , δα < λ . Let δ = ∪{δα| α < θ} . Since θ < cf(λ), δ < λ . But clearly,
rng(f) ⊆ δ , a contradiction.

8.4 Corollary. If in V , P has κ-cc, κ is regular and λ ≥ κ is a cardinal,
then λ is a cardinal also in V [G] .

Proof. Clearly it is enough to prove this under the additional assumption that
λ is regular (exercise). But then the claim follows immediately from Theorem 8.3.

Theorem 8.3 gives an alternative way of proving Lemma 7.15.

8.5 Corollary. Suppose in V , P is a partial order and G is P -generic over
V . Then for all α ∈ V [G] , (α ∈ On)V [G] iff α ∈ V and (α ∈ On)V .

Proof. By Exercise 6.2 (ii), it is enough to show that (α ∈ On)V [G] implies
that α ∈ V . For this it is enough to find a cardinal λ ∈ V such that in V [G] , α < λ
(as above). Let α̇ be such that α̇G = α . Then there are (in V ) a cardinal κ and a
function f such that dom(f) = κ and

rng(f) = {τ ∈ TC(α̇)| ∃p ∈ P ((τ, p) ∈ α̇)}.

Now in V , choose a regular cardinal λ so that λ > κ and λ > |P | . Then By
Corollary 8.4, λ is a cardinal also in V [G] . Also by Exercise 7.14, in V [G] , there is
a function g such that dom(g) = κ and for all γ < κ , g(γ) = f(γ)G . Then clearly
α ⊆ rng(g) and thus |a| < λ . But then α < λ .

Let us recall the following definition from Section 4:

8.6 Definition. Let κ > ω be a regular cardinal.
(i) C ⊆ κ is called cub (closed and unbounded) if it is unbounded in κ (i.e. for

all α < κ there is β ∈ C such that β > α) and for all α < κ , if ∪(C ∩ α) = α , then
α ∈ C .

(ii) S ⊆ κ is stationary if for all cub C ⊆ κ , S ∩ C ̸= ∅ .

We recall from Exercise 4.10 that if κ > ω is a regular cardinal and for all α < κ ,
Cα ⊆ κ is cub, then ∆α<κCα is cub.

8.7 Exercise. Show that there is stationary S ⊆ ω1 such that ω1 − S is
stationary. Hint: Let X be the set of all limit ordinals α < ω1 and for each α ∈ X ,
pick an increasing sequence (αi)i<ω of ordinals < α such that ∪i<ωαi = α . For all
i < ω , define fi : X → ω1 so that fi(α) = αi . Then apply Lemma 8.8 below and
show that at least one of the sets is as wanted.

8.8 Lemma. (Fodor’s lemma aka pressing down) Suppose that κ > ω is a
regular cardinal, S ⊆ κ is stationary and f : S → κ is such that for all α ∈ S ,
f(α) < α . Then there is stationary S′ ⊆ S and α < κ such that f(γ) = α for all
γ ∈ S′ .
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Proof. Suppose that there are no such S′ and α . Then for all α < κ , there is
cub Cα ⊆ κ such that for all γ ∈ Cα ∩ S , f(γ) ̸= α . Let γ ∈ (∆α<κCα) ∩ S . Then
for all α < γ , f(γ) ̸= α , a contradiction.

Recall that by |α|<κ we mean the cardinality of the set {f : β → |α| | β < κ}
which is the same as the cardinality of the set {f : β → α| β < κ} .

8.9 Lemma. (∆ -lemma) Suppose λ > κ are regular cardinals, for all α < λ ,
|α|<κ < λ and A be a set. For all i < λ , let Ai ⊆ A be a set of size < κ . Then
there is an unbounded X ⊆ λ and Y ⊆ A such that for all i, j ∈ X , if i ̸= j , then
Ai ∩Aj = Y .

Proof. Without loss of generality we may assume that A = λ . Let S = {γ <
λ| cf(γ) = κ} . By Exercise 5.6 (i), S is stationary.

Define f : S → λ so that f(γ) = ∪(Aγ∩γ). Notice that for all γ ∈ S , f(γ) < γ .
By Fodor’s lemma, there is stationary S′ ⊆ S and α < λ such that f(γ) = α for all
γ ∈ S′ . By the pigeon hole principle and the assumption that |α + 1|<κ < λ , there
is Y ⊆ (α+ 1) and unbounded X ′ ⊆ S′ such that for all γ ∈ X ′ , Aγ ∩ γ = Y .

By induction on i < λ , we choose ordinals γi ∈ X ′ as follows:

(i) γ0 = min(X ′ − (α+ 1)),
(ii) for i > 0, γi = min(X ′ − ∪{(γj ∪

∪
Aγj ) + 1| j < i}).

Then Y and X = {γi| i < λ} are as wanted.

We recall:

8.10 Definition. By CH (continuum hypothesis) we mean the claim 2ω = ω1 .

Now we are ready to prove the consistency of the negation of continuum hypoth-
esis. We present the proof the way forcing constructions are usually presented and
in the next section we study the reason why the proof shows the claim (and we recall
what it is that we claim).

8.11 Theorem. (Cohen) Con(ZFC) implies Con(ZFC+¬CH)

Proof. In V , let κ be a cardinal > ω1 and P be the partial order of all functions
p : Xp → 2, Xp ⊆ κ× ω finite, ordered by inverse inclusion i.e. p ≤ q if q ⊆ p .

8.11.1 Exercise. Show that (in V ) P has ccc. Hint: Suppose that {pi| i <
ω1} is an antichain and start by applying ∆ -lemma to the set {Xpi | i < ω1} .

Let G be P -generic over V and then from V [G] we find the function F = ∪G :
κ× ω → 2 and sets Xα = {n < ω| F (α, n) = 1} , α < κ .

8.11.2 Exercise.

(i) Show that, indeed, dom(∪G) = κ× ω .
(ii) Show that for all α < β < κ , Xα ̸= Xβ .

By Corollaries 8.4 and 8.5, V and V [G] have the same cardinals and thus in
V [G] , 2ω ≥ κ > ω1 .
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8.12 Exercise. Suppose κ , P and G are as in the proof of Theorem 8.11.
(i) Suppose that (in V ) cf(κ) = ω . Show that in V [G] , 2ω > κ . Hint: Show

by diagonalizing that if cf(κ) = ω , then κω > κ .
(ii) Suppose that (in V ) κ is regular and that GCH holds. Show that in V [G] ,

for all cardinals λ < κ , 2λ = κ . Hint: Look at the set X of P -names τ of the
following form: For all α < λ there is a maximal antichain Aα and for all p ∈ Aα ,
βαp < 2 such that

τ = {( ˆ(α, βαp ), p)| α < λ, p ∈ Aα}.

(Such names are called nice in [Ku].) Start by showing that if in V [G] , f is a function
from λ to 2 , then f = τG for some τ ∈ X .

9. Why forcing works

The proof of Theorem 8.11 shows that if, on the meta level, there is a proof of
CH from ZFC, then on the meta level there is a proof of contradiction from ZFC
(and in fact there is a mechanical method of forming a proof of contradiction from
any proof of CH, making the forcing a constructive method). The reason for this is
the following:

So suppose that we are given a proof D of CH from ZFC. Let T be the finite set of
axioms of ZFC used in the proof D . Then, by looking at the proofs of Theorems 7.12
and 8.11, one can can find a finite set T ∗ of axioms of ZFC such that ZFC∪{ϕV | ϕ ∈
T ∗} ∪ {”V is countable and transitive”} proves the exisitence of (P and G and)
V [G] and ψV [G] for every ψ ∈ T ∪ {¬CH} . Now using Lemma on constants from
the course Mathematical logic, we get that ZFC proves

∀V ((”V is countable and transitive” ∧
∧
ϕ∈T∗

ϕV ) → ∃V ∗(
∧

ψ∈T∪{¬CH}

ψV
∗
)).

Using Exercises 2.3, 2.4 and 3.12 (ii) one gets:

9.1 Exercise. For all finite T ′ ⊆ ZFC , ZFC proves that there exists a
countable and transitive ∈ -model V such that for all ϕ ∈ T ′ , ϕV holds.

Thus ZFC proves that there exists V ∗ such that for all ϕ ∈ T ∪ {¬CH} , ϕV ∗

holds.
On the other hand, since T proves CH, ZFC proves that ”T ⊢ CH” (as in the

proof of Gödel’s second incompleteness theorem in the course Mathematical logic).
Since ZFC also proves soundness (see the course Mathematical Logic), ZFC proves

CHV
∗
. Thus ZFC proves that there is V ∗ in which a contradiction holds. As we

saw in the course Mathematical logic, ZFC also proves that there is no model, in
particular, no V ∗ which satisfies a contradiction and thus we have a proof of a
contradiction from ZFC.

9.2 Exercise. Does the proof of Theorem 8.11 show that ZFC+”ZFC∗ ⊢
CH∗” is inconsistent? If it does, explain why and if it does not, again explain why.
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10. Continuum hypothesis

In Section 3 we proved the consistence of CH by showing that it is true in L .
In this section we show how to prove this by using forcing.

10.1 Definition. We say that partial order P is κ-closed if for all α < κ and
all pi ∈ P , i < α , the following holds: If for all i < j < α , pj ≤ pi , then there is
p ∈ P such that p ≤ pi for all i < α .

10.2 Theorem. Suppose P is κ -closed, G is P -generic over V , X ∈ V ,
Y ∈ V [G] , Y ⊆ X and in V [G] , |Y | < κ . Then Y ∈ V .

Notice that above we do not yet know that κ is a cardinal in V [G] .
Proof. So in V [G] , there is λ < κ and f : λ → X such that Y = rng(f) and

let ḟ , Ẏ and Â be P -names for f , Y and A = P (X)V ∈ V . Then there is p ∈ P

which forces that Ẏ = rng(ḟ) and dom(ḟ) = λ̂ and Ẏ ̸∈ Â and Ẏ ⊆ X̂ .
For all γ ≤ λ , we construct pγ ∈ P and xγ+1 ∈ X as follows:
(i) p0 = p ,
(ii) pγ+1 is such that pγ+1 ≤ pγ and for some xγ+1 ∈ X , pγ+1 forces that

ḟ(γ̂) = ˆxγ+1 ,
(iii) if γ is a limit ordinal, then pγ is any element of P such that pγ ≤ pi for

all i < γ .
Let Z = {xγ+1| γ < λ} ∈ V . Then pλ forces that rng(ḟ) = Ẑ ∈ Â , a contradiction.

10.3 Exercise. Suppose P is κ -closed, λ ≤ κ is a cardinal (in V ) and G is
P -generic over V . Show that λ is a cardinal in V [G] .

10.4 Theorem. Con(ZFC) implies Con(ZFC+CH).

Proof. Let κ = 2ω and let P be the set of all functions f : α → κ , α < ω1 ,
ordered by the inverse inclusion. Clearly P is ω1 -closed. Let G be P -generic over
V and f = ∪G ∈ V [G] .

10.4.1 Exercise. Show that f is a surjection from (ω1)
V onto κ .

By Theorem 10.2, in V [G] there are no new subsets of ω and thus P (ω)V =
P (ω)V [G] . Also by Exercise 10.3, (ω1)

V = (ω1)
V [G] and so, in V [G] , |P (ω)| ≤ ω1

and thus CH holds.
In the literature it is common to say that some claim ϕ is consistent when one

actually means that Con(ZFC) implies Con(ZFC+ϕ).

10.5 Exercise. Prove by forcing the consistency of the following claims:
(i) 2ω = ω1 and 2ω1 = ω2 .
(ii) 2ω = 2ω1 = ω2 . Try to find a simple proof that does not use Exercise 8.12

(ii).
(iii) 2ω = ω1 and 2ω1 > ω2 .
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11. Iterated forcing - the starting point

In forcing, finding a suitable partial order is the main difficulty (keeping in mind
that one also has to show that the partial order works). From the literature one can
find several methods that are developed to help one to find these partial orders. The
most used method is iterated forcing. We start by going back to Exercise 10.5 and
do the constructions in a very complicated way. This helps in the next section.

In iterations the requirement that the partial order P = (P,≤, 1) must satisfy
that p ≤ q and q ≤ p implies that p = q , causes technical inconveniences. Thus
we lift this requirement i.e. we require only that ≤ is transitive and reflexive. Then
pEq if p ≤ q and q ≤ p is an equivalence relation and P/E is a partial order in the
old sense when one defines p/E ≤ q/E if p ≤ q and P and P/E work in forcing
exactly the same way (exercise). And if one wants, one can replace all partial orders
P with P/E everywhere below.

Throughout this section P = (P,≤, 1) is a partial order (in V and in our new
sense).

11.1 Definition.
(i) We say that Q = (Q̇, ≤̇, 1̇) = (Q,≤, 1) is a P -name of a partial order if Q̇ ,

≤̇ and 1̇ are P -names and 1 forces that ≤̇ is a partial order of Q̇ with the largest
element 1̇ and (1̇, 1) ∈ Q . We will write Q for Q̇ etc. It should be clear from the
context what we mean.

(ii) P ⋆ Q is the set

{(p, τ)| p ∈ P, ∃q ∈ P ((τ, q) ∈ Q), p  τ ∈ Q}

ordered by the following partial order: (p, τ) ≤ (q, σ) if p ≤ q and p  τ ≤ σ . (The
largest element is (1, 1) .) The set of those P -names τ for which there is p ∈ P such
that (τ, p) ∈ Q is denoted by Dom(Q) .

(iii) i : P → P ⋆ Q is the function i(p) = (p, 1) .

From now on we let Q be a P -name for a partial order and i as in Definition
11.1 (iii).

11.2 Exercise. i is a complete embedding (see [Ku]), in particular,
(i) if p, q ∈ P and p ≤ q , then i(p) ≤ i(q) ,
(ii) if p, q ∈ P , then p⊥q iff i(p)⊥i(q) ,
(iii) if (p, τ) ∈ P ⋆ Q and q ≤ p , then (p, τ)||i(q) .

11.3 Exercise. Suppose K is P ⋆Q -generic over V . Show that KP = i−1(K)
is P -generic filter over V .

11.4 Definition.
(i) If G is a P -generic over V and H ⊆ QG , then G ⋆ H is the set of those

(p, τ) ∈ P ⋆ Q such that p ∈ G and τG ∈ H .
(ii) If K is P ⋆Q-generic over V and G = KP , then KQ is the set of those τG

such that for some q ∈ P , (q, τ) ∈ K . Notice that (q, τ) ∈ K implies that q ∈ G .
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11.5 Lemma. Suppose K is P ⋆ Q -generic over V , G = KP and H = KQ .
Then H is a QG -generic filter over V [G] , K = G ⋆ H and V [K] = V [G][H] .

Proof. We start by showing that if x ∈ H , y ∈ QG and y ≥G x , then y ∈ H ,
the rest of the claim that H is a filter is left as an exercise. Since x ∈ H , there are
p ∈ G and τ such that (p, τ) ∈ K and x = τG . Since y ∈ QG , there is σ ∈ dom(Q)
such that y = σG . But then there is r ∈ G such that r  σ ≥ τ ∧ σ ∈ Q .
Then (r, 1) ∈ K and we can find (q, δ) ∈ K such that (q, δ) ≤ (r, 1), (p, τ). Then
q  δ ≤ τ ≤ σ and q ≤ r . It follows that (q, δ) ≤ (r, σ) ∈ P ⋆ Q and so (r, σ) ∈ K
i.e. y = σG ∈ H .

H is QG -generic over V [G] : For this let δ be a P -name for a dense subset of
QG i.e. some p ∈ G forces that δ is a dense subset of Q . But then D = {(q, τ) ∈
P ⋆ Q| q ≤ p, q  τ ∈ δ} ∪ {(q, τ) ∈ P ⋆ Q| q⊥p} is dense in P ⋆ Q (exercise). Thus
there is (q, τ) ∈ K ∩D . Since K is a filter, q||p and so τG ∈ δG ∩H .

K = G⋆H : The direction ⊆ is immediate by the definitions and so we prove only
that G⋆H ⊆ K : So suppose (p, τ) ∈ G⋆H . Then p ∈ G i.e. (p, 1) ∈ K and τG ∈ H
i.e. for some q ∈ P , (q, τ) ∈ K (and p forces that τ ∈ Q since G ⋆ H ⊆ P ⋆ Q).
Since K is a filter there is some (r, ρ) ∈ K such that (r, ρ) ≤ (p, 1), (q, τ). But then
(r, ρ) ≤ (p, τ) and so (p, τ) ∈ K .

V [K] = V [G][H] is left as an exercise. (Hint: Suppose that V ⊆ V ′ are
transitive countable ∈ -models that satisfy ϕ∗ for all ϕ ∈ ZFC , P ∈ V is a partial
order and G ∈ V ′ is P -generic over V . Start by showing that V [G] ⊆ V ′ .)

11.6 Exercise. Suppose G is P -generic over V and H is QG -generic over
V [G] . Then G⋆H is P ⋆Q -generic filter over V . Hint: Suppose D ∈ V is dense in
P ⋆ Q and let τ = {(δ, p)| (p, δ) ∈ D} . Start by showing that τG is dense in QG .

11.7 Exercise. Suppose P has ccc, X ∈ V and τ is a P -name of which
1 forces that τ ⊆ X̂ and that τ is countable. Show that there exists a countable
Y ⊆ X in V such that 1  τ ⊆ Ŷ . Hint: Choose a P -name ḟ such that 1 forces
that ḟ is a function from ω̂ onto τ and repeat the argument from the proof of
Theorem 8.3.

11.8 Lemma. If P has ccc and 1 forces that Q has ccc, then P ⋆Q has ccc.

Proof. For a contradiction, suppose {(pi, τi) ∈ P ⋆ Q| i < ω1} is an antichain.
Let δ = {(p̂i, pi)| i < ω1} .

11.8.1 Exercise. Show that if G is P -generic over V , then δG is a countable
subset of P in V [G] . Hint: Any two elements of δG are compatible.

Thus by Exercise 11.7, there is countable Y ⊆ P such that 1  δ ⊆ Ŷ . But
since for all i < ω1 , pi  p̂i ∈ δ , the set {pi| i < ω1} is countable. Thus there is
an uncountable set X ⊆ ω1 such that for all i, j ∈ X , pi = pj = p . Since 1 forces
that Q has ccc, there are q ≤ p and i, j ∈ X , i ̸= j , such that q  τi||τj . But then
(pi, τi)||(pj , τj), a contradiction.
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12. Finite support iteration

Now we are ready to define finite support iterations:

12.1 Definition. We say that (Pγ , Qγ)γ≤α is a finite support iteration if the
following holds:

(i) P0 is the one element partial order {∅} .
(ii) Qγ = (Qγ ,≤, 1) is a Pγ -name for a partial order.
(iii) Pγ+1 is the set of all functions p with domain γ + 1 such that p � γ ∈ Pγ

and τ = p(γ) is such that for some q ∈ Pγ , (τ, q) ∈ Qγ and p � γ  τ ∈ Qγ . Pγ+1

is ordered so that p ≤ q if p � γ ≤ q � γ and p � γ  p(γ) ≤ q(γ) . (Notice that then
Pγ+1 is isomorphic with Pγ ⋆ Qγ .)

(iv) For limit γ , Pγ is the set of all functions p with domain γ such that for all
β < γ , p � β ∈ Pβ and the support

supp(p) = {β < dom(p)| p(β) ̸= 1}
is finite. Pγ is ordered so that p ≤ q if for all β < γ , p � β ≤ q � β .

Notice that for all 0 < β ≤ α , the maximal element of Pβ is the element p ∈ Pβ
such that p(γ) = 1 for all γ < β . Also by an easy induction one can see that for all
β ≤ α and p ∈ Pβ , supp(p) is finite.

To show that p ∈ Pα it is enough to show that p is a function with domain
α , for all β < α , p(β) ∈ dom(Qβ), supp(p) is finite and that for all β < α ,
p � β  p(β) ∈ Qβ . And p ≤ q iff for all β < α , p � β  p(β) ≤ q(β) (exercise).

From now on, (Pγ , Qγ)γ≤α is a finite support iteration. Notice that Qα does
not play a role in the definition of Pα (it is there for notational reasons).

12.2 Definition. For γ ≤ β ≤ α , by iγβ we mean the function from Pγ to
Pβ such that for all p ∈ Pγ , iγβ(p) is the element q ∈ Pβ for which q � γ = p and
for all δ ∈ β − γ , q(δ) = 1 .

12.3 Exercise. Suppose γ ≤ β ≤ α , p, p′ ∈ Pγ and q, q′ ∈ Pβ .
(i) If q ≤ q′ , then q � γ, q′ � γ ∈ Pγ and q � γ ≤ q′ � γ .
(ii) If p ≤ p′ , then iγβ(p) ≤ iγβ(p

′) .
(iii) If q � γ⊥q′ � γ , then q⊥q′ .
(iv) If supp(q) ∩ supp(q′) ⊆ γ , then q⊥q′ iff q � γ⊥q′ � γ .
(v) p⊥p′ iff iγβ(p)⊥iγβ(p′) .
(vi) Suppose p = q � γ and p′ ≤ p . Show that r = (q − p) ∪ p′ ∈ Pβ and r ≤ q .

12.4 Corollary. Suppose γ < β ≤ α , G is Pβ -generic over V and G′ =
i−1
γβ (G) . Then G′ is Pγ -generic over V .

Proof. As in the previous section. .

12.5 Exercise. Suppose that for all γ < α , 1 forces that Qγ has ccc. Show
that Pα has ccc. Hint: Prove by induction on β ≤ α that Pβ has ccc. The
successor steps follow immediately from Lemma 11.8 and for limit cases, make a
counter assumption and use Exercise 12.3 (iv) and (in the case cf(β) = ω1 ) ∆ -
lemma for the supports of the elements in the antichain.
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12.6 Definition. Let γ < α and G be Pγ -generic over V . By P γG we mean
the set of all functions p with domain α− γ such that for some q ∈ G , q ∪ p ∈ Pα .
We partially order P γG so that p ≤ p′ if there is some q ∈ G , q ∪ p, q ∪ p′ ∈ Pα and
q ∪ p ≤ q ∪ p′ . (Exercise: Show that this is a partial order.)

By P γ we mean a Pγ -name (Ṗ γ , ≤̇, 1̇) for a partial order so that for all Pγ -
generic G over V , (P γ)G = P γG (exists by Exercise 7.14 (i)). We may always choose

Ṗ γ to be the set {(q̂, p)| p ∈ Pγ , dom(q) = α − γ, p ∪ q ∈ Pα} . As usually, by P γ

we denote also Ṗ γ etc.

12.7 Exercise. Suppose p, q ∈ Pα , γ < α , p0 = p � γ ≤ q � γ = q0 and
denote p1 = p � (α − γ) and q1 = q � (α − γ) . Show that if p0 forces that p̂1 ≤ q̂1
(in the ordering of P γ ), then p ≤ q . Hint: Suppose not and pick the least β ≤ α
such that p � β ̸≤ q � β . Then β = δ + 1 for some γ ≤ δ < α and p � δ does not
force that p(δ) ≤ q(δ) i.e. there is r ∈ Pδ such that r ≤ p � δ and r forces that
p(δ) ̸≤ q(δ) . Now pick Pγ -generic G such that r � γ ∈ G .

The following lemma is not the most useful form of splitting iterated forcing into
pieces but still gives some idea of what is going on and suffices for our purposes (in
fact we will not even need the full claim).

12.8 Lemma. Suppose γ < α , G is Pα -generic over V , Gγ = i−1
γα(G) and

Gγ = {p ∈ P γGγ
| ∃q ∈ Pγ(q ∪ p ∈ G)} . Then Gγ is P γGγ

-generic over V [Gγ ] and

V [G] = V [Gγ ][G
γ ] .

Proof. This is basically the same than what was done in Section 11 and we
prove only that Gγ is P γGγ

-generic over V [Gγ ] : For this, let τ be a Pγ -name such

that τGγ
is a dense subset of P γGγ

. Then there is p′ ∈ Gγ such that it forces that

τ is a dense subset of P γ (keep in mind that P γGγ
= (P γ)Gγ ). For any q ∈ Pα , we

denote q0 = q � γ and q1 = q � (α− γ). Let p ∈ Pα be such that p0 ≤ p′ .

12.8.1 Exercise. Show that it is enough to find q ≤ p such that q0 forces
that q̂1 ∈ τ . Hint: As in the proof of Lemma 11.5.

Since p0 forces that τ is dense in P γ , there is δ such that p0 forces that δ ≤ p̂1
and δ ∈ τ (notice that p0 forces that p̂1 ∈ P γ , exercise). Let H be Pγ -generic over
V such that p0 ∈ H . Then in V [H] there are r ∈ P γH such that δH = r . Let s ∈ H
be such that s∪ r ∈ Pα and s′ ∈ H such that it forces that δ = r̂ . By Exercise 12.3
(vi), we may assume that s = s′ ≤ p0 and then, by Exercise 12.7, q = s ∪ r is as
wanted.

12.9 Lemma. Let G be Pα -generic over V and G(γ) = {p(γ)Gγ | p ∈ G} .
Then G(γ) is (Qγ)Gγ -generic over V [Gγ ] and V [Gγ+1] = V [Gγ ][G(γ)] .

Proof. By Corollary 12.4, Gγ+1 is Pγ+1 -generic over V and by definitions,
Pγ+1 is isomorphic with Pγ ⋆ Qγ . By checking the isomorphism and using Lemma
11.5, G′(γ) = {p(γ)Gγ | p ∈ Gγ+1} is (Qγ)Gγ -generic over V [Gγ ] . But clearly
G(γ) = G′(γ). Then also the second claim follows from Lemma 11.5.
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12.10 Exercise. Suppose that cf(α) ≥ ω1 , for all γ < α , 1 forces that Qγ
has ccc, p ∈ Pα forces that τ is a function from ω̂ to ω̂ and G is Pα -generic over
V such that p ∈ G . Show that there is γ < α such that τG ∈ V [Gγ ] . Hint: The
hint for Exercise 8.12 (ii).

13. Dominating number

As an application of iterated forcing, we look at dominating number.

13.1 Definition.
(i) For f, g ∈ ωω , we write f <∗ g and say that g eventually dominates f , if

there is n ∈ ω such that for all n < m < ω , f(m) < g(m) .
(ii) We let D to be the set of all dominating families i.e. the set of all those

A ⊆ ωω such that for all f ∈ ωω there is g ∈ A which eventually dominates f . By
d (dominating number) we mean min{|A| | A ∈ D} .

13.2 Exercise.
(i) Show that d ≥ ω1 .
(ii) Suppose that CH holds in V and let P be the set of all p : Xp → ω such

that Xp ⊆ ω2 × ω is finite. We partially order P by inverse inclusion (as before)
i.e. p ≤ q if q ⊆ p . Let G be P -generic over V . Show that d ≥ ω2 in V [G] .
Hint: Suppose not. Then there is f : ω1 × ω → ω such that {fα| α < ω1} is a
dominating family, where fα(n) = f(α, n) . Then find a nice name (see Exercise
8.12) for this function and notice that there is γ < ω2 such that if p appears in any
of the maximal antichains of the nice name, then Xp ⊆ γ × ω . Now look at the
function g(n) = ∪G(γ, n) . The proof of Theorem 13.6 below may also give ideas.

Dominating number is one example of so called cardinal invariants. Another
example of such invariants is Cov(M) i.e. the least cardinal κ for which there are
meager (aka meagre aka of first category) subsets Ai , i < κ , of reals R such that∪
i<κAi = R . It is known that Cov(M) ≤ d .

13.3 Definition. By Pd we mean the partial order (Pd,≤, (∅, ∅)) , where Pd

is the set of pairs p = (fp, Fp) such that fp : np → ω for some np < ω and Fp is a
finite set of functions from ω to ω . Pd is ordered so that p ≤ q if fq ⊆ fp , Fq ⊆ Fp
and for all nq ≤ i < np and h ∈ Fq , fp(i) > h(i) .

13.4 Exercise.
(i) Show that Pd has ccc.
(ii) Let G be Pd -generic over V and g =

∪
p∈G fp . Show that g is a function

from ω to ω .

13.5 Lemma. Let G be Pd -generic over V and g =
∪
p∈G fp . Then for all

h : ω → ω from V , h <∗ g .

Proof. Suppose not and let ġ be a Pd -name for g (i.e. for all Pd -generic H
over V , ġH =

∪
p∈H fp ). Then there are h : ω → ω and p ∈ G such that p forces
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the negation of ĥ <∗ ġ . Let q ∈ Pd be such that fq = fp and Fq = Fp ∪ {h} and
let H be Pd -generic over V such that q ∈ H . Then for all i ≥ np , h(i) < (ġH)(i).
Since q ≤ p , we have a contradiction.

13.6 Theorem. Con(ZFC) implies Con(ZFC+d = ω1 < 2ω ).

Proof. By Theorem 8.11, we may assume that 2ω > ω1 in V . Let (Pg, Qγ)γ≤ω1

be a finite support iteration such that for all γ ≤ ω1 , Qγ is a Pγ -name for (Pd)
V [Gγ ]

(i.e. for all Pγ -generic G over V , (Qγ)Gγ satisfies in V [Gγ ] the definition of Pd ).
Let G be Pω1 -generic over V . By Exercise 13.4 (i) and Lemma 11.8, Pω1 has

ccc and thus (ω1)
V = (ω1)

V [G] and in V [G] 2ω > ω1 by Corollary 8.4. Thus it is
enough to show that in V [G] , A = {fγ | γ < ω1} , where fγ =

∪
p∈G(γ) fp , see Lemma

12.9, has the property that for all g : ω → ω , there is f ∈ A such that g <∗ f . But
this is clear: By Exercise 12.10, there is γ < ω1 such that g ∈ V [Gγ ] . By Lemma
12.9, G(γ) is (Qγ)Gγ -generic over V [Gγ ] and thus by Lemma 13.5, g <∗ fγ .

14. Further exercises

In this section, in the form of exercises we look at how to kill stationary subsets
of ω1 by forcing (killing stationary subsets of κ > ω1 is much harder). Recall that
by X<ω we mean the set of all functions f : n→ X , n < ω .

14.1 Definition. Let P = (P,≤, 1) be a partial order.
(i) Γ(P ) is a game of two players, I and II and it lasts ω rounds. At each round

n < ω first I chooses some pn ∈ P and then II chooses qn ∈ P . II must choose so
that qn ≤ pn and in rounds n > 0 , I must choose so that pn ≤ qn−1 . II wins if there
is q ∈ P such that for all n < ω , q ≤ qn .

(ii) Winning strategy for I in Γ(P ) is a function σ : P<ω → P such that no
matter how II plays I wins if at each round n < ω , I chooses σ(q0, ..., qn−1) .

(iii) We say that P is hopeless for II, if I has a winning strategy in Γ(P ) .

14.2 Exercise. Suppose that P is not hopeless for II and G is P -generic over
V .

(i) Suppose X ∈ V , Y ∈ V [G] , Y ⊆ X and Y is countable. Show that Y ∈ V .

(ii) Show that ωV1 = ω
V [G]
1 .

Fix S ⊆ ω1 so that ω1 − S is stationary (S may also be stationary). By
P (S) we mean the set of all strictly increasing f : α + 1 → ω1 , α < ω1 , such that
rng(f) ∩ S = ∅ and for all limit γ ≤ α , f(γ) = ∪β<γf(β) and we order P (S) by
inverse inclusion.

14.3 Exercise.
(i) Show that for all f : ω<ω1 → ω1 , the set Cf = {α < ω1| f(α<ω) ⊆ α} is cub.
(ii) Show that P (S) is not hopeless for II. Hint: For a contradiction, suppose that

σ is a winning strategy for I. Then think the case when at each round n < ω , II plays
so that she first chooses some γn < ω1 so that γn > ∪rng(pn) and then answers
by qn = pn ∪ {(dom(pn), γn)} . Then apply (i) to the function f(γ0, ..., γm−1) =
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∪rng(pm) , where for all i ≤ m , pi = σ(q0, ..., qi−1) and for all i < m qi = pi ∪
{(dom(pi), γi)} (if for some i < m , qi ̸∈ P (S) , let f(γ0, ..., γm−1) = 0).

14.4 Exercise. Let G be P (S)-generic over V and C = rng(∪G) . Show
that C is a cub subset of ω1 and C ∩ S = ∅ (i.e. S is not stationary in V [G]).

In Exercise 14.4 the assumption that ω1 − S is stationary is necessary:

14.5 Exercise. Suppose P is a partial order, G is P -generic over V , C ⊆ ω1

is in V and (ω1)
V = (ω1)

V [G] .
(i) Show that C is a cub subset of ω1 in V iff C is a cub subset of ω1 in V [G] .
(ii) Since it is possible that ω1 − S is not cub, why the direction from right to

left in (i) does not contradict Exercise 14.4?
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