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Preface

This book is based on lectures the author has given in the Department of Math-
ematics and Statistics in the University of Helsinki during several decades. As
the title reveals, this is a mathematics course, but it can also serve philosophy
and computer science students. The presentation is self-contained, although the
reader is assumed to be familiar with elementary set-theoretical notation and
with proofs by induction.

The idea is to give basic completeness and incompleteness results in an un-
affected and straightforward way without delving into all the elaboration that
modern mathematical logic involves. There is a section “Further reading” guid-
ing the reader to the rich literature on more advanced results.

I am indebted to the many students who have followed the course as well as
to the teachers who have taught it in addition to myself, in particular Tapani
Hyttinen, Åsa Hirvonen and Taneli Huuskonen. The book has existed as a
manuscript in Finnish for a long time and all the members of the Helsinki
Logic Group have greatly contributed to its final form. Each chapter ends with
exercises. These exercises have been developed over the years by all members of
the Helsinki Logic Group. Unfortunately I cannot give credit to their inventors
because sufficient records have not been kept.

Helsinki 25.12.2016
Jouko Väänänen
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Chapter 1

Introduction

The fundamental concepts of logic are

• Sentence, such as “Every non-negative number has a square root”.

• Formula, such as “The number x has a square root” or “x gets a higher
salary than y”.

• Model, structure, such as the field of rational numbers, or a database.

• Proof, such as the proof of Fermat’s Last Theorem given by Andrew Wiles
in 1994.

• Truth, such as “Every non-negative number has a square root” which is
true in the field1 of real numbers, but not in the field of rational numbers.

We will define the above fundamental concepts accurately—mathematically—
and prove their basic properties:

• Easy property: Provable sentences are true in all models.

• A bit more difficult property: A sentence that is true in all models is
provable.

• A difficult property: Many concepts that are important for mathematics
are incomplete in the sense that when they are axiomatized, there are
sentences that can neither be proved true nor be proved false.

The goal of this book is to prove these three properties. One may ask, is
it not circular to prove something about provability, or establish truths about
truth? The answer is “no”, but we have to proceed with care and avoid rushing to
conclusions. We follow the path taken by Alfred Tarski: We assume mathemat-
ics, such as set theory, algebra, topology, measure theory, etc as the firm basis on
which we base our investigation of logical concepts. Our results give us insights

1At this point it is not important to know what fields are.
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2 CHAPTER 1. INTRODUCTION

into the nature and fundamental properties of the concepts of proof and truth.
In this book we are not concerned with the question which naturally suggests
itself, namely what is mathematics itself based on. We simply take the validity
and consistency of mathematics as given. This may come as a disappointment to
a reader who, like early researchers Gottlob Frege, Bertrand Russell, Rudolph
Carnap and David Hilbert, hopes that logic can bring ultimate certainty to
mathematics. The last result of this book, Gödel’s Incompleteness Theorem
from 1931, has inspired generations of mathematicians, logicians, philosophers,
computer scientists and even general public, to contemplate whether mathemat-
ics is something that stands on its own feet and logic is just a tool to understand
salient features of this edifice. Be it as it may, this book introduces the reader
to this tool called logic.

Notation
We use ordinary set-theoretical notation such as

{a1, . . . , an}, A ∩B,A ∪B,A \B, ∅.

The set {0, 1, 2, . . .} of natural numbers is denoted N. The ordered pair of a and
b is denoted 〈a, b〉. Ordered pairs satisfy

〈a, b〉 = 〈c, d〉 ⇐⇒ a = c and b = d.

An ordered sequence is denoted 〈a1, . . . , an〉. It satisfies:

〈a1, . . . , an〉 = 〈b1, . . . , bn〉 ⇐⇒ a1 = b1 and ... and an = bn.

The cartesian product A×A is denoted A2 and n-fold product An.
A set is finite if it is of the form {a1, . . . , an} for some natural number n, and

otherwise infinite. A set is countable if it is of the form {an : n ∈ N}, otherwise
uncountable, and countably infinite if it is countable but not finite.



Chapter 2

Propositional logic

Propositional logic is the oldest and in many ways the simplest part of logic.
Mathematically propositional logic is extremely elementary, but computation-
ally it offers formidable challenges. The famous P=NP problem1 goes right
to the heart of propositional logic. Computational properties of propositional
logic are important because computers are built using electronic circuits based
on propositional logic.

2.1 Propositional formulas
Propositional logic investigates logical properties of very simple but at the same
time very exactly defined formulas. These formulas are called propositional
formulas. They are built from so-called proposition symbols p0, p1, . . . by means
of the connectives

¬ negation
∧ conjunction
∨ disjunction
→ implication
↔ equivalence

In a mathematical investigation of propositional logic it is simplest to choose
certain connectives as basic symbols in terms of which the others are defined.
Following the Polish logician Jan Łukasiewicz (1878–1956) we choose negation
and implication as the basic symbols, and define propositional formulas as fol-
lows:

Definition 2.1 (Propositional formulas) (P1) Proposition symbols p0, p1, . . .
are propositional formulas.

(P2) If A is a propositional formula, then so is ¬A.
1This is the problem whether there is a polynomial P (n) such that the validity of a propo-

sitional formula built up from n proposition symbols can be checked in P (n) steps.

3



4 CHAPTER 2. PROPOSITIONAL LOGIC

(P3) If A and B are propositional formulas, then so is (A→ B).

Convention: The outermost parentheses of a formula need not be displayed.

Example 2.2 The following are propositional formulas p0, (p0 → p0), (p1 →
¬(p2 → p1)), (((p0 → p1)→ ¬p2)→ p3).

A basic concept in propositional logic is provability, which we now define by
first introducing the axioms:

Definition 2.3 (Provability) The axioms of propositional logic are defined as
follows:

• If A and B are propositional formulas, then

(A1) (A→ (B → A))

is an axiom.
• If A and B are propositional formulas, then

(A2) ((¬B → ¬A)→ (A→ B))

is an axiom.
• If A, B and C are propositional formulas, then

(A3) (((A→ (B → C))→ ((A→ B)→ (A→ C)))

is an axiom.

The set of propositional formulas provable from a set S of propositional formulas
is defined as follows:

(T1) Every element of S is provable from S.
(T2) Every axiom is provable from S.
(T3) If A and (A → B) are provable from S, then also B is provable from S.

(Modus Ponens -rule)

If A is provable from S, we write S ` A. If ∅ ` A, we write ` A and say that A
is provable.

The idea of axiom (A1) is that if we know A to be true, the matter does
not change2 if we add a new assumption B. Axiom (A2) is called the Law of
Contraposition. It encapsulates the idea of an indirect proof: If the denial of B
contradicts A and we know A to be true, then B has to be true. Axiom (A3)
is a kind of transitivity property of implication: If assuming A, C follows from
B, then if in addition we know that B follows from A, then C follows from A.

2In the so called non-monotonic reasoning a new assumption may change some conclusions.
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Example 2.4 The following are provable propositional formulas

(p0 → (p1 → p0))
((¬p0 → ¬p1)→ (p1 → p0))
(((p0 → (p1 → p0))→ ((p0 → p1)→ (p0 → p0)))
((p0 → p1)→ (p0 → p0)).

The last formula follows from the first and the third by Modus Ponens.

Example 2.5

{A, (A→ B)} ` B
{A} ` (B → A)
{(¬B → ¬A)} ` (A→ B)
{(¬B → ¬A), A} ` B
{(A→ (B → C))} ` ((A→ B)→ (A→ C))
{(A→ (B → C)), (A→ B)} ` (A→ C)
{(A→ (B → C)), (A→ B), A} ` C

The definition of provability (Definition 2.3) is an example of an inductive
definition. The basis of the induction are (T1) and (T2), while (T3) is the in-
duction step. When we prove that a formula A is provable from a set S, we have
to establish an induction from the axioms and elements of S to A. In practice
this consists of writing down a list of formulas, one under another, with axioms
or elements of S in the beginning, in each step following the Definition 2.3, until
we reach A. Every step (i.e. row of the list) has to be either an axiom, an
element of S, or follow from previous rows by Modus Ponens (MP). Such a list
is called a deduction, a derivation or an inference. Building a deduction is not
necessarily easy. Often one has to first decide on a strategy. Here is an example:

Theorem 2.6 ` (A→ A)

Proof. The idea is the following: By (A3),

((A→ (B → A))→ ((A→ B)→ (A→ A)))

is provable. On the other hand, (A→ (B → A)) is provable, so MP gives

((A→ B)→ (A→ A)).

We would be done, if (A → B) were provable. So let us choose B so that
(A→ B) is provable. Choose B = (A→ A). Thus we build the following list:

1. (A→ (B → A)) (A1)
2. ((A→ (B → A))→ ((A→ B)→ (A→ A))) (A3)
3. ((A→ B)→ (A→ A)) MP 1,2
4. (A→ B) (A1)
5. (A→ A) MP 3,4

In the list we mention at the end of each row the reason why this row is
there and why it abides by Definition 2.3. 2
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Theorem 2.7 ` (¬A→ (A→ B))

Proof. Axiom (A1) gives

(¬A→ (¬B → ¬A)),

which, when combined with axiom (A2)

((¬B → ¬A)→ (A→ B))

and axiom (A3) leads to the desired conclusion. For clarity we denote C =
(¬B → ¬A) and D = (A→ B).

1. (C → D) (A2)
2. ((C → D)→ (¬A→ (C → D))) (A1)
3. (¬A→ (C → D)) MP 1,2
4. ((¬A→ (C → D))→ ((¬A→ C)→ (¬A→ D)) (A3)
5. ((¬A→ C)→ (¬A→ D)) MP 3,4
6. (¬A→ C) (A1)
7. (¬A→ D) MP 5,6 2

We shall now prove a very useful general property of provable propositional
formulas. It shows that the relationship between implication and provability is
in harmony with our intuition.

Theorem 2.8 (Deduction Lemma) If S∪{A} ` B, then S ` (A→ B) (and
conversely).

Proof. We use induction on provable formulas: (1) B ∈ S. Then S ` B. On
the other hand S ` (B → (A → B)), so MP gives S ` (A → B). (2) B = A.
By Theorem 2.6, S ` (A→ B). (3) B is an axiom. Again S ` B, and as above
S ` (A→ B). (4) B has been obtained by MP from C and (C → B), for which
the claim already holds, i.e. S ` (A → C) and S ` (A → (C → B)). By (A3),
S ` ((A → (C → B)) → ((A → C) → (A → B))), so we can use MP to obtain
S ` ((A→ C)→ (A→ B)) and again with MP S ` (A→ B). 2

Lemma 2.9 If S ` A and S ⊆ S′, then S′ ` A

Proof. Problem 7. 2

Lemma 2.10 ` (A→ ((A→ B)→ B)).

Proof. By MP, {A, (A → B)} ` B. By the Deduction Lemma, {A} ` ((A →
B)→ B), and further for the same reason, ` (A→ ((A→ B)→ B)). 2
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2.2 Truth-tables
All propositional formulas are not provable, for example the mere p0, or ¬(p0 →
p0). Moreover, deduction is consistent in the sense that there is no A for which

` A and ` ¬A.

A handy method for showing that something is not provable is a valuation, first
introduced by Russell and Whitehead in their monumental Principia Mathe-
matica [20]. The idea of a truth value is due to Gottlob Frege [7], though the
concept was anticipated by George Boole [2] and Charles Peirce [15].

Definition 2.11 (Valuation) A valuation is any function v : N → {0, 1}. If
A is a propositional formula, then the truth value of A in the valuation v, v(A),
is defined as follows:

v(pn) = v(n)

v(¬A) =

{
0, if v(A) = 1
1, if v(A) = 0

v((A→ B)) =

{
0, if v(A) = 1 and v(B) = 0
1, otherwise

( = v(A) · v(B) + 1− v(A) )

A propositional formula A is a tautology if v(A) = 1 for all v. If A is a tautology
for all A ∈ S, we write v(S) = 1. If S = ∅, we agree that v(S) = 1 for all v.

Example 2.12 The formula (pn → pn) is a tautology, for v((pn → pn)) = 0
only if v(pn) = 1 and v(pn) = 0, which is impossible. The formula (pn → ¬pn)
is not a tautology, for if v(n) = 1 we obtain v((pn → ¬pn)) = 0. The formula
(¬¬A → A) is always a tautology, for v((¬¬A → A)) = 0 only if v(¬¬A) =
1− (1− v(A)) = v(A) = 1 and v(A) = 0.

Theorem 2.13 All provable propositional formulas are tautologies.

This follows from the more general observation:

Theorem 2.14 If v(S) = 1 and S ` A, then v(A) = 1.

Proof. We use induction on the structure of proofs: (1) A ∈ S. Now v(A) = 1,
because v(S) = 1. (2) A is an axiom. We consider each axiom separately. If
v((A → (B → A))) = 0, then v(A) = 1 and v((B → A)) = 0, i.e. v(A) =
v(B) = 1 and v(A) = 0, which is impossible. Therefore (A1) is a tautology.
The case of the axioms (A2) and (A3) will be left as exercises (See Problem 10).
(3) A follows by the rule MP from B and (B → A), which are assumed to be
provable from S. By the Induction Hypothesis, v(B) = 1 and v((B → A)) = 1.
From this v(A) = 1 follows. 2
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Example 2.15 The propositional formula pn is not provable, for v(pn) = 0
when v(n) = 0. The propositional formula (p0 → ¬p0) is not provable (cf.
example 2.12). The propositional formula A = (p0 → (p0 → p1)) is not provable,
for if v(0) = 1 and v(1) = 0, then v(A) = 0.

Convention. We use the following shorthands:

(A ∨B) = (¬A→ B) (disjunction)
(A ∧B) = ¬(A→ ¬B) (conjunction)

(A↔ B) = ¬((A→ B)→ ¬(B → A)) (equivalence)

Example 2.16 v((A ∨B)) = v(A) + v(B)− v(A) · v(B)
v((A ∧B)) = v(A) · v(B)
v((A↔ B)) = v((A→ B)) · v((B → A))

Example 2.17 The following propositional formulas are tautologies

((A ∨B) ↔ (B ∨A))
((A ∧B) ↔ (B ∧A))

((A↔ B) ↔ (B ↔ A))
(¬(A ∧B) ↔ (¬A ∨ ¬B))
(¬(A ∨B) ↔ (¬A ∧ ¬B)))

(¬(A→ B) ↔ (A ∧ ¬B)))
(¬¬A ↔ A)
¬(A ∧ ¬A)

(A ∨ ¬A)

A method called the truth table technique was introduced independently
by E. Post (1897—1954) [16] and L. Wittgenstein (1889—1951) [21] for the
study of tautologies. The rows of the truth table list all relevant truth value
combinations. If we investigate propositional formulas built from A and B, it
suffices to know the truth values of A and B:

A B (A→ B)
1 1 1
1 0 0
0 1 1
0 0 1

A B (A↔ B)
1 1 1
1 0 0
0 1 0
0 0 1

A ¬A
1 0
0 1

A B (A ∧B)
1 1 1
1 0 0
0 1 0
0 0 0

A B (A ∨B)
1 1 1
1 0 1
0 1 1
0 0 0

Example 2.18 The truth table of the propositional formula (((A→ B)∧ (B →
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C))→ (A→ C)) is:

A B C (((A → B) ∧ (B → C)) → (A → C))
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 1 0 0 1 1 0 0
1 0 1 1 0 0 0 0 1 1 1 1 1 1
1 0 0 1 0 0 0 0 1 0 1 1 0 0
0 1 1 0 1 1 1 1 1 1 1 0 1 1
0 1 0 0 1 1 0 1 0 0 1 0 1 0
0 0 1 0 1 0 1 0 1 1 1 0 1 1
0 0 0 0 1 0 1 0 1 0 1 0 1 0

The formula has truth value 1 in each row. This shows that the propositional
formula is a tautology.

There are propositional formulas the form of which reveals that they are
tautologies, such as ((A∧B)→ (A∨C)). It does not matter what A, B and C
are. On the other hand, ((A∧B)→ (A∧C)) is a tautology for some C (e.g. if
C = B), but not for all C (e.g. if A = p0, B = p1 and C = p2).

Example 2.19

A B ((A → B) ∧ ¬ A) → ¬ B
1 1 1 1 1 0 0 1 1 0 1
1 0 1 0 0 0 0 1 1 1 0
0 1 0 1 1 1 1 0 0 0 1
0 0 0 1 0 1 1 0 1 1 0

We can see that the propositional formula in question gets the truth value 0 when
v(A) = 0 and v(B) = 1. This is possible e.g. if A = p0 and B = p1: let v(0) = 0
and v(1) = 1.

Definition 2.20 (Consistency) A set S of propositional formulas is incon-
sistent, if there is A such that S ` A and S ` ¬A. Otherwise S consistent.
S is complete if it is consistent and for all propositional formulas A we have
S ` A or S ` ¬A

Note: If v(S) = 1, then S is consistent.

Theorem 2.21 The following conditions are equivalent:

(1) S is inconsistent.
(2) S ` B for all B.

Proof. Suppose S ` A and S ` ¬A. Let B be arbitrary. By Theorem 2.7,

S ` ¬A→ (A→ B).

By using MP twice we obtain S ` B. On the other hand, assume (2). Then
S ` A and S ` ¬A for any A, whence S is inconsistent. 2
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Theorem 2.22 the following conditions are equivalent:

(1) S ` A
(2) S ∪ {¬A} is inconsistent.

Proof. If S ` A, then S ∪ {¬A} ` A and S ∪ {¬A} ` ¬A, whence (2) follows.
Assume then (2). We argue as follows:

1. S ∪ {¬A} ` ¬(¬A→ A) Theorem 2.21
2. S ` ¬A→ ¬(¬A→ A) Deduction Lemma, 1
3. S ` (¬A→ ¬(¬A→ A))→ ((¬A→ A)→ A) (A2)
4. S ` (¬A→ A)→ A MP 2,3
5. S ∪ {¬A} ` A Theorem 2.21
6. S ` ¬A→ A Deduction Lemma, 5
7. S ` A MP 4,6

2

Theorem 2.23 Let S be complete. Then

(1) S ` ¬A⇐⇒ S 0 A
(2) S ` (A→ B)⇐⇒ (S 0 A or S ` B)

Proof. (1) If S ` ¬A, then S 0 A by consistency. If, on the other hand,
S 0 A, then S ` ¬A by completeness. (2) Suppose for a start S ` (A → B).
If S ` A, then S ` B. Hence S 0 A or S ` B. Suppose, on the other hand,
S 0 A. Then by (1), S ` ¬A. Theorem 2.7 gives S ` (A→ B). Suppose finally
S ` B. By Axiom (A1) we have S ` (A→ B). 2

Theorem 2.24 If S ` A, then there is a finite SA ⊆ S such that SA ` A

Proof. We use induction. (1) A ∈ S. Choose SA = {A}. (2) A is an axiom. We
choose SA = ∅. (3) A follows by MP from propositional formulas B and B → A.
As an Induction Hypothesis we assume that the sets SB ⊆ S and SB→A ⊆ S
have already been found such that

SB ` B and SB→A ` B → A.

Let SA = SB ∪ SB→A. By MP we have SA ` A. 2

Theorem 2.25 (Chain Lemma) If S0 ⊆ S1 ⊆ . . . are consistent sets of propo-
sitional formulas, then S =

⋃∞
n=0 Sn is consistent.

Proof. Let S ` A and S ` ¬A. Choose finite S′ ⊆ S such that S′ ` A and
S′ ` ¬A (Theorem 2.24). Let n ∈ N such that S′ ⊆ Sn. Now Sn ` A and
Sn ` ¬A, contrary to our assumption. 2
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Theorem 2.26 (Lindenbaum’s3 Lemma) If S is a consistent set of proposi-
tional formulas, then there is a complete S′ ⊇ S.

Proof. Let A0, A1, . . . be the sequence of all propositional formulas. Let S0 = S.
If Sn is defined, let Sn+1 be obtained as follows:

Case 1 Sn ` An. Let Sn+1 = Sn ∪ {An}. If Sn+1 is inconsistent, then Sn+1 `
¬An by Theorem 2.24. By the Deduction Lemma, Sn ` An → ¬An and finally
by MP, Sn ` ¬An, contrary to the assumption that Sn is known to be consistent.
Therefore Sn+1 is consistent.

Case 2 Sn 0 An. Let Sn+1 = Sn∪{¬An}. If Sn+1 is inconsistent then Sn ` An
by Theorem 2.22, contrary to our assumption. Therefore Sn+1 is consistent.

Let S′ =
⋃∞
n=0 Sn. By the Chain Lemma,a S′ is consistent. Clearly S′ is

complete. 2

Theorem 2.27 If S is a consistent set of propositional formulas, then there
exists a valuation v such that v(S) = 1.

Proof. By Lindenbaum’s Lemma there is a complete S′ ⊇ S. Let

v(n) =

{
1 if S′ ` pn
0 if S′ ` ¬pn.

We show that v(A) = 1 if and only if S′ ` A. To show this, we use induction on
A. (1) A = pn. This follows from the definition of v. (2) A = ¬B. v(¬B) = 1 if
and only if v(B) 6= 1 if and only if S′ 0 B (by the Induction Hyp.) if and only
if S′ ` ¬B (by Theorem 2.23). (3) A = (B → C). v((B → C)) = 1 if and only
if v(B) 6= 1 or v(C) = 1 if and only if S′ 0 B or S′ ` C (by the Induction Hyp.)
if and only if S′ ` (B → C) (by Theorem 2.23). The claim has been proved.
Since S ⊆ S′, we obtain v(S) = 1. 2

The following important property of propositional logic was first proved4 by
Emil Post5 in 1921. It shows that our axioms together with MP are sufficient.
Any potential new axiom would be provable from the old ones.

Corollary 2.28 (Completeness Theorem) (1) A is provable if and only
if A is a tautology.

(2) S ` A if and only if v(A) = 1 for all valuations for which v(S) = 1.

Proof. (1) follows from (2) by the choice S = ∅. Thus we demonstrate only (2).
If S ` A, then v(A) = 1 whenever v(S) = 1 by Theorem 2.14. If on the other
hand S 0 A, then S ∪ {¬A} is consistent by Theorem 2.22. By Theorem 2.27
there is v such that v(S) = 1 and v(A) = 0. 2

3Adolf Lindenbaum 1904—1941.
4It occurred in unpublished lectures of David Hilbert in Göttingen already in 1917, see

[22].
5[16]
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2.3 Problems
1. Which of the following are axioms of propositional logic (here A,B and C

are arbitrary propositional formulas):

(a) (p0 → (p1 → p2)).

(b) ((A→ B)→ (A→ (A→ B))).

(c) (p0 → (B → C)).

(d) ((A→ B)→ A).

2. Give the deduction {A, (A→ C), (A→ (¬B → ¬C))} ` B.

3. Give the deduction {(C → (B → A)), (¬B → ¬C)} ` (C → A).

4. Show that ` (A→ (A∨B)). You can use Theorems 2.6, 2.7, 2.8, 2.21 and
2.22, but not Corollary 2.28.

5. Give the deductions ` (¬¬A → A) and ` (A → ¬¬A). You may use
Theorems 2.6, 2.7, 2.8, 2.21 and 2.22.

6. Give the deduction ` (A → ¬¬A). You may use Theorems 2.6, 2.7 and
2.8, but not Corollary 2.28. Investigating the proof of Theorem 2.22 may
be helpful.

7. Show that if S ` A and S ⊆ S′, then S′ ` A without using Corollary 2.28.

8. Show that the following are equivalent:

(a) S ` A,
(b) There is a finite sequence (Ai)i≤n of propositional formulas such that

i. An = A,
ii. For each i ≤ n, Ai is either an element of S, an axiom or obtained

by MP from the formulas Aj , j < i.

9. Suppose A is a propositional formula and v and v′ are valuations such
that v(n) = v′(n) whenever pn occurs in A. Show that v(A) = v′(A).

10. Prove that Axioms (A2) and (A3) are valid.

11. Show that {(p0 ∨ p1)} 0 (p0 → p1).

12. Show that the propositional formula (((p0∨p2)∧(p1∨p2))→ ((p0∨p1)∧p2))
is not provable.

13. Show that the set {(p2n ∨ ¬p2n+1) : n ∈ N} of propositional formulas is
not complete.

14. Show that the set {(p2n ∧ ¬p2n+1 : n ∈ N} is complete. You may use
Corollary 2.28.
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15. Give a set S 6= ∅ which has, for each n ∈ N, a complete extension Sn, and
moreover Sn 6= Sm whenever n 6= m.

16. Show that if {(A → B)} ` (B → A), then ` (B → A). You may use
Corollary 2.28.

17. If A and B are finite words, then l(A) stands for the number of left
parentheses in A, r(A) stands for the number of right parentheses in A,
and AB stands for the word obtained by concatenating (i.e. writing first
A and the immediately continuing with B). Prove that if A and B are
words and AB is a propositional formula, then l(B) ≤ r(B).
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Chapter 3

Structures

The concept of a structure is a basic one in mathematics. It emerged first in
algebra in the form of groups, rings and fields in the nineteenth century and
then expanded throughout mathematics in the early twentieth century. In logic
the systematic study of structures started with the work of Alfred Tarski (1901-
1983) in the 1930s but it existed in one form or another already in the works
of Leopold Löwenheim, Thoralf Skolem and Kurt Gödel in the previous decade.
The modern concept of a structure is based on (elementary) set theory.

3.1 Relations
A binary relation is any set of ordered pairs. If R is a binary relation, then the
domain of R is the set dom(R) = {x| there is y such that 〈x, y〉 ∈ R}. Respec-
tively, the range of R is the set ran(R) = {y| there is x such that 〈x, y〉 ∈ R}.
Thus R ⊆ dom(R) × ran(R). An n-place relation is any set of ordered n-
sequences.

A relation is

• reflexive in A if 〈x, x〉 ∈ R when x ∈ A

• irreflexive in A if 〈x, x〉 /∈ R when x ∈ A

• symmetric if 〈x, y〉 ∈ R implies 〈y, x〉 ∈ R

• asymmetric if 〈x, y〉 ∈ R implies 〈y, x〉 /∈ R

• transitive if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R imply 〈x, z〉 ∈ R

• intransitive if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R imply 〈x, z〉 /∈ R

• tricotomic in A if for all x, y ∈ A exactly one of the following holds 〈x, y〉 ∈
R, x = y, 〈y, x〉 ∈ R

• an equivalence relation in A if R is reflexive in A and symmetric and
transitive.

15
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• a total order in A if R is transitive and tricotomic in A.

If R is an equivalence relation in A, then we define for all x ∈ A

[x] = {y ∈ A|〈x, y〉 ∈ R}
A/R = {[x]|x ∈ A}.

A relation R is a function if for all x ∈ dom(R) there is exactly one y such
that 〈x, y〉 ∈ R. We then write f(x) = y. We write f : A → B if f is a
function, dom(f) = A and ran(f) ⊆ B. If in addition ran(f) = B, then f is
a surjection. If f is a function and for all y ∈ ran(f) there is exactly one x
such that 〈x, y〉 ∈ f , then f is an injection. f : A → B is a bijection if f is an
injection and a surjection.

3.2 Structures
Structures a.k.a. models, our topic in this section, consist of a domain as well as
relations and functions on the domain. The concept of a structure is very general
covering e.g. all algebraic structures (groups, fields, etc) and also databases. It
is perhaps surprising that one can say anything interesting about such a general
concept. Predicate logic, to be defined in the next chapter, is ideal for expressing
properties of structures while it itself has deep mathematical properties.

Definition 3.1 (Structure) A structure is any set M 6= ∅, called the do-
main, or universe, of the structure, equipped with a finite1 sequence of relations
P1, . . . , Pn, functions f1, . . . , fm and constants c1, . . . , ck. It is denoted

M = (M,P1, . . . , Pn, f1, . . . , fm, c1, . . . , ck).

Example 3.2 (Algebraic structures) The group of integers is the structure
Z = (Z,+, 0), where + : Z × Z → Z is a function and 0 is a constant. Other
algebraic examples of structures are Q = (Q,+, ·, 0, 1) i.e. the field of rational
numbers and R = (R,+, ·, 0, 1), the field of real numbers.

Example 3.3 (Unordered lists) An unordered2 binary list 100110001 can be
thought of as an unordered binary structure ({0, 1, . . . , 8}, {0, 3, 4, 8}), the uni-
verse of which is {0, 1, . . . , 8}, with a 1—place (unary) relation (i.e. subset)
{0,3,4,8}. The domain is set of bits and the subset tells which bits are ones.
The given binary sequence can be, for example, a teacher’s book-keeping about
how many have passed a certain course. If book-keeping is maintained for sev-
eral courses, several unary relations are needed. We then have an unordered
binary table as, e.g., in Figure 3.1, which can also be represented pictorially as
in Figure 3.2:

1Sometimes we allow an infinite sequence of relations, functions and constants, but nor-
mally a finite number suffices.

2The list being unordered means that it can be written also as 111100000 or 010101010.
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Student Course 1 Course 2 Course 3
0 1 0 0
1 0 0 1
2 0 1 1
3 1 0 1
4 1 1 1
5 0 1 0
6 0 0 0
7 0 0 0
8 1 0 0

Figure 3.1:
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The general form of a structure of this form is

M = (M,P1, P2, P3),

where P1 ⊆ M,P2 ⊆ M,P3 ⊆ M . Such a structure is called monadic (some-
times also unary). 1–place relations Pi can be one, two, three or more—however
many, as long as they all are 1–place:

(M,P ) "!
# 

P

M

(M,P1, P2) "!
# 
"!
# M

P1 P2

(M,P1, P2, P3)

"!
# 
"!
# "!
# 

M

P3P2

P1

Example 3.4 (Total orders) A structure (M,�), which consists of a uni-
verse M and a total order � on M , is called an ordered set. For example
(N,�), where � = {〈n,m〉 ∈ N× N|n < m}, and (Q,�), where � = {〈n,m〉 ∈
Q×Q|n < m}, and ({0, 1, 2},�), where � = {〈0, 2〉, 〈2, 1〉, 〈0, 1〉}.

Example 3.5 (Databases) Consider the minuscule database

name course grade
olga ST A
henry MT C
anna MT B
olga RT A

This can be construed as the structure (M,R), where M is the set

{olga, henry, anna, ST,MT,RT, A,B,C}

and R is the 3-place relation consisting of the triples 〈olga, ST, A〉, 〈henry,MT, A〉,
〈anna,MT, A〉, and 〈olga,RT, A〉.
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3.3 Vocabulary
In order to prove things about structures we have to agree upon a universal
notation for structures. To this end we introduce the concept of a vocabulary.

Definition 3.6 (Vocabulary) A vocabulary is set L of relation, function, and
constant symbols. Relation and function symbols are associated with a so-called
arity-function #L which maps symbols to natural numbers.

It does not matter what symbols we use for the elements of a vocabulary.
Usually relation symbols are denoted R, function symbols f, and constant sym-
bols c. A relation symbol R ∈ L is said to be a #L(R)–place or a #L(R)-ary
relation symbol. A function symbol f ∈ L is said to be #L(f)–place or #L(f)–
ary.

Definition 3.7 (L-structure) If L is a vocabulary, then an L–structure is a
pair

M = 〈M,SatM〉

whereM is a non-empty set, and SatM is a function such that

(1) dom(SatM) = L

(2) R ∈ L =⇒ SatM(R) ⊆M#L(R)

(3) f ∈ L =⇒ SatM(f) : M#L(f) →M

(2) c ∈ L =⇒ SatM(c) ∈M

Consider, for example, the structure

M = (M,P1, . . . , Pn, f1, . . . , fm, c1, . . . , ck).

An appropriate vocabulary for this structure is

L = {R1, . . . ,Rn, f1, . . . , fm, c1, . . . , ck},

where #L(Ri) and #L(fi) obey the arities in M. Now M is the following
L–structure M = 〈M,SatM〉, where SatM(Ri) = Pi, SatM(fi) = fi, and
SatM(ci) = ci

Definition 3.8 (Reduct) The reduct of an L–structure M to the vocabulary
L′ ⊆ L is the L′–structure

M�L′ = 〈M, SatM�L
′〉.

ThenM is an expansion ofM′�L′ to the vocabulary L.

For example, (M,R1), (M,R2), (M,f), (M,R1, f), (M,R2, f),(M,R1, R2)
and (M) are reducts of (M,R1, R2, f). Note that the last reduct is the reduct
to the empty vocabulary.
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3.4 Isomorphism
Definition 3.9 (Isomorphism) L–structures

M = (M,P1, . . . , Pn, f1, . . . , fm, c1, . . . , ck)

and
M′ = (M ′, P ′1, . . . , P

′
n, f
′
1, . . . , f

′
m, c

′
1, . . . , c

′
k)

are isomorphic, if there is a bijection π : M →M ′ such that

(1) 〈a1, . . . , al〉 ∈ Pi ⇐⇒ 〈π(a1), . . . , π(al)〉 ∈ P ′i , when 1 ≤ i ≤ n

(2) f ′i(π(a1), . . . , π(al)) = π(fi(a1, . . . , al)), when 1 ≤ i ≤ m

(3) π(ci) = c′i, when 1 ≤ i ≤ k.

We then say that π is an isomorphism M →M′, in symbols π : M ∼= M′. If
additionallyM =M′, then we say that π is an automorphism of the structure
M.

The definition of an isomorphism may seem complicated but it simplifies in
special cases, in particular when there are only few (or no) relations, functions
and constants.

Example 3.10 Consider the unary structures M = (N, {1, 3, 5, 7, . . .}) and
M′ = (N, {0, 2, 4, 6, . . .}). We show that the function π : N→ N,

π(n) =

{
2k + 1 if n = 2k
2k if n = 2k + 1

is an isomorphismM→M′.

k 3 k 3 k 3 k 3

0 1 2 3 4 5 6 7

π is clearly a bijection N→ N. On the other hand, n is odd if and only if π(n)
is even. Thus π is an isomorphism. More generally, if

M = (M,P ), P ⊆M
M′= (M ′, P ′), P ′ ⊆M ′

then the bijection π : M → M ′ is an isomorphism, if and only if a ∈ P ⇐⇒
π(a) ∈ P ′, i.e. π has to map P onto P ′ and M \ P onto M ′ \ P ′. If M and
M ′ are finite, then M∼=M′ if and only if P and P ′ have the same number of
elements.

Example 3.11 Unordered binary sequences are isomorphic if they have the
same number of ones and zeros. Respectively, two binary tables (see Exam-
ple 3.3) are isomorphic as binary structures if they have the same number of
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rows of each possible combination of ones and zeros:

St. C1 C2 C3
0 1 0 0
1 0 0 1
2 0 1 1
3 1 0 1
4 1 1 1
5 0 1 0
6 0 0 0
7 0 0 0
8 1 0 0

��
��1PPPPq
-

��
��1

��
��1

Q
Q
QQs
-

PPPPq��
��1

St. C1 C2 C3
0 0 0 1
1 1 0 0
2 0 1 1
3 1 1 1
4 0 1 0
5 1 0 1
6 0 0 0
7 1 0 0
8 0 0 0

Two different but isomorphic copies of structures of this type can arise for exam-
ple if the teacher accidentally forgets the order of the rows and has to renumber
the rows.

Example 3.12 The ordered sets M = ((−π2 ,
π
2 ), <) and M′ = (R, <) are iso-

morphic, as the mapping x 7→ tan(x) reveals. On the other hand, ([−π2 ,
π
2 ], <

) � (R, <), as is easily observed by pondering where would an isomorphism map
the boundary points −π2 and π

2 .

Example 3.13 A structure (M,R) is a graph if R ⊆ M2 is symmetric and
irreflexive. Examples of graphs:
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Example 3.14 The monadic structureM = (N, {0, 1, 2}, {1, 2, 3}), L = {P1,P2}
has an expansion which is isomorphic to

M′ = (N, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}), L = {P1,P2,P3}.
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We add to the structureM the relation {2, 3, 4}. After this the mapping

π(n) =


n+ 2 if n ≤ 4
0 if n = 5
1 if n = 6
n if n > 6

is an isomorphism between an expansion ofM andM′.

Example 3.15 Let L = {P,S,L} (P="point", S="line", L="intersects"). This
vocabulary is suitable for an investigation of geometry. Cartesian plane geome-
try is constituted by the L–structureM = (P ∪ S, P, S, L), where

P = points of the plane R2

S = lines of the plane R2

L = {〈p, s〉 ⊆ P × S| point p is on line s}.

So-called non-Euclidean geometries are very much like M, but not isomorphic
to it. A geometry not isomorphic to M is obtained also if we start with Rn,
n > 2, rather than R2.

Example 3.16 Let L = {P, J, ε.} If A is set, we obtain an L–structure

M = (A ∪ P(A), A, J, ε)
P = A
J = P(A)
ε = {〈x, y〉|x ∈ P, y ∈ J, x ∈ y}.

3.5 Problems
1. Let L = {P}, where #L(P) = 1. Give nine pairwise non-isomorphic L-

structures with a domain consisting of exactly eight elements.

2. Prove that ifM∼=M′ andM′ ∼=M′′, thenM∼=M′′.

3. Are the structures (R, <) and (R \ {0}, <) isomorphic?

4. Let L be a vocabulary,M an L-structure, L′ ⊆ L andM′ an L′-structure
such that M�L′ ∼= M′. Show that M′ has an expansion M′′ such that
M∼=M′′.

5. Not so easy: Give a bijection f : R→ [0, 1).



Chapter 4

Predicate logic

Predicate logic is a mathematical tool for the study of structures. It turns
out that properties of structures that are expressible in predicate logic have
important common characteristics that turn out to be useful. One can think of
predicate logic as a programming language for asking questions about structures.

As with programming languages, the definition of predicate logic is somewhat
long and consists of many parts. The core of predicate logic consists of so-called
logical symbols:

The logical symbols of predicate logic are:

variable symbols v0, v1, . . .
connectives ¬, →
a quantifier ∀
parentheses (, )

If L is a vocabulary, then the set of L-terms is defined by the following
inductive definition:

(1) Variable symbols vn are L-terms.
(2) Constant symbols c ∈ L are L-terms.
(3) If f ∈ L,#L(f) = n and t1, . . . , tn are L-terms, then ft1 . . . tn is an L-term.

If a vocabulary L does not contain function symbols, then the only L-terms
there are are the variable symbols and possible constant symbols. Condition
(3), on the other hand, brings about the most complex L-terms.

Example 4.1 Consider the vocabulary L = {+, 0} of the structure (a group1)

Z = (Z,+, 0).

1A group is a structure (G,+, 0), where the binary function + and the constant 0 satisfy
certain simple axioms, called the group axioms, reflecting the addition of integer (or rational,
or real, or complex) numbers.

23
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(The symbols + and 0 are here used in two different roles: as a function symbol
and a constant symbol, and on the other hand as a function and a constant)
Examples of L-terms are:

0
v0, v1, v2, . . .
+t0t1 (e.g. +00,+v0v1)
++t0t1t2
+++t0t1t2t3

Essentially the L-terms are sums of variables and zeros.

Example 4.2 Let us consider the vocabulary L = {+, ·, 0, 1} of the structure
(field2) R = (R,+, ·, 0, 1). Examples of L-terms are:

0
1
v0, v1, v2, . . .
+t0t1, ·t0t1
++t0t1·t2t3, ·+t0t1+t2t3
··t0t1·t2t3

Essentially these are polynomials. We can say that terms are generalized poly-
nomials.

Definition 4.3 (Assignment, value) Let M be an L-structure. An assign-
ment forM is any function s : N→M. The value of an L-term t inM under
the assignment s, tM〈s〉, is defined as follows:

Case 1: t = vi, tM〈s〉 = s(i)
Case 2: t = c, tM〈s〉 = SatM(c)
Case 3: t = fit1 . . . tn, tM〈s〉 = SatM(fi)(t

M
1 〈s〉, . . . , tMn 〈s〉).

Computing the value of a term is like computing the value of a polyno-
mial when the values of the variables are given. Let Z = (Z,+, 0) and R =
(R,+, ·, 0, 1). Then

(++v0v1v2)Z〈s〉 = (+v0v1)Z〈s〉+ vZ2 〈s〉
= vZ0 〈s〉+ vZ1 〈s〉+ vZ2 〈s〉
= s(0) + s(1) + s(2)

(·+v0v1v2)R〈s〉 = (+v0v1)R〈s〉 · vR2 〈s〉
= (vR0 〈s〉+ vR1 〈s〉) · vR2 〈s〉
= (s(0) + s(1)) · s(2)

2A field is a structure (F,+, ·, 0, 1), where the binary functions + and ·, together with the
constants 0 and 1, satisfy certain simple axioms, called the field axioms, reflecting the addition
and multiplication of rational (or real, or complex) numbers.
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Lemma 4.4 Let M and M′ be L-structures and π : M ∼= M ′. Let s : N→ M
and s′ : N → M ′ such that s′(n) = π(s(n)) for all n ∈ N. Then tM

′〈s′〉 =
π(tM〈s〉) for all L-terms t.

Proof. Problem 7. 2

One of the most useful concepts in mathematics is the concept of an equation.
Ever new methods are being developed for finding solutions of equations. The
concept of an equation is important also in logic. In logic equations represent the
simplest dependence between variables and constants. That is why equations
are called atomic formulas in logic.

Definition 4.5 (Equation) If L is vocabulary and t1 and t2 are L-terms, then

≈ t1t2

is an L-equation3.

Examples of L-equations are:

≈ v0v1
≈ +v0cv0 #L(+) = 2
≈ ·v0v1+v2v3 #L(+) = #L(·) = 2
≈ f f fv0v1 #L(f) = 1.

The L-equation ≈ t1t2 is parsed such that one looks for the shortest term t1
that follows the ≈-sign, and the rest constitutes the term t2. Thus ≈ v0v1v2 is
not an L-equation and ≈ f fv0v1v2v3 is an L-equation only if #L(f) = 2.

A typical problem in mathematics is to find the set of solutions of a given
equation. Respectively we can define for any L-equation the set of assignments
that “satisfy” it.

Definition 4.6 (Equation satisfaction) Let L be a vocabulary, M an L-
structure and ≈ t1t2 an L-equation. We define

SatM(≈ t1t2) = {s|tM1 〈s〉 = tM2 〈s〉}.

This set consists of all assignments s that give the same value to t1 and t2,
as in algebra the set of solutions of the equation x2 + 2x+ 1 = y3 consists of all
pairs 〈a, b〉 that give the same value to a2 + 2a+ 1 and b3.

Examples:

SatM(≈ v0v1) = {s|s(0) = s(1)}
SatM(≈ v0c) = {s|s(0) = Sat(c)}
SatZ(≈ +v0v1v2) = {s|s(0) + s(1) = s(2)}
SatR(≈ ·v0v0v2) = {s|s(0)2 = s(1)}.

3This is often written t1 ≈ t2. The reason to use the so-called Polish notation ≈ t1t2 is
that it allows suppression of parentheses.
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If P (x) is a polynomial in x, it is easy to write down a term t, where x is
denoted by v0, such that SatR(≈ tv1) = {s|P (s(0)) = s(1)}.

If we denote NM = {s|s : N → M} then SatM(≈ t1t2) ⊆ NM . The bigger
the set SatM(≈ t1t2), the more solutions the equation ≈ t1t2 has. A quite
common extreme is the case SatM(≈ t1t2) = NM , i.e. the equation is satisfied
by all values of the variables. Then the equation expresses a kind of universal
law, such as x+ 1 = 1 + x in the group of integers and (x+ y)2 = x2 + 2xy+ y2

in the field of real numbers. Another extreme is SatM(≈ t1t2) = ∅, i.e. the
equation has no solution, as x+ x = 1 in the group of integers or x2 = 2 in the
field of rational numbers.

We now move from equations to arbitrary formulas. Formulas can express
more complicated situations than mere equations. We can use formulas to ex-
press conjunctions of equations, a.k.a. systems of equations, as well as inequa-
tions and inequalities.

Definition 4.7 (Formula) Let L be a vocabulary. The set of L-formulas is
defined as follows:

1. If t1 and t2 are L-terms, then ≈ t1t2 is an L-formula.
2. If R ∈ L, #L(R) = n and t1, . . . , tn are L-terms, then Rt1 . . . tn is an

L-formula.
3. If ϕ and ψ are L-formulas and n ∈ N then ¬ϕ, (ϕ → ψ) and ∀vnϕ are

L-formulas.

The formulas of the cases 1 and 2 are called atomic formulas.

Convention: We use the following shorthands:

(ϕ ∨ ψ) = (¬ϕ→ ψ) (disjunction)
(ϕ ∧ ψ) = ¬(ϕ→ ¬ψ) (conjunction)

(ϕ↔ ψ) = ¬((ϕ→ ψ)→ ¬(ψ → ϕ)) (equivalence)
∃vnϕ = ¬∀vn¬ϕ (existential quantifier).

The concept of a solution set SatM(≈ t1t2) for equations generalizes to all
formulas: we can associate to any L-formula ϕ in a canonical way a solution
set SatM(ϕ). To define this set we introduce the following notation: If s : N→
M,n ∈ N and a ∈M , then the assignment

s(a/n) ∈ NM

is defined as follows:

s(a/n)(i) =

{
a if i = n

s(i) if i 6= n.

Thus the assignment s(a/m) is exactly the same assignment as s except that
the value of s(m) has been changed in s(a/m) to the value a. This means that
s(a/m)(m) = a and for other i we have s(a/m)(i) = s(i).
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If X ⊆ NM , Let

An(X ) = {s|s(a/n) ∈ X for all a ∈M}.

Thus
s ∈ An(X )↔ for all a ∈M : s(a/n) ∈ X .

This operation is used to define the solution set for quantified formulas.
The following definition, essentially due to Alfred Tarski, is perhaps the most

important definition in this book. It establishes necessary and sufficient condi-
tions for an assignment to “satisfy” a formula in a structure. Here “satisfaction”
means that what the formula intuitively seems to say is actually the case. This
is why the below definition is sometimes called the Correspondence Theory of
Truth.

Definition 4.8 (Tarski’s truth-definition) If L is a vocabulary, ϕ is an L-
formula andM is an L-structure, then SatM(ϕ) is defined as follows:

1. SatM(≈ t1t2) = {s|tM1 〈s〉 = tM2 〈s〉}
2. SatM(Rt1 . . . tn) = {s|〈tM1 〈s〉, . . . , tMn 〈s〉〉 ∈ RM}
3. SatM(¬ϕ) = NM \ SatM(ϕ)

4. SatM((ϕ→ ψ)) = (NM \ SatM(ϕ)) ∪ SatM(ψ)

5. SatM(∀vnϕ) = An(SatM(ϕ)).

SatM(ϕ) is the interpretation of the formula ϕ in the L-structure M. We say
that s satisfies ϕ in M, M |=s ϕ, if s ∈ SatM(ϕ). We say that M satisfies ϕ,
denotedM |= ϕ, if SatM(ϕ) = NM , in which case we also say that ϕ is true in
M andM is a model of ϕ.

The interpretation of a formula ϕ in a structureM is a set of assignments,
namely the set of those s that satisfy the formula. The bigger SatM(ϕ) is, the
more assignments satisfy the formula ϕ. On the other hand, it may happen that
no s satisfies ϕ.

Example 4.9 1. SatM((ϕ ∧ ψ)) = SatM(ϕ) ∩ SatM(ψ).

2. SatM(∃vnϕ) = {s|s(a/n) ∈ SatM(ϕ) for some a ∈M}.

Example 4.10 Let R = (R,+, ·, 0, 1). Now s ∈ SatR(∃v0 ≈ ++·v0v0·v1v0v20)
if there is x ∈ R such that s(x/0) ∈ SatR(≈ ++ · v0v0·v1v0v20), i.e. there is
x ∈ R such that x2 + s(1) ·x+ s(2) = 0, i.e. the equation x2 + s(1) ·x+ s(2) = 0
has a solution in the real numbers.

Example 4.11 L = {f},#L(f) = 1,M = (M,f). Now f is an injection M →
M if and only if SatM(∀v0∀v1(≈ fv0fv1 →≈ v0v1)) = NM , and f is a surjection
M →M if and only if SatM(∀v0∃v1 ≈ fv1v0) = NM.

Example 4.12 Let L = {+, 0} and Z = (Z,+, 0). The L-structure Z is a
model of the following L-formulas:



28 CHAPTER 4. PREDICATE LOGIC

1. ≈ +v0+v1v2++v0v1v2
2. ≈ +v00v0,≈ +0v0v0
3. ∃v1(≈ +v0v10∧ ≈ +v1v00).

These so-called group4 axioms are usually written in the following more familiar
way:

x+ (y + z) = (x+ y) + z

x+ 0 = x, 0 + x = x

∃y(x+ y = y + x = 0)

In algebra any L-structure that satisfies the group axioms is called a group.
A colossal result of mathematical research has been the complete classification
of all finite simple groups.

Example 4.13 Number theory investigates arithmetic properties of the natural
numbers 0, 1, 2, 3, 4, . . . . The so-called standard model of number theory is

N = (N,+, ·, 0, 1).

Many properties of natural numbers can be expressed in predicate logic:

s(0) is even if N |=s ∃v1 ≈ ·+11v1v0
s(0) is prime if N |=s ¬∃v1∃v2((≈ ·v1v2v0 ∧ ¬ ≈ v1v0) ∧ ¬ ≈ v11)
s(0) is a square if N |=s ∃v1 ≈ ·v1v1v0.

Definition 4.14 (Logical consequence) An L-formula ψ is a logical conse-
quence of an L-formula ϕ, in symbols ϕ |= ψ, if for all L-structuresM and all
s : N→M the following holds: ifM |=s ϕ thenM |=s ψ.

The logical consequence ϕ |= ψ means that whatever L-structure and what-
ever assignment we choose, if ϕ is satisfied, then also ψ is satisfied. This conse-
quence is “logical” in the sense that it is immaterial which structure and which
assignment we choose, i.e. ψ follows from ϕ merely because of its logical form.
For example, if ϕ is the conjunction (ψ ∧ θ), then of course ψ follows from ϕ.
Thanks to the quantifiers, logical consequence can, however, be extremely com-
plicated. There is no mechanical method for deciding whether a given formula
is a logical consequence of another. This is the famous Church’s Theorem from
1936 [4].

Example 4.15 ¬∀vnϕ |= ∃vn¬ϕ.

Proof. Suppose s ∈ SatM(¬∀vnϕ). Hence s /∈ An(SatM(ϕ)). Therefore there
is a ∈M such that s(a/n) /∈ SatM(ϕ). ThusM |=s ∃vn¬ϕ. 2

4See footnote on page 23.
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Example 4.16 ∀v0∃v1Rv0v1 6|= ∃v0∀v1Rv0v1.

Proof. Let M = (N, <) and s : N → N. s(a/0)(a + 1/1) ∈ SatM(Rv0v1),
whence s(a/0) ∈ SatM(∃v1Rv0v1) for any a ∈ N. Therefore s ∈ SatM(∀v0∃v1Rv0v1).
On the other hand, if s ∈ SatM(∃v0∀v1Rv0v1) then there is a ∈ N such that
s(a/0) ∈ A1(SatM(Rv0v1)). In particular s(a/0)(a/1) ∈ SatM(Rv0v1), a con-
tradiction. Therefore s /∈ SatM(∃v0∀v1Rv0v1). 2

Example 4.17 ∃v0∀v1ϕ |= ∀v1∃v0ϕ.

Proof. Let M |=s ∃v0∀v1ϕ. Then for some a ∈ M M |=s(a/0) ∀v1ϕ. Now we
can proveM |=s ∀v1∃v0ϕ. To this end, let b ∈ M be arbitrary. We know that
M |=s(a/0)(b/1) ϕ. But s(a/0)(b/1) = s(b/1)(a/0), whenceM |=s(b/1) ∃v0ϕ. As
b was arbitrary, we haveM |=s ∀v1∃v0ϕ. 2

Example 4.18 ∀v0(Pv0 ∨Qv0) 6|= (∀v0Pv0 ∨ ∀v0Qv0).

Proof. Let M = ({0, 1}, {0}, {1}), where SatM(P) = {0} and SatM(Q) =
{1}. Let s : N → {0, 1}. If a ∈ {0, 1}, then a = 0 or a = 1, whenceM |=s(a/0)

(Pv0 ∨Qv0). On the other handM 6|=s ∀v0Pv0, forM 6|=s(1/0) Pv0. Similarily,
M 6|=s ∀v0Qv0. ThusM 6|=s (∀v0Pv0 ∨ ∀v0Qv0). 2

Definition 4.19 (Validity) An L-formula ϕ is valid, |= ϕ, if M |=s ϕ holds
for all L-structuresM and for all s : N→M . Equivalently, SatM(ϕ) = NM.

Validity is a special case of logical consequence. A valid formula follows
logically from any other formula because it is always true. A valid formula
expresses a general truth which does not depend on the structure or values of the
variables. A valid formula is true merely because of its form. For example, (ϕ→
ϕ) is valid, independently of what ϕ is. As in the case of logical consequence,
it would be a mistake to conclude that validity is somehow a trivial property.
Because of the aforementioned theorem of Church, validity cannot be checked
mechanically. Valid formulas are not always as clear cases as (ϕ → ϕ). An
implication (ϕ → ψ) may be valid for a deep mathematical reason. Let us
think, for example, of number theory. Here ϕ may be the conjunction of the
best known axioms for number theory. Then the question about the validity of
(ϕ → ψ) is in principle (but not in fact5) as difficult to decide as the question
of the truth of ψ in the standard model of number theory.

Example 4.20 1. ϕ |= ψ if and only if |= (ϕ→ ψ)

2. ϕ |= (ψ ∧ ¬ψ) if and only if ϕ has no models if and only if ϕ |= ψ for all
ψ.

5By Gödel’s First Incompleteness Theorem (Theorem 5.32) every consistent mechanically
given set of axioms of number theory can be associated with a truth that cannot be proved
from the axioms.
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4.1 Formulas
The variable v0 occurs in the following two formulas

Rv0v1 (4.1)

∀v0Rv0v1 (4.2)

The truth of formula (4.1) depends on the value of v0, while the truth of (4.2)
does not. Respectively, the value of

x2 + y − 5 (4.3)

depends on the value of x but the value of∫ 1

0

x2dx+ y (4.4)

does not. We say that v0 occurs in (4.1) free, but in (4.2) it is bound. We now
define the concepts of free and bound occurrence more exactly:

Definition 4.21 (Subformula) A subformula of a formula is a part which
itself is a formula. More exactly:

1. The only subformula of an atomic formula is the formula itself.
2. The subformulas of the formula ¬ϕ are ¬ϕ and subformulas of ϕ.
3. The subformulas of the formula (ϕ → ψ) are (ϕ → ψ), subformulas of ϕ

and subformulas of ψ.
4. The subformulas of the formula ∀vnϕ are ∀vnϕ and subformulas of ϕ.

Definition 4.22 (Bound and free variables) An occurrence of a variable
vn in a formula is bound if it occurs in a subformula of the form ∀vnψ. Other-
wise the occurrence is free. More exactly:

1. In an atomic formula all occurrences of variables are free.
2. The formula ¬ϕ has the same occurrences of bound variables as ϕ.
3. An occurrence of a variable in (ϕ→ ψ) is bound if it is a bound occurrence

in ϕ or in ψ.
4. An occurrence of a variable vm in ∀vnϕ is bound, if it is a bound occurrence

in ϕ or if n = m.

Example 4.23 (∀v0
b

Rv0
b
v1
f
→ ∀v1

b
Rv1
b
v0
f

), b = bound occurrence

∀v0
b

(Rv0
b
v1
f
→ ∀v1

b
Rv1
b
v0
b

), f = free occurrence

The next theorem shows that whether an assignment s satisfies a formula ϕ
or not depends only on the values s(n) of the assignment on arguments n such
that vn occurs fee in ϕ. In particular, it depends only on s(n) for such n that
vn overall occurs in ϕ. These facts are by no means surprising or deep. More
interesting is how such facts can be proved. The proof is a typical induction
argument.
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Theorem 4.24 Let L be a vocabulary, ϕ an L-formula andM an L-structure.
Let s and s′ be two assignment into M such that s(n) = s′(n) whenever vn
occurrs free in ϕ. ThenM |=s ϕ⇐⇒M |=s′ ϕ.

Proof. Let E be the set of those L-formulas ϕ for which the claim holds. We
now show

1. Atomic L-formulas are in E
2. ϕ ∈ E =⇒ ¬ϕ ∈ E
3. ϕ,ψ ∈ E =⇒ (ϕ→ ψ) ∈ E
4. ϕ ∈ E , n ∈ N =⇒ ∀vnϕ ∈ E

From these it follows that the claim holds for all L-formulas.

1. (a) ≈ t1t2 ∈ E . It is easy to see (with a little inductive argument) that
tMi 〈s〉 = tMi 〈s′〉. Thus

M |=s≈ t1t2 ⇐⇒ tM1 〈s〉 = tM2 〈s〉
⇐⇒ tM1 〈s′〉 = tM2 〈s′〉
⇐⇒ M |=s′≈ t1t2

(b) Rt1 . . . tn ∈ E :

M |=s Rt1, . . . , tn ⇐⇒ 〈tM1 〈s〉, . . . , tMn 〈s〉〉 ∈ SatM(R)

⇐⇒
as above

〈tM1 〈s′〉, . . . , tMn 〈s′〉〉 ∈ SatM(R)

⇐⇒ M |=s′ Rt1 . . . tn.

2. Suppose ϕ ∈ E . Now

M |=s ¬ϕ ⇐⇒ M 6|=s ϕ ⇐⇒
Ind.Hyp.

M 6|=s′ ϕ

⇐⇒ M |=s′ ¬ϕ.

3. Suppose ϕ,ψ ∈ E . As above, (ϕ→ ψ) ∈ E .
4. Suppose ϕ ∈ E and n ∈ N. We show that ∀vnϕ ∈ E . To this end, let
s : N→M and s′ : N→M such that s(i) = s′(i) whenever vi occurs free
in ∀vnϕ.

M |=s ∀vnϕ ⇐⇒ for all a ∈M :M |=s(a/n) ϕ

⇐⇒6 for all a ∈M :M |=s′(a/n) ϕ

⇐⇒ M |=s′ ∀vnϕ.

2

6Observe that s(a/n)(i) = s′(a/n)(i) whenever vi occurs free in ϕ, for if i = n, then
s(a/n)(i) = a = s′(a/n)(i). If on the other hand i 6= n, then vi occurs free also in ∀vnϕ and
s(a/n)(i) = s(i) = s′(i) = s′(a/n)(i), whence the Induction Hypothesis applies.
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Theorem 4.25 Let L and L′ be vocabularies such that L ⊆ L′. Let ϕ be an
L-formula and M an L′-structure. Let s be an assignment into M . Then
M |=s ϕ⇐⇒M � L |=s ϕ.

Proof. See Problem 8. 2

Definition 4.26 (Sentence) An L-formula is an L-sentence, if no variable
occurs free in it.

We have defined7 M |= ϕ to mean that M |=s ϕ for all s : N → M . If ϕ
is an L-sentence, then Theorem 4.24 reveals that M |=s ϕ for all s : N → M
if and only if M |=s ϕ for some s : N → M . This shows that the truth of a
sentence in a model is independent of the assignment.

The following theorem is fundamental and widely used. It shows that iso-
morphism preserves truth. In other words, it shows that with the sentences of
predicate logic one cannot distinguish isomorphic structures from each other.
This is in fact how it should be. Isomorphic structures are, from the point of
view of logic, identical.

Theorem 4.27 (Isomorphism preserves truth) LetM andM′ be L-structures
and π : M → M ′ an isomorphism. Then M |=s ϕ ⇐⇒ M′ |=π◦s ϕ for all L-
formulas ϕ and assignments s ∈ NM .

Proof. Let E be the set of those formulas ϕ for which: “for all s ∈ NM :
M |=s ϕ⇐⇒M′ |=π◦s ϕ”. We show by induction that all formulas are in E .

1. ≈ t1t2 ∈ E , for:

M |=s≈ t1t2 ⇐⇒ tM1 〈s〉 = tM2 〈s〉 Definition 4.8
⇐⇒ π(tM1 〈s〉) = π(tM2 〈s〉) since π is an injection

⇐⇒ tM
′

1 〈π ◦ s〉 = tM
′

2 〈π ◦ s〉 Lemma 4.4
⇐⇒ M′ |=π◦s≈ t1t2 Definition 4.8

2. Rt1 . . . tn ∈ E , for:

M |=s Rt1 . . . tn ⇐⇒ 〈tM1 〈s〉, . . . , tMn 〈s〉〉 ∈ SatM(R) Definition 4.8
⇐⇒ 〈πtM1 〈s〉, . . . , πtMn 〈s〉〉 ∈ SatM′(R) Definition 3.9

⇐⇒ 〈tM
′

1 〈π ◦ s〉, . . . , tM
′

n 〈π ◦ s〉〉 ∈ SatM′(R) By Lemma 4.4
⇐⇒ M′ |=π◦s Rt1 . . . tn Definition 4.8

3. Suppose ϕ ∈ E . We prove ¬ϕ ∈ E .

M |=s ¬ϕ ⇐⇒ M 6|=s ϕ Definition 4.8
⇐⇒ M′ 6|=π◦s ϕ, since ϕ ∈ E
⇐⇒ M′ |=π◦s ¬ϕ Definition 4.8

7Definition 4.8
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4. Suppose ϕ ∈ E and ψ ∈ E and show (ϕ→ ψ) ∈ E . Trivial!
5. Suppose ϕ ∈ E and n ∈ N. We first observe: If a ∈M , then

(π ◦ s)(π(a)/n) = π ◦ (s(a/n))) (4.5)

M |=s ∀vnϕ ⇐⇒ for all a ∈M M |=s(a/n) ϕ

⇐⇒
Ind.Hyp.

for all a ∈M M′ |=π◦(s(a/n)) ϕ

⇐⇒
(4.5)

for all a ∈M M′ |=(π◦s)(π(a)/n) ϕ

⇐⇒
π surj.

for all a′ ∈M ′ M′ |=(π◦s)(a′/n) ϕ

⇐⇒ M′ |=π◦s ∀vnϕ

2

The next corollary is the main application of the above theorem: Isomorphic
structures satisfy the same sentences.

Corollary 4.28 If M and M′ are L-structures and M ∼= M′, then for all
L-sentences ϕ: M |= ϕ⇐⇒M′ |= ϕ

Two structures need not be isomorphic for the same sentences to be true in
them. We will see that there are infinite structures which satisfy exactly the
same sentences and yet they are non-isomorphic. This fact is the reason for the
following important definition:

Definition 4.29 (Elementary equivalence) L-structuresM andM′ are el-
ementarily equivalent, denoted M ≡ M′ if M |= ϕ ⇐⇒ M′ |= ϕ for all
L-sentences ϕ.

The message of Corollary 4.28 can now be written: M ∼=M′ impliesM ≡
M′.

Along with the concept of truth (Definition 4.8), the following concept is a
very central one in logic.

Definition 4.30 (Definability) Let M be an L-structure and X ⊆ Mn. We
say that the relation X is definable inM if there is an L-formula ϕ such that

M |=s ϕ⇐⇒ 〈s(0), . . . , s(n− 1)〉 ∈ X

for all s : N → M . We then say that ϕ defines the relation X. An element
a ∈M is definable inM if the 1-place relation {a} is. A function h : Mn →M
is definable inM if the n+ 1-place relation

{〈a0, . . . , an−1, h(a0, . . . , an−1)〉|a0, . . . , an−1 ∈M}

is.
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Figure 4.1: A graph.

We proved in Theorem 4.27 that isomorphisms preserve truth, and the anal-
ogous result for automorphisms is:

Theorem 4.31 (Automorphisms preserve definable relations) LetM be
an L-structure and the relation X ⊆ Mn be definable in M. If π is an auto-
morphism of M, then 〈a1, . . . , an〉 ∈ X ⇐⇒ 〈π(a1), . . . , π(an)〉 ∈ X for all
a1, . . . , an ∈ M . A corresponding result holds for definable functions and ele-
ments.

Proof. Let ϕ be an L-formula such that 〈s(0), . . . , s(n−1)〉 ∈ X ⇐⇒M |=s ϕ.
Now

〈s(0), . . . , s(n− 1)〉 ∈ X ⇐⇒ M |=s ϕ

⇐⇒ M |=π◦s ϕ by Theorem 4.27
⇐⇒ 〈π(s(0)), . . . , π(s(n− 1))〉 ∈ X

The claim follows upon choosing s(i) = ai+1. 2

Example 4.32 Figure 4.1 is a 12 element graph G = (G,R) The element 2 is
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definable, for s(0) = 2⇐⇒ G |=s ∃v1∀v2(Rv2v0 →≈ v2v1) for all s. Let

θ2 ¬ ≈ v1v2
θ3 ((θ2 ∧ ¬ ≈ v1v3) ∧ ¬ ≈ v2v3)
θ4 (((θ3 ∧ ¬ ≈ v1v4) ∧ ¬ ≈ v2v4) ∧ ¬ ≈ v3v4)
...
θn+1 (. . . (θn ∧ ¬ ≈ v1vn+1) ∧ ¬ ≈ v2vn+1) ∧ . . . ∧ ¬ ≈ vnvn+1)

Thus θn says that v1, . . . , vn are distinct elements. Let ψn be the formula

∃v1 . . . ∃vn(θn ∧ (Rv0v1 ∧ . . . ∧ Rv0vn)).

Thus ψn says that v0 has at least n neighbors. Let ϕn be the formula (ψn ∧
¬ψn+1), which says that v0 has exactly n neighbors.

The formula ϕ2 defines the set {3, 4, 5, 6, 7, 9, 11}. The formula ϕ3 defines
the set {8, 10, 12}. The formula ϕ10 defines the element 1. The element 3 is not
definable because

π(x) =


4 if x = 3

3 if x = 4

x otherwise

is an automorphism of G. In this way one can go through the entire graph and
figure out which subsets are definable and which are not.

Example 4.33 Every element of the structure N = (N,+, ·, 0, 1) is definable.
The structure N does not have other automorphisms than the identity mapping.
(Such structures are called rigid). Every element of Q = (Q,+, ·, 0, 1) is de-
finable. Every element of (N, <) is definable, but in the structure (Q, <) no
element is definable.

Example 4.34 Let G be as in Example 4.32. In the structure G′ = (G,R, 3)
the element 3 has been given a name, for example c3. Now the formula ≈ v0c3
defines the element 3 in G′. Recall that 3 was undefinable in G. The element 4
is defined by the formula (Rv0c3 ∧¬ϕ10). The sets {3, 4} and {5, 6}, which were
not definable in G, are now definable in G′.

We shall now introduce a concept which is relevant only because we are using
the same symbols for bound and free variables and this sometimes creates tricky
situations. We have a formula, e.g. ϕ = ∃v2(Rv0v2 ∧ Rv1v2) and we would like
to have a formula ϕ′ which says about v0 and v2 what ϕ says about v0 and v1.
A direct substitution of v2 to v1 does not work for it yields ∃v2(Rv0v2 ∧Rv2v2)
which has only v0 free. We have to do something else.

Definition 4.35 (Free for) The term t is free for vn in ϕ, FVF(t, vn, ϕ), if
no occurrence of a variable in the term t will be a bound occurrence after the
substitution of t to the free occurrences of vn in ϕ.
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Here are some examples:

free not free for the variable in the formula
v2 v1 v0 ∃v1 ≈ v0v1
fv0 fv1 v0 ∃v1 ≈ v0v1
v0 - v1 Rv0v1

fv2v3 fv0v1 v2 ∃v0∀v1 ≈ fv0v1v2
fv0v1 fv3v4 v2 ∃v3∀v4 ≈ fv3v4v2

Theorem 4.36 for all t, vn and ϕ there is ϕ∗ such that |= ϕ ↔ ϕ∗ and
FVF(t, vn, ϕ

∗).

Proof. Problem 17. 2.

Theorem 4.37 (Substitution lemma) Let be a L vocabulary,M an L-structure
and s : N→M an assignment.

1. Let t be an L-term in variables v0, . . . , vn. Let t0, . . . , tn be L-terms. Let
t′ be obtained from t by replacing vi by the term ti for i = 0, ..., n. Then
(t′)M〈s〉 = tM〈s′〉, where

s′(i) =

{
tMi 〈s〉 i ≤ n
s(i) i > n

2. Let ϕ be an L-formula with v0, . . . , vn free. Let t0, . . . , tn be L-terms. Let
ϕ′ be obtained from ϕ by replacing vi by ti, in its free occurrences when
0 ≤ i ≤ n. Suppose, that FVF(ti, vi, ϕ) for 0 ≤ i ≤ n. Then

M |=s′ ϕ⇐⇒M |=s ϕ
′

for s′ as in 1 above.

Proof. Problems 18 and 19. 2

4.2 Identity
The simplest relation between variables is identity. It is particularly easy to see
which formulas concerning identity are valid.

Lemma 4.38 The following L-formulas are valid for all atomic L-formulas ϕ,
all L-terms t, t′, t1, . . . , tn, u1, . . . , un and all distinct natural numbersm1, ...,mn.

1. ≈ tt
2. (≈ tt′ →≈ t′t)
3. (((≈ t1u1 ∧ ...∧ ≈ tnun) ∧ ϕ′)→ ϕ′′)
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where ϕ′ is obtained from ϕ by replacing each variable vmi by the term ti, and
ϕ′′ respectively by replacing each variable vmi by the term ui, for all 1 ≤ i ≤ n.

Proof. LetM be an L-structure and s : N → M and assignment. The claims
1 and 2 are trivial, so we focus on claim 3. Suppose

M |=s ((≈ t1u1 ∧ ...∧ ≈ tnun) ∧ ϕ′)

Thus tMi 〈s〉 = uMi 〈s〉 for i = 1, . . . , n andM |=s ϕ
′. Let

s′(j) =

{
tMi 〈s〉 j = mi

s(j) otherwise

and

s′′(j) =

{
uMi 〈s〉 j = mi

s(j) otherwise.

By Theorem 4.37

M |=s ϕ
′ ⇐⇒ M |=s′ ϕ

M |=s ϕ
′′ ⇐⇒ M |=s′′ ϕ

Since now s′(i) = s′′(i) for all i, we obtainM |=s ϕ
′ ⇐⇒M |=s ϕ

′′. 2

Definition 4.39 (Identity axiom) The formulas 1-3 of Lemma 4.38 are called
L-identity axioms.

Identity axioms are very simple, but sometimes one may need to be observant
to recognise that a given formula is an identity axiom.

Example 4.40 L-identity axioms:

≈ v0v0,≈ cc,≈ fv0v1fv0v1

((≈ v0v1 ∧ Rv0)→ Rv1)

((≈ v0v1∧ ≈ fv0v2)→≈ fv1v2)

((≈ v1v0∧ ≈ v1v2)→≈ v0v2).

4.3 Deduction
Deductions in predicate logic proceed very much as they do in propositional
logic. The presence of the identity symbol and the quantifier symbol bring new
axioms and a new rule in addition to Modus Ponens rule. We will eventually
show that, just like propositional logic, also predicate logic permits a Complete-
ness Theorem, implying that the given axioms and rules are indeed all that is
needed.
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Every predicate logic formula is either atomic, a negated formula, an im-
plication, or a universally quantified formula. If atomic formulas and formulas
starting with a universal quantifier are thought of as proposition symbols, the
formulas of predicate logic are in fact propositional formulas. Therefore it makes
sense to talk e.g. about the formulas (≈ tt′ →≈ tt′), (∀v0ϕ∨¬∀v0ϕ) as tautolo-
gies. A formula ϕ being a tautology means thus that whichever valuation we
use to associate atomic formulas and formulas starting with a universal quanti-
fier with the numbers 0 and 1, then ϕ gets in this valuation the value 1. Note
that ∃v0ϕ is a shorthand of ¬∀v0¬ϕ. Thus (∀vi¬ϕ∨∃viϕ),¬(∀vi¬ϕ∧∃viϕ) are
tautologies.

A deduction is a sequence of formulas, where each member of the sequence is
obtained from previous members by so-called rules of inference. Some members
of the sequence have a special role. These are the the axioms of propositional
logic, L-identity axioms, and so-called quantifier axioms:

Definition 4.41 (Quantifier axiom) Suppose L is a vocabulary. L-formulas
(∀vjψ → ψ′), where ψ′ is obtained from ψ by substituting the term t to the free
occurrences of vj, assuming FVF(t, vj , ψ), are called L-quantifier axioms.

Lemma 4.42 L-quantifier axioms are valid.

Proof. SupposeM |=s ∀vjψ and FVF(t, vj , ψ). ThusM |=s(a/j) ψ, where
a = tM〈s〉. By Theorem 4.37,M |=s ψ

′. Hence |= ∀vjψ → ψ′.
2

Definition 4.43 (Deduction) The L-axioms of predicate logic are the follow-
ing:

• L-formulas that are axioms of propositional logic are L-axioms of predicate
logic.

• L-identity axioms are L-axioms of predicate logic.
• L-quantifier axioms are L-axioms of predicate logic.

The set of L-formulas that are provable from a set Σ of L-formulas is defined
as follows:

(T1) Each member of Σ is provable from Σ.

(T2) Every L-axiom is provable from Σ.

(T3) Modus Ponens: If L-formulas ϕ and (ϕ → ψ) are provable from Σ, then
also ψ is provable from Σ.

(T4) Universal generalisation: If the L-formula (ψ → θ) is provable from some
Σ′ ⊆ Σ and vj is a variable such that

• vj does not occur free in ψ

• vj does not occur free in the formulas of Σ′
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then (ψ → ∀vjθ) is provable from Σ.

If an L-formula ϕ is provable from Σ, we write Σ ` ϕ. If ∅ ` ϕ, we write ` ϕ
and say that ϕ is provable.

The universal generalisation rule (T4) above requires that vj does not occur
free in the formulas of Σ′ just as we assume vj does not occur free in ψ. The
following example shows that this is necessary.

Example 4.44 In (T4) we have to assume that vj does not occur free in ψ,
because of examples such as |= (Px ∧ Rx) → Rx but 6|= (Px ∧ Rx) → ∀xRx.
Respectively, we have to assume that vj does not occur free in the formulas of
Σ, because {Px ∧ Rx} |= Rx but {Px ∧ Rx} 6|= ∀xRx.

Provability can be equivalently defined as follows:

Definition 4.45 (Deduction) Let L be a vocabulary and Σ a set of L-formulas.
A deduction from Σ is a sequence 〈ϕ1, . . . , ϕn〉 of L-formulas such that each ϕi
satisfies one of the conditions:
1. ϕi is an element of Σ
2. ϕi is an axiom of propositional logic
3. ϕi is an L-identity axiom
4. ϕi is an L-quantifier axiom
5. ϕi is obtained by the Modus Ponens-rule from earlier ones, i.e. there are j, k < i

such that ϕj = (ϕk → ϕi)
6. ϕi is obtained by the universal generalisation-rule from earlier ones, i.e. ϕi =

(ψ → ∀vjθ) and there are k < i and l1, . . . , lm < k such that

• ϕk = (ψ → θ)

• vj does not occur free in ψ

• vj does not occur free in the formulas {ϕlp}, p = 1, . . . , k.

Clearly, an L-formula ϕ is provable from Σ if and only if there is deduction
〈ϕ1 . . . ϕn〉 from Σ such that ϕn = ϕ.

Lemma 4.46 If ϕ is provable from Σ and Σ ⊆ Σ′, then ϕ is provable from Σ′.

Proof. See Problem 20. 2

In propositional logic we showed that tautologies are provable. Therefore we
can now accept any tautology as a step of a deduction.

Example 4.47 Suppose, that ψ′ is obtained from the formula ψ by substituting
the term t to the free occurrences of the variable vj and additionally FVF(t, vj , ψ)
holds. Then ` (ψ′ → ∃vjψ):

1. (∀vj¬ψ → ¬ψ′) L-quantifier axiom
2. ((∀vj¬ψ → ¬ψ′)→ (ψ′ → ¬∀vj¬ψ)) tautology
3. (ψ′ → ∃vjψ) MP 1,2
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Example 4.48 Suppose Σ ` (ψ → θ), where vj does not occur free in θ or in
the formulas of Σ. Then Σ ` (∃vjψ → θ).

1. (ψ → θ) by assumption
2. ((ψ → θ)→ (¬θ → ¬ψ)) tautology
3. (¬θ → ¬ψ) MP 1,2
4. (¬θ → ∀vj¬ψ) universal generalisation 3
5. ((¬θ → ∀vj¬ψ)→ (¬∀vj¬ψ → θ)) tautology
6. (∃vjψ → θ) MP 4,5 2

Example 4.49 {Rc,∀v0(Rv0 → Pv0)} ` Pc

1. (∀v0(Rv0 → Pv0)→ (Rc→ Pc)) quantifier axiom
2. ∀v0(Rv0 → Pv0) assumption
3. (Rc→ Pc) MP 1,2
4. Rc assumption
5. Pc MP 3,4 2

Example 4.50 {∀vn¬ϕ} ` ¬∃vnϕ
1. (∀vn¬ϕ→ ¬¬∀vn¬ϕ) tautology
2. ∀vn¬ϕ assumption
3. ¬¬∀vn¬ϕ︸ ︷︷ ︸

∃vnϕ

MP 1,2 2

Example 4.51 {∃vn¬ϕ} ` ¬∀vnϕ
1. (∀vnϕ→ ϕ) quantifier axiom
2. ((∀vnϕ→ ϕ)→ (∀vnϕ→ ¬¬ϕ)) tautology
3. (∀vnϕ→ ¬¬ϕ) MP 1,2
4. (∀vnϕ→ ∀vn¬¬ϕ) universal generalisation 3
5. ((∀vnϕ→ ∀vn¬¬ϕ)→ (¬∀vn¬¬ϕ→ ¬∀vnϕ)) tautology
6. (¬∀vn¬¬ϕ︸ ︷︷ ︸

∃vn¬ϕ

→ ¬∀vnϕ) MP 5,6

7. ∃vn¬ϕ assumption
8. ¬∀vnϕ MP 6,7

2

Theorem 4.52 (Soundness Theorem) If Σ ` ϕ, then Σ |= ϕ.

Proof. Let 〈ϕ1, . . . , ϕn〉 be a deduction of a formula ϕ from Σ′ ⊆ Σ. We prove
by induction on n the following claim, from which Σ |= ϕ follows:

Claim: Σ′ |= ϕi.

1. ϕi is an element of Σ′. Clear.



4.3. DEDUCTION 41

2. ϕi is an axiom of propositional logic. Clear.
3. ϕi is an identity axiom. Lemma 4.38.
4. ϕi is a quantifier axiom. Lemma 4.42.
5. ϕi is obtained by Modus Ponens from ϕj and ϕk, where ϕk = (ϕj → ϕi).

By the the Induction Hypothesis Σ′ |= ϕj and Σ′ |= ϕk. Hence Σ′ |= ϕi.
6. ϕi is obtained by the universal generalisation rule i.e. ϕi = (ψ → ∀vkθ)

and ϕj = (ψ → θ) for some j < i, and vk is not free in ψ or in Σ′. We
show Σ′ � (ψ → ∀vkθ). Let M �s Σ′ and M �s ψ. Let a ∈ M . By
Theorem 4.24 M �s(a/n) Σ′ and M �s(a/n) ψ. By Induction Hypothesis
Σ′ � (ψ → θ), whenceM �s(a/n) θ. We have provedM �s ∀vkθ. 2

The Soundness Theorem 4.52 gives us a powerful method for showing that
Σ 0 ϕ:

Corollary 4.53 If Σ 2 ϕ, then Σ 0 ϕ.

Example 4.54 {∀v0(Rv0 → Pv0),Pc} 0 R c.

Proof. LetM = ({0},SatM), where SatM(c) = 0, SatM(R) = ∅ and SatM(P) =
{0}. NowM � ∀v0(Rv0 → Pv0) andM � Pc, butM 2 R c. 2

Example 4.55 {∀v0∃v1Rv0v1,∀v1∃v0Rv0v1} 0 ∃v0Rv0v0

Proof. LetM = ({0, 1}, {〈0, 1〉, 〈1, 0〉}). NowM � ∀v0∃v1Rv0v1,M � ∀v1∃v0Rv0v1,
butM 2 ∃v0Rv0v0. 2

The following lemma shows that in certain situations a constant symbol
can be replaced by a variable symbol. For example the following deduction of
(Rc→ ∃v0Rv0)

(1) (∀v0¬Rv0 → ¬Rc) quantifier axiom
(2) ((∀v0¬Rv0 → ¬Rc)→ (Rc→ ¬∀v0¬Rv0)) tautology
(3) (Rc→ ¬∀v0¬Rv0) MP 1,2
(4) (Rc→ ∃v0Rv0) shorthand

can be translated into a deduction of (Rv1 → ∃v0Rv0) by replacing c everywhere
by v1:

(1) (∀v0¬Rv0 → ¬Rv1) quantifier axiom
(2) ((∀v0¬Rv0 → ¬Rv1)→ (Rv1 → ¬∀v0¬Rv0)) tautology
(3) (Rv1 → ¬∀v0¬Rv0) MP 1,2
(4) (Rv1 → ∃v0Rv0) shorthand

Convention: If ϕ is formula and t a term, then ϕ(t/vn) means a formula
obtained from ϕ by replacing vn in its free occurrences by the term t. Similarly,
t(t′/vn) is the result of replacing vn by t′ everywhere in the term t.
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The basic property of the formula ϕ(t/vn) is the following: Let us suppose
FVF(t, vn, ϕ). Theorem 4.37 gives M |=s ϕ(t/vn) ⇐⇒ M |=s(a/n) ϕ, where
a = tM〈s〉. In other words, if t is free for vn in the formula ϕ, then to decide
whether an assignment s satisfies the formula ϕ(t/vn) it suffices to compute the
value a of t and decide whether s(a/n) satisfies the formula ϕ.

Lemma 4.56 (Lemma on Constants) Let L be a vocabulary, ϕ an L-formula,
n ∈ N, c /∈ L and Σ a set of L-formulas. If Σ ` ϕ(c/vn) then there is m ∈ N
such that Σ ` ϕ(vk/vn) whenever k ≥ m.

Proof. Let 〈ϕ1, . . . , ϕn′〉 be a deduction of the formula ϕ(c/vn) from Σ. Let
m ∈ N be so big, that vk does not occur at all in the formulas ϕ1, . . . , ϕn′ when
k ≥ m. Fix k ≥ m. If θ is any formula, then let θ′ be obtained from θ by
replacing c everywhere by vk. Since c /∈ L, we have θ′ = θ for all L-formulas θ.
Since the formulas ϕi are L ∪ {c}-formulas, the same does not hold for them.

Claim. 〈ϕ′1, . . . , ϕ′n′〉 is a deduction from Σ

1. ϕi ∈ Σ: ϕ′i = ϕi whence ϕi ∈ Σ

2. ϕi tautology: Clearly ϕ′i is a tautology
3. ϕi is an identity axiom. Clearly ϕ′i is an identity axiom
4. ϕi is quantifier axiom ∀vjψ → ψ(t/vj) where FVF(t, vj , ψ). Let t′ be

the result of replacing c by vk everywhere in the term t. Clearly also
FVF(t′, vj , ψ

′), whence ϕ′i = ∀vjψ′ → ψ′(t′/vj) is a quantifier axiom.
5. ϕi is obtained by MP from the formulas ϕj and ϕk = (ϕj → ϕi). Now ϕ′i

is obtained from the formulas ϕ′j and ϕ′k = (ϕ′j → ϕ′i) by MP.
6. ϕi = (ψ → ∀vjθ) is obtained by universal generalisation from the formula
ϕk = (ψ → θ) and vj does not occur free in ψ. Now ϕ′k = (ψ′ → θ′),
ϕ′i = (ψ′ → ∀vjθ′) and vj does not occur free in ψ′, whence ϕ′i is obtained
by universal generalisation from ϕ′k.

2

Theorem 4.57 (Deduction Lemma) If Σ ∪ {ψ} ` ϕ, then Σ ` (ψ → ϕ)
(and conversely).

Proof. Let ϕ1, . . . , ϕn be a deduction of the formula ϕ from Σ ∪ {ψ}.

Claim: Σ ` (ψ → ϕi) for all i = 1...n.

1. ϕi ∈ Σ ∪ {ψ}. Clearly Σ ` (ψ → ϕi).
2. ϕi tautology. Clearly Σ ` (ψ → ϕi).
3. ϕi is an identity axiom. Clearly Σ ` (ψ → ϕi).
4. ϕi is a quantifier axiom. Clearly Σ ` (ψ → ϕi).
5. ϕi is obtained by MP from ϕj and ϕk, ϕk = (ϕj → ϕi). By using

the tautology ((ψ → ϕj) → ((ψ → ϕk) → (ψ → ϕi))) we see that
Σ ` (ψ → ϕi).
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6. ϕi is obtained by universal generalisation from ϕk, ϕi = (θ1 → ∀vjθ2),
ϕk = (θ1 → θ2) and vj is not free in Σ∪{ψ}∪{θ1}. Now Σ ` ((ψ∧θ1)→ θ2)
and vj is not free in Σ∪ {ψ ∧ θ1}. Therefore Σ ` ((ψ ∧ θ1)→ ∀vjθ2) from
which Σ ` (ψ → ϕi) follows.

2

4.4 Theories
The word “theory” is used in logic simply for a set of sentences. Presumably the
set is an interesting set of sentences rather than just a random set. However,
for the purpose of developing the methodology of mathematical logic we allow
theories to be quite arbitrary. Then we apply the methodology to interesting
theories.

Definition 4.58 (Theory, model, consistency) Let L be a vocabulary. An
L-theory is any set Σ of L-sentences. An L-structure M is a model of the
L-theory Σ ifM |= Σ. The theory Σ is inconsistent if there is an L-sentence ϕ
such that Σ ` ϕ and Σ ` ¬ϕ, otherwise consistent.

An obvious sufficient condition for consistency is that the theory has a model:

Theorem 4.59 If Σ has a model, then Σ is consistent.

Proof. If Σ ` ϕ and Σ ` ¬ϕ then by the Soundness Theorem 4.52, Σ cannot
have a model. 2

We will show below (Theorem 4.71) that having a model is also a necessary
condition for consistency.

An extreme example of a consistent theory is one directly built from a model:

Theorem 4.60 Suppose L is a vocabulary andM is an L-structure. Then

Th(M) = {ϕ | ϕ L-sentence andM |= ϕ}

is a consistent L-theory.

Proof. Since trivially M |= Th(M), we obtain M |= ϕ, i.e. Th(M) has a
model. 2

Theorem 4.60 gives a wealth of consistent theories:

Th((N,+, ·, 0, 1)) the so-called true arithmetic
Th((R,+, ·, 0, 1)) the theory of the field of real numbers

Th((N, S, 0)) the theory of the successor function
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Lemma 4.61 If Σ is an inconsistent set of L-sentences, then there is a finite
Σ0 ⊆ Σ such that Σ0 is inconsistent.

Proof. Suppose, that Σ ` ϕ ∧ ¬ϕ. Let ϕ1, . . . , ϕn be a deduction of ϕ ∧ ¬ϕ
from Σ. Let Σ0 = {ϕi|ϕi ∈ Σ}. Then ϕ1, . . . , ϕn is a proof of ϕ ∧ ¬ϕ from Σ0.
�

Lemma 4.62 (Chain Lemma) If Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . . are consistent L-
theories, then also

⋃∞
n=0 Σn is consistent.

Proof. Let Σ′ ⊆
⋃∞
n=0 Σn finite. Then there is m ∈ N such that Σ′ ⊆ Σm.

Since Σm is consistent, also Σ′ is consistent. �

Lemma 4.63 Let ϕ be a sentence. Then Σ ∪ {ϕ} is inconsistent if and only if
Σ ` ¬ϕ.

Proof. . We show first that if Σ ∪ {ϕ} is inconsistent, then Σ ` ¬ϕ. Let ψ be
such that Σ ∪ {ϕ} ` (ψ ∧ ¬ψ). By the Deduction Lemma Σ ` (ϕ→ (ψ ∧ ¬ψ)).
Note that the sentence ((ϕ → (ψ ∧ ¬ψ)) → ¬ϕ) is a tautology. Thus by MP,
Σ ` ¬ϕ.

For the other direction, suppose that Σ ` ¬ϕ. Then Σ ∪ {ϕ} ` ¬ϕ. The
sentence (¬ϕ → (ϕ → (ϕ ∧ ¬ϕ))) is a tautology, whence MP gives Σ ∪ {ϕ} `
(ϕ→ (ϕ ∧ ¬ϕ)), and further Σ ∪ {ϕ} ` (ϕ ∧ ¬ϕ). �

Corollary 4.64 Σ ∪ {¬ϕ} is inconsistent if and only if Σ ` ϕ. �

Definition 4.65 (Completeness) An L-theory Σ is complete if it is consis-
tent and for all L-sentences ϕ we have

Σ ` ϕ or Σ ` ¬ϕ.

Example 4.66 Th(M) is complete.

Proof. IfM � ϕ, then ϕ ∈ Th(M). IfM � ¬ϕ, then ¬ϕ ∈ Th(M). �

Theorem 4.67 (Lindenbaum Lemma) Let L be a countable8 vocabulary. If
Σ is a consistent L-theory, then there is a complete L-theory Σ∗ such that Σ ⊆
Σ∗.

Proof. Since L is countable, we can list all L-sentences as follows: ϕ0, ϕ1, ϕ2, . . ..
Define

Σ0 = Σ

Σn+1 =

{
Σn ∪ {ϕn} if Σn ` ϕn
Σn ∪ {¬ϕn} otherwise

Σ∗ =

∞⋃
n=0

Σn

8With the so-called Axiom of Choice—more exactly its equivalent form called Zorn’s
Lemma—the assumption of countability can be avoided.
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Claim Σn is consistent for all n.
1. n = 0: Σn = Σ
2. Induction Hypothesis: Σn is consistent
3. Σn+1 = Σ ∪ {ϕn} and Σn ` ϕn. If Σn+1 were inconsistent then Lemma 4.63 would

give Σn ` ¬ϕn. Since also Σn ` ϕn, it follows, that Σn is inconsistent, contrary to the
Induction Hypothesis.

4. Σn+1 = Σn ∪ {¬ϕn} and Σn 6` ϕn. If Σn+1 were inconsistent, then Corollary 4.64 would
give Σn ` ϕn, contrary to our assumption. The claim is proved. By Lemma 4.62, Σ∗ is
consistent.

Claim Σ∗ is complete.
If ϕn is an L-sentence, then ϕn ∈ Σn+1 or ¬ϕn ∈ Σn+1, whence the claim
follows. 2

Theorem 4.68 If Σ is a complete L-theory, then for all L-formulas ϕ and ψ
the following holds:

1. Σ ` ¬ϕ if and only if Σ 0 ϕ
2. Σ ` (ϕ→ ψ) iff (Σ 0 ϕ or Σ ` ψ)

Proof. As in Theorem 2.23. 2

Lemma 4.69 Let L be a vocabulary and Σ a consistent set of L-sentences. Let
L′ be a vocabulary such that L′ \ L contains infinitely many constant symbols.
If n ∈ N and ∀vnϕ is an L′-sentence, then there is a constant symbol c ∈ L′ \L
such that Σ ∪ {(ϕ(c/vn)→ ∀vnϕ)} is consistent.

Proof. Choose c ∈ L′ \ L such that c does not occur in ϕ. If Σ ∪ {(ϕ(c/vn)→
∀vnϕ}) is inconsistent, then by Lemma 4.63, Σ ` ¬(ϕ(c/vn) → ∀vnϕ), whence
it is easy to see that Σ ` ϕ(c/vn) and Σ ` ¬∀vnϕ. By the Lemma on Constants
(Lemma 4.56), Σ ` ϕ(vm/vn) for a suitably chosen m ∈ N. By the universal
generalisation Rule, Σ ` ∀vmϕ(vm/vn) from which is follows easily that Σ `
∀vnϕ. On the other hand, we just concluded that Σ ` ¬∀vnϕ, contrary to our
assumption that Σ is consistent. 2

Theorem 4.70 Let L be a vocabulary and Σ a complete L-theory such that for
all L-sentences ∀vnϕ there is c ∈ L such that Σ ` (ϕ(c/vn) → ∀vnϕ). Then
there is an L-structureM such that for all L-sentences ϕ we have

M |= ϕ if and only if Σ ` ϕ.

Proof. Let M0 be the set of all L-constant terms. (Constant terms are
terms that contain no variable symbols). Define in M0

t ∼ t′ ⇐⇒ Σ `≈ tt′

[t] = {t′ ∈M0 | t ∼ t′}
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Claim 1 ∼ is an equivalence relation in M0.
Proof. Because of the identity axioms

1. Σ `≈ tt whence t ∼ t.
2. if t ∼ t′ and t′ ∼ t′′, then Σ `≈ tt′ and Σ `≈ t′t′′ and therefore Σ `≈ tt′′

whence t ∼ t′′.
3. If t ∼ t′, then Σ `≈ tt′ whence Σ `≈ t′t and therefore t′ ∼ t.

Claim 2 If R ∈ L, #L(R) = n, t1, . . . , tn are L-terms such that Rt1 . . . tn ∈ Σ
and t1 ∼ t′1, . . . , tn ∼ t′n, then Rt′1 . . . t

′
n ∈ Σ, for the identity axioms give

Σ ` ((≈ t1t′1 ∧ . . .∧ ≈ tnt′n ∧ Rt1 . . . tn)→ Rt′1 . . . t
′
n).

Claim 3 If f ∈ L,#L(f) = n, and t1, . . . , tn, t′1, . . . , t′n are L-terms such that
t1 ∼ t′1, . . . , tn ∼ t′n then ≈ ft1 . . . tnft′1 . . . t

′
n ∈ Σ.

Proof. Follows from the identity axioms.

Now we define an L-structureM as follows:

M = M0/ ∼ = {[t] | t ∈M0}

SatM(R) = {〈[t1], . . . , [tn]〉 | Σ ` Rt1 . . . tn} when R ∈ L and #L(R) = n

SatM(f)([t1], . . . , [tn]) = [ft1...tn] when f ∈ L and #L(f) = n

SatM(c) = [c] when c ∈ L

The Claims 1-3 guarantee that M is well-defined. We need to prove now
M |= Σ. This will follow if we prove:

Claim 4 For all L-terms t1, ..., tn and L-formulas ϕ, with the free occurring
variables vk1 , ..., vkn , it holds that tMi = [ti] andM |= ϕ(t1/vk1 , ..., tn/vkn)⇐⇒
Σ ` ϕ(t1/vk1 , ..., tn/vkn).

Proof. By definition cM = [c]. Moreover, proceeding inductively,

(ft1 . . . tn)M = SatM(f)(tM1 , . . . , tMn )

= SatM(f)([t1], . . . , [tn]) = [ft1...tn]

Thus tM = [t] for all t.
Now formulas:
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1.

M |=≈ t1t2 ⇐⇒ tM1 = tM2

⇐⇒ [t1] = [t2]

⇐⇒ t1 ∼ t2
⇐⇒ Σ `≈ t1t2

2.

M |= Rt1 . . . tn ⇐⇒ 〈tM1 , . . . , tMn 〉 ∈ SatM(R)

⇐⇒ 〈[t1], . . . , [tn]〉 ∈ SatM(R)

⇐⇒ Σ ` Rt1...tn

3.

M |= ¬ϕ ⇐⇒ M 6|= ϕ

⇐⇒ Σ 0 ϕ Induction Hyp.
⇐⇒ Σ ` ¬ϕ Theorem 4.68

4.

M |= (ϕ→ ψ) ⇐⇒ M 6|= ϕ orM |= ψ

⇐⇒ Σ 0 ϕ or Σ ` ψ Induction Hyp.
⇐⇒ Σ ` (ϕ→ ψ) Theorem 4.68

5. SupposeM |= ∀vnϕ. There is c such that Σ ` (ϕ(c/vn)→ ∀vnϕ). Clearly
M |= ϕ(c/vn), whence by the Induction Hypothesis Σ ` ϕ(c/vn). Now
Σ ` ∀vnϕ easily follows. Let conversely Σ ` ∀vnϕ. Clearly Σ ` ϕ(c/vn)
for all c ∈ L. We show thatM |= ∀vnϕ by going through all elements of
the modelM. If t ∈M0, then by assumption there is c ∈ L such that

Σ ` (¬ ≈ ct→ ∀v0¬ ≈ v0t).

On the other hand, if Σ ` ∀v0(¬ ≈ v0t), then by the above,M |= ∀v0(¬ ≈
v0t), a contradiction. Thus Σ 0 ∀v0(¬ ≈ v0t) and necessarily Σ `≈ ct i.e.
tM = cM. SinceM |= ϕ(c/vn), we getM |= ϕ(t/vn). ThusM |= ∀vnϕ.
2

We are ready to prove the famous Gödel9 Completeness Theorem [8]:

Theorem 4.71 (Gödel’s Completeness Theorem) Suppose L is countable10,
Σ is an L-theory and ϕ is an L-sentence. Then Σ ` ϕ if and only if Σ |= ϕ. In
particular, Σ is consistent if and only if Σ has a model.

9Kurt Gödel 1906—1978.
10This is an unnecessary assumption but makes the proof easier.
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Proof. If Σ ` ϕ then Σ |= ϕ by Theorem 4.52. Assume then Σ |= ϕ, but
Σ 6` ϕ. We obtain a contradiction by showing that Σ ∪ {¬ϕ} has a model.
Let L′ = L ∪ {cn | n ∈ N}, where the constant symbols cn are new i.e. not
in L. We note that Σ, which is a an L-theory, is consistent also as an L′-
theory (see Problem 28). By appealing repeatedly to Lemma 4.69 we obtain
a consistent Σ1 such that for all ϕ and n ∈ N there is c ∈ L′ \ L such that
(ϕ(c/vn) → ∀vnϕ) ∈ Σ1. By Lindenbaum’s Lemma there is a complete L′-
theory Σ∗ ⊇ Σ1. By Theorem 4.70 Σ∗ has a modelM∗. LetM be the reduct
(see Definition 3.8) of the L′-structureM∗ to the vocabulary L. ThenM |= Σ.
2

From the above proof we obtain the following Löwenheim11-Skolem12 The-
orem [12, 17]:

Theorem 4.72 (Löwenheim-Skolem Theorem) If Σ is an L-theory which
has a model, and L is countable, then Σ has a countable model.

Theorem 4.71 has sweeping consequences:

• We can forget about deductions in predicate logic—it is enough to consider
models and logical consequence defined by means of models.

• We can get new interesting models by simply constructing consistent the-
ories.

An example of the use of interesting models arising from consistent theories
is non-standrad analysis.

Theorem 4.73 (Compactness Theorem) If Σ is set of L-formulas such that
every finite Σ0 ⊆ Σ has a model, then Σ has a model.

Proof. If Σ has no models, then Σ is by Theorem 4.71 inconsistent. By Lemma 4.61,
Σ has a finite inconsistent subset Σ0. But then Σ0 has no models, contrary to
our assumption. 2

Example 4.74 Let L be a countable vocabulary and Σ an L-theory such that if
M |= Σ, then M is finite. Then there is n ∈ N such that if M |= Σ, then M
has at ≤ n elements. Why? Suppose, that for every n ∈ N there is Mn |= Σ
such that Mn has > n elements. Let

ϕn = ∀v1 . . . ∀vn∃vn+1(¬ ≈ vn+1v1 ∧ . . . ∧ ¬ ≈ vn+1vn).

Thus Mn |= Σ ∪ {ϕm | m ≤ n}. Let Σ′ = Σ ∪ {ϕm | m ∈ N}. Now every
finite subset of Σ′ has a model. By the Compactness Theorem 4.73 the theory
Σ′ has a modelM. According to our assumption M is finite. On the other hand
M |= ϕn for all n ∈ N. This contradiction shows that the claim is true. 2

11Leopold Löwenheim 1878—1957.
12Thoralf Skolem 1887—1963.
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Example 4.75 Let L = {⊕,⊗, <, 0, 1} and R = 〈R,SatR〉, where SatR(<) =
{〈x, y〉 | x < y}, SatR(⊗)(x, y) = x · y, SatR(⊕)(x, y) = x + y, and SatR(0) =
0,SatR(1) = 1. Let Σ = Th(R). Σ has a model and L is countable, whence Σ
has a countable model. In fact, the ordered field of algebraic real numbers13 is
a countable model of Σ.

Theorem 4.76 Let L be countable. An L-theory Σ is complete and closed under
deduction (i.e. if ϕ is an L-sentence and Σ ` ϕ, then ϕ ∈ Σ) if and only if there
is an L-structureM such that Σ = Th(M).

Proof. Suppose, that Σ is complete and closed under deduction. Complete
theories are assumed to be consistent, so the Completeness Theorem 4.71 gives
Σ a modelM. If ϕ ∈ Σ, then ϕ ∈ Th(M). If on the other hand ϕ ∈ Th(M) and
ϕ 6∈ Σ, then Σ 0 ϕ, whence Σ ` ¬ϕ and therefore ¬ϕ ∈ Σ, whence ¬ϕ ∈ Th(M),
a contradiction. Hence Σ = Th(M).

Conversely, let Σ = Th(M). Obviously Σ is closed under deduction. If ϕ is
an L-sentence, then ϕ ∈ Th(M) or ¬ϕ ∈ Th(M), whence Σ ` ϕ or Σ ` ¬ϕ.
We have proved that Σ is complete. 2

Theorem 4.77 A consistent L-theory Σ is complete if and only if all of its
models are elementarily equivalent.

Proof. Let Σ be complete and M |= Σ, M′ |= Σ. If M 6≡ M′, then there is
an L-sentence ϕ such that M |= ϕ 6⇔ M′ |= ϕ. If Σ ` ϕ, then M |= ϕ and
M′ |= ϕ. Otherwise Σ ` ¬ϕ, whenceM 6|= ϕ andM′ 6|= ϕ. This contradiction
shows thatM≡M′.

Suppose Σ is incomplete. Thus there is an L-sentence ϕ such that Σ 6` ϕ
and Σ 6` ¬ϕ. By the Completeness Theorem 4.71, Σ 6|= ϕ and Σ 6|= ¬ϕ. Thus
there areM |= Σ ∪ {¬ϕ} andM′ |= Σ ∪ {ϕ}. HenceM 6≡M′. 2

Definition 4.78 (Categoricity) An L-theory is ℵ0-categorical14, if its count-
ably infinite models are all isomorphic.

Theorem 4.79 (Łoś15-Vaught16 Theorem) Let L be countable and Σ a con-
sistent ℵ0-categorical L-theory without finite models. Then Σ is complete.

Proof. Let M |= Σ and M′ |= Σ (we use Theorem 4.77). Let Σ1 = Th(M)
and Σ2 = Th(M′). By Theorem 4.72, the theory Σ1 has a countably infinite
modelM1, and the theory Σ2 has, likewise, a countably infinite modelM2. By
ℵ0-categoricity, M1

∼= M2. By Corollary 4.28 M1 ≡ M2. Now M ≡ M1 ≡
M2 ≡M′, whenceM≡M′. 2

13A real number is algebraic is it is the root of a non-trivial polynomial with rational
coefficients.

14ℵ0 is read “aleph zero”.
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Example 4.80 Let L = {R}, where #L(R) = 1. Let M = 〈R,SatM〉 and
M′ = 〈Q,SatM′〉, where SatM(R) = Q and SatM′(R) = N. ClearlyM1 6∼=M2,
since R is uncountable. But M ≡ M′, for both models are models of the ℵ0-
categorical theory Σ, where Σ consists of

∀v0 . . . ∀vn∃vn+1∃vn+2[¬ ≈ vn+1v0 ∧ . . . ∧ ¬ ≈ vn+1vn∧
¬ ≈ vn+2v0 ∧ . . . ∧ ¬ ≈ vn+2vn∧
Rvn+1 ∧ ¬Rvn+2],

where n ∈ N. Σ is ℵ0-categorical, because in its countable models R and −R are
both countably infinite.

Dense linear order without end points DLO consists of the following sen-
tences in the vocabulary L = {<}, #L(<) = 2: (for the sake of clarity we write
t < t′ for < tt′):

∀v0¬(v0 < v0)

∀v0∀v1∀v2((v0 < v1 ∧ v1 < v2)→ v0 < v2)

∀v0∀v1(v0 < v1 ∨ ≈ v0v1 ∨ v1 < v0)

∀v0(∃v1(v0 < v1) ∧ ∃v1(v1 < v0))

∀v0∀v1∃v2(v0 < v1 → (v0 < v2 ∧ v2 < v1)

Theorem 4.81 The theory DLO is ℵ0-categorical.

Proof. Let M and M′ be countable models of DLO. Let M = {dn|n ∈ N}
and M ′ = {d′n|n ∈ N}. Let f0 = {〈d0, d′0〉}. Suppose, that

fn = {〈x0, y0〉, . . . , 〈x2n, y2n〉}

has been defined and

x0 < x1 < . . . < x2n, y0 <
′ y1 <

′ . . . <′ y2n

where < refers to the relation SatM(<) and <′ to the relation SatM′(<). Let
dm ∈ M \ {x0, . . . , x2n} be such that m is minimal. Now either dm < x0
or xi < dm < xi+1 for some i < 2n or x2n < dm. In each case we can choose
y ∈M ′ \{y0, . . . , y2n} such that respectively y < y0 or yi < y < yi+1 or y2n < y.
We will map the element dm to the element y. Now we search respectively for an
element in M ′ and choose a pre-image x for it. Let d′k ∈M ′ \{y0, . . . , y2n, y} be
such that k is minimal. Choose x ∈ M \ {x0, . . . , x2n, dm} as y above. Finally,
let

fn+1 = fn ∪ {〈dm, y〉, 〈x, d′k〉}.

Let

f =

∞⋃
n=0

fn.
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Now

dn ∈ dom(fn) ⊆ dom(f)

d′n ∈ ran(fn) ⊆ ran(f)

Clearly, f : M →M ′ is an isomorphism. 2

Example 4.82 The modelsM = 〈R,SatM(<)〉 andM′ = 〈Q,SatM(<)〉,

SatM(<) = {〈x, y〉 ∈ R2|x < y}
SatM(<) = {〈x, y〉 ∈ Q2|x < y}

of the theory DLO are by Theorem 4.81 and Theorem 4.79 elementarily equiv-
alent: M≡M′.

4.5 Problems

1. Show that the sentence (∀v0∃v1(Rv0v1∧ ≈v0v1)→ ∀v0Rv0v0) is valid.

2. Decide whether |= (∀v0∃v1Rv0v1 → ∃v1Rv1v1)?

3. Decide whether ∃v0∀v1(Rv0v1 → R′v0v1) |= ∃v0(∀v1Rv0v1 → ∀v1R′v0v1)?

4. Let ϕ be the formula ∀v0(¬ ≈ v0fv0 ∧ ≈ v0f fv0). Describe the models of
ϕ and show that ϕ has infinitely many non-isomorphic models.

5. Prove the two claims of Example 4.9.

6. Prove the two claims of Example 4.20.

7. Let M and M′ be L-structures and π : M ∼= M′. Let s : N → M
and s′ : N → M ′ such that s′(n) = π(s(n)) for all n ∈ N. Prove that
tM
′〈s′〉 = π(tM〈s〉) for all L-terms t.

8. Prove Theorem 4.25.

9. Let M = ({0, 1, 2, 3, 4}, P,Q), where P = {0, 1, 2} and Q = {2, 3, 4}.
What are the definable subsets of the structure M? In each case give a
formula that defines the subset or show that the subset is undefinable.

10. Prove that the class of subsets definable in a givenM contains the empty
set, the set M and is closed under union, intersection and complement
(i.e. is a Boolean algebra).

11. List the definable subsets of the following graph. In each case give a
formula that defines the subset or show that the subset is undefinable.
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12. Show that every element of Q = (Q,+, ·, 0, 1) is definable, but in the
structure (Q, <) no element is definable.

13. Let M = {n ∈ N : n < 10} and f : M → M such that f(x) = 5 for
all x ∈ M . What are the definable subsets of the structure (M,f)? In
each case give a formula that defines the subset or show that the subset
is undefinable.

14. LetM = {(n,m) ∈ N2 : m ≤ n < 57} and E ⊆M2 such that ((n,m), (k, l)) ∈
E if and only if n = k. What are the definable subsets of the structure
(M,E)? In each case give a formula that defines the subset or show that
the subset is undefinable.

15. Let Q be the set of rational numbers, < the usual order of rational num-
bers, and S : Q→ Q such that for all x ∈ Q, S(x) = x+ 1. Is

(a) the element −5,
(b) the element 1/3

definable in (Q, S, 0, <) ?

16. Let ϕ = ∀v0(∃v1Rv1v2 → ∀v2(Rv1v2 → Rv0v2)). Which of the following
are true:

(a) FVF(fv2v1, v0, ϕ),

(b) FVF(fv0v0, v2, ϕ),

(c) FVF(fv0v1, v1, ϕ)?

17. Prove that for all t, vn and ϕ there exists ϕ∗ such that |= ϕ ↔ ϕ∗ and
FVF(t, vn, ϕ

∗).

18. Prove Theorem 4.37 part 1.

19. Prove Theorem 4.37 part 2.

20. Prove Lemma 4.46.

21. Give the deduction ` (∀v0(ϕ∨ψ)→ (∀v0ϕ∨ψ)), when v0 does not occur
free in ψ.

22. Give the deduction {∀v0(ϕ→ ψ)} ` (∃v0ϕ→ ∃v0ψ).

23. Give the deduction {∀v0∀v1 ≈ v0v1} ` ∃v0Pv0 → ∀v1Pv1.

24. Give the deduction {Rc} ` ∀v0(≈ v0c→ Rv0).

25. Give the deduction ` (∀v0∀v1(ϕ ∧ ψ)→ ∀v0∃v1ϕ).
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26. Let T be an L-theory, ϕ an L-formula and c /∈ L. Show that if T ` ϕ(c/v0)
then T ` ∀v0ϕ.

27. Let T be an L-theory. Show that the following are equivalent:

(i) For each L-sentence ∀viϕ there is a constant c ∈ L for which T `
ϕ(c/vi)→ ∀viϕ,
(ii) For each L-sentence ∃viϕ there is a constant c ∈ L for which T `
∃viϕ→ ϕ(c/vi).

28. Suppose Σ is an L-theory. Let L′ = L ∪ {cn | n ∈ N}, where the constant
symbols cn are new, i.e. not in L. Show (without using Theorem 4.71)
that Σ is consistent also as an L′-theory. (Hint: If a contradiction were
provable from Σ as an L′-theory, the Lemma on Constants 4.56 could used
repeatedly to replace the new constants ci by new variables.)

29. Let T be an L-theory such that in every L-structure some ϕ ∈ T is true.
Prove that there exist n ∈ N and ϕ0, ..., ϕn ∈ T such that ` ϕ0 ∨ ... ∨ ϕn.

30. Let L = {ci | i ∈ N} and let T be an L-theory such that for each L-model
M of T and every a ∈ M there is i ∈ N such that cMi = a. Show that
there is n ∈ N such that T `

∨
k<m≤n ck = cm, where

∨
k<m≤n ck = cm

means the disjunction of the formulas ck = cm for k < m ≤ n.

31. LetM = ({0, 1, 2}, {0}) be a {P}-structure. Find a {P}-sentence ϕ such
thatM |= ϕ and {ϕ} is a complete theory.

32. Consider the {f}-theory T = {∀v0(¬ ≈v0fv0 ∧ ≈v0ffv0)}. Describe the
countably infinite models of T and show that T is not complete.

33. Suppose Σ is an L-theory and L ⊆ L′. Show that Σ is consistent also as
an L′-theory. You may use Theorem 4.71.

34. Show that Th((N,+, ·, 0, 1, <)) is not ℵ0-categorical.

35. Suppose that every finite subset of a theory T has a model with at least
three elements. Prove that T itself has a model with at least three ele-
ments.

36. Let M = ({0, 1}, {(0, 0), (0, 1), (1, 1)}) be a structure for the vocabulary
L = {R}, #(R) = 2. Find an L-sentence ϕ such thatM |= ϕ and {ϕ} is
a complete theory.

37. Let L be a vocabulary and cn ∈ L for n ∈ N. Let T be an L-theory.
Suppose that T has an infinite model M. Prove that T has a model N
with an element a ∈ N such that a 6= cNn for all n ∈ N.

38. Let T1 and T2 theories such that T1 ∪ T2 is inconsistent. Prove that there
exists ϕ1, . . . , ϕn ∈ T1 and ψ1, . . . , ψn ∈ T2 such that

ϕ1 ∧ . . . ∧ ϕn ` ¬ψ1 ∨ . . . ∨ ¬ψn.
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39. Suppose L = {P1, . . . , Pn}, where each Pi is 1-place. Denote P 1
i = Pi(v0)

and P 1
i = ¬Pi(v0). If ε : {1, . . . , n} → {0, 1} then let Cε = P ε1 ∧ . . .∧P

ε(n)
n .

Prove that finite L-structures M and N are isomorphic if and only if
the sets {a ∈ M : M |=s(a/0) Cε for some s} and {a ∈ N : N |=s(a/0)

Cε for some s} have the same number of elements for all ε : {1, . . . , n} →
{0, 1}.



Chapter 5

Incompleteness of number
theory

By number theory we mean here arithmetic properties of the natural numbers
0, 1, 2, . . .. Arithmetic pertains to addition and multiplication. A surprisingly
large portion of mathematics can be reduced to number theory. For example√

2 > 1.414 can be written in number theory as ∃x(2· 106 = 14142+x+1). State-
ments about common transcendental functions such as sin(x), cos(x), ln(x), etc
can be translated into number theory by means of Taylor series. It is an interest-
ing fact that also the central concepts of logic, such as provability, consistency,
validity, etc translate to the language of number theory. This is the topic of this
section. After that it is possible to prove essential limitations on the scope of
number theory.

Definition 5.1 (Number theory) The vocabulary of number theory is

L = {⊕,⊗, 0, 1}, #L(⊕) = #L(⊗) = 2.

Peano axioms for number theory are

(P1) ∀v0¬ ≈ ⊕v010
(P2) ∀v0∀v1(≈ ⊕v01⊕ v11→≈ v0v1)

(P3) ∀v0 ≈ ⊕v00v0
(P4) ∀v0∀v1 ≈ ⊕v0 ⊕ v11⊕⊕v0v11
(P5) ∀v0 ≈ ⊗v000
(P6) ∀v0∀v1 ≈ ⊗v0 ⊕ v11⊕⊗v0v1v0
(P7) ∀vn0

· · · ∀vnk
((ϕ(0/v0) ∧ ∀v0(ϕ → ϕ(⊕v01/v0))) → ∀v0ϕ) (Induction

Schema)

where ϕ runs through all L-formulas and vn0 . . . vnk
are the variables other than

v0 that occur free in ϕ. We use P to denote the infinite set of Peano axioms.
The standard model of number theory is N = 〈N,SatN 〉, where

SatN (⊕)(x, y) = x+ y, SatN (⊗)(x, y) = x · y

55
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SatN (0) = 0, SatN (1) = 1

Theorem 5.2 N � P and P is therefore consistent.

Proof. Only the Induction Schema requires consideration. Let ϕ be an L-
formula with v0, vn0

, · · · , vnk
free. Let s : N → N. Let X = {i ∈ N | N �s(i/0)

ϕ}. Suppose N �s (ϕ(0/v0)∧∀v0(ϕ→ ϕ(⊕v01/v0))). Thus 0 ∈ X and i+1 ∈ X
whenever i ∈ X. The ordinary induction principle of natural numbers implies
that X = N. Thus N �s ∀v0ϕ. 2

Note: We prove the above induction by means of induction. Isn’t this blatantly
circular? Yes, and therefore the above theorem is not particularly insightful.
One may ask whether the consistency of P can be proved differently (“finitis-
tically”), without assuming the existence of the model N . Kurt Gödel proved
in 1931 that P alone is not enough for proving the consistency of P (see Theo-
rem 5.33). Thus something stronger than P has to be used. Gerhard Gentzen
proved in 1943 that the consistency of P can be proved in an extension of P
which has a stronger from of the Induction Schema, so-called transfinite induc-
tion up to the ordinal ε0.

The important theorem below was proved by Thoralf Skolem1 in 1933:

Theorem 5.3 (Skolem) The theory P has models, that are not isomorphic to
N .

Proof. Models of P that are not isomorphic to N are called non-standard mod-
els. Let L′ = {⊕, ⊗, 0, 1, c}, where c is a new constant symbol. Let Σ consist
of P as well as

¬ ≈ c0 , ¬ ≈ c1 , ¬ ≈ c⊕ 11,¬ ≈ c⊕⊕111 , . . .

i.e. if we denote n+ 1 = ⊕n1 then Σ = P ∪ {¬ ≈ cn | n ∈ N}. If Σ0 ⊆ Σ is
finite, then there is k ∈ N such that Σ0 ⊆ P ∪ {¬ ≈ cn | n ∈ N, n < k}. Let
N ′ be the L′-structure 〈N, SatM〉 which is otherwise as N (i.e. N ′ � L = N )
except SatN ′(c) = k. Then N ′ � Σ0. By the Compactness Theorem Σ has a
modelM′ = 〈M ′, SatL′〉. In particular, ifM =M′ � L, thenM � P.

ClaimM � N

Proof. Suppose π : M ∼= N . Let m = π(SatM′(c)). If n ∈ N, thenM′ � ¬ ≈
cn whence, as π is an isomorphism, m 6= SatN (n). But SatN (n) = n whence
choosing n = m leads to a contradiction. 2

1 Skolem’s proof [18] was different from the modern proof we present here. The modern
simple proof is based on the Compactness Theorem (Theorem 4.73), a consequence of Gödel’s
Completeness Theorem (Theorem 4.71). As Robert Vaught writes in [9, page 377], it is
extraordinary that neither Skolem nor Gödel observed at the time that the existence of non-
standrad models of P follows readily from Gödel’s results of 1930-1931. Gödel himself points
out that the existence follows from his Incompleteness Theorem (Theorem 5.32).
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Theorem 5.4 P ` ∀v0 ≈ ⊕0v0v0.

Proof. Thanks to the Completeness Theorem 4.71, it suffices to showP � ∀v0 ≈
⊕0v0v0. To this end, let M = 〈M, SatM〉 � P and s : N → M . Let us denote
SatM(⊕) = +′, SatM(⊗) =·′ , SatM(0) = 0′ and SatM(1) = 1′. We apply
the Induction Schema to ϕ, which is the formula ≈ ⊕0v0v0. ϕ(0/v0) is the
formula ≈ ⊕000.M �s ϕ(0/v0) follows from Axiom (P3). Let then a ∈M and
M �s(a/0) ϕ. Thus 0′ +′ a = a. ϕ(⊕v01/v0) is the formula ≈ ⊕0 ⊕ v01 ⊕ v01
whence M �s(a/0) ϕ(⊕v01/v0) if 0′ +′ (a +′ 1′) = a +′ 1′. As M � (P4), we
have 0′ +′ (a +′ 1′) = (0′ +′ a) +′ 1′. By assumption, 0′ +′ a) = a, whence
0′ +′ (a +′ 1′) = a +′ 1′. Since a was arbitrary, M � ∀v0[ϕ → ϕ(⊕v01/v0)]
follows. SinceM � (P7),M � ∀v0ϕ follows. 2

Induction is a general method in number theory. Since P incorporates in-
duction, at least in its simplest form, it is not at all easy to find sentences ϕ
such that N � ϕ but P 0 ϕ. Such ϕ however exist. Researchers try to find
examples of such ϕ as close to mathematical practice as possible but so far all
examples seem to arise somehow from logic (See, however [1, Ch. D8].) Kurt
Gödel proved that the sentence ϕ, which says “P is consistent” has this prop-
erty. We prove the slightly weaker claim that: {ϕ | P ` ϕ} is an incomplete
theory. To this end we now start an investigation of the definability of number
theoretic functions.

5.1 Primitive recursive functions
Primitive recursive functions are functions, the value of which for any given
arguments can be mechanically computed in finite time by means of a recurrence
equation. Let us consider addition as an example:

x+ 0 = x

x+ (y + 1) = (x+ y) + 1.

Or multiplication

x · 0 = 0

x · (y + 1) = (x · y) + x.

The general form of this kind of definition is:

f(x, 0) = g(x)

f(x, y + 1) = h(y, f(x, y), x).
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Now we can compute f(5, 3) in a “recursive” way:

f(5, 3) = f(5, 2 + 1)

= h(2, f(5, 2), 5)

= h(2, f(5, 1 + 1), 5)

= h(2, h(1, f(5, 1), 5), 5)

= h(2, h(1, f(5, 0 + 1), 5), 5)

= h(2, h(1, h(0, f(5, 0), 5), 5), 5)

= h(2, h(1, h(0, g(5), 5), 5), 5)

If for example g(x) = x2 and h(y, z, x) = y + z + x, then

f(5, 3) = h(2, h(1, h(0, g(5), 5), 5), 5) = 2 + 1 + 0 + 25 + 5 + 5 + 5 = 43.

Recursively defined functions are examples of functions that are computable by
a computer. On the other hand such functions can be defined in number theory.

Definition 5.5 (Primitive recursiveness) Primitive recursive (p.r.) func-
tions are defined as follows:

(PR1) The zero function Z(n) = 0 is primitive recursive.

(PR2) The successor function S(n) = n+ 1 is primitive recursive.

(PR3) The projection function Prni (x1, . . . , xn) = xi is primitive recursive,
when 1 ≤ i ≤ n.

(PR4) If f : Nn → N and gi : Nm → N are primitive recursive, when 1 ≤ i ≤ n,
then the composition

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

is primitive recursive.

(PR5) If f : Nn → N and g : Nn+2 → N are primitive recursive, then the
function obtained from them by recursion{

h(0, x1, . . . , xn) = f(x1, . . . , xn)

h(y + 1, x1, . . . , xn) = g(y, h(y, x1, . . . , xn), x1, . . . , xn)

is primitive recursive. In the special case n = 0 the definition shrinks to{
h(0) = a (constant)
h(y + 1) = g(y, h(y))

Example 5.6 1. The Identity function id(x) = x is primitive recursive, for
id(x) = Pr11(x)
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2. If f : N2 → N is primitive recursive, then g(x, y) = f(y, x) is primitive
recursive, for g(x, y) = f(Pr22(x, y), P r21(x, y)).

3. Addition a(y, x) = y + x is primitive recursive, for{
a(0, x) = x = id(x)

a(y + 1, x) = y + x+ 1 = S(Pr32(y, a(y, x), x)).

4. Multiplication b(y, x) = y·x is primitive recursive, for{
b(0, x) = 0 = Z(x)

b(y + 1, x) = b(y, x) + x = a(Pr32(y, b(y, x), x), P r33(y, b(y, x), x)).

5. Exponential function c(y, x) = xy is primitive recursive. (Problem 1)

6. Constant function Ck(x) = k is primitive recursive. (Problem 1)

7. Bounded subtraction

x
.
− y =

{
x− y if x ≥ y
0 if x < y

is primitive recursive. (Problem 3)

Definition 5.7 (Primitive recursive relation) A relation R ⊆ Nn is prim-
itive recursive, if the characteristic function

fR(x1, . . . , xn) =

{
1, if 〈x1, . . . , xn〉 ∈ R
0, if 〈x1, . . . , xn〉 /∈ R

is primitive recursive.

Example 5.8 1. The relation R = {0} (i.e. the relation x = 0) is primitive
recursive, for fR(x) = 1

.
− x.

2. The relation R = {x ∈ N | x > 0} is primitive recursive, as fR(x) = 1
.
−

(1
.
− x). Denote sg(x) = fR(x).

3. If R ⊆ Nn and S ⊆ Nn are primitive recursive, then Nn \R, R∩S and R∪S
are primitive recursive, since

fNn\R(x1, . . . , xn) = 1
.
− fR(x1, . . . , xn),

fR∩S(x1, . . . , xn) = fR(x1, . . . , xn)· fS(x1, . . . , xn),

fR∪S(x1, . . . , xn) = fR(x1, . . . , xn)+fS(x1, . . . , xn)
.
− fR(x1, . . . , xn)· fS(x1, . . . , xn).
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4. R = {〈x, y〉 ∈ N2 | x ≤ y} is primitive recursive, since fR(x, y) = 1
.
− (x

.
−

y).

5. x = y ⇔ x ≤ y and y ≤ x whence x = y is primitive recursive.

6. x < y ⇔ x ≤ y and x 6= y whence x < y is primitive recursive.

7. If Ri ⊆ Nn, 1 ≤ i ≤ m, are primitive recursive and

Ri ∩Rj = ∅ when i 6= j and
m⋃
i=1

Ri = Nn

and functions fi : Nn → N, 1 ≤ i ≤ m, are primitive recursive, then the
function

h(x1, . . . , xn) =


f1(x1, . . . , xn) if R1(x1, . . . , xn)
...
fm(x1, . . . , xn) if Rm(x1, . . . , xn)

is primitive recursive, for

h(x1, . . . , xn) =

m∑
i=1

fi(x1, . . . , xn)· fRi
(x1, . . . , xn).

8. If f : Nn+1 → N is primitive recursive, then

g(x1, . . . , xn) =

x1∏
i=0

f(i, x1, . . . , xn)

and

h(x1, . . . , xn) =

x1∑
i=0

f(i, x1, . . . , xn)

are primitive recursive, for if

{
g′(0, x1, . . . , xn) = f(0, x1, . . . , xn)

g′(y + 1, x1, . . . , xn) = g′(y, x1, . . . , xn)· f(y + 1, x1, . . . , xn)

then g(x1, . . . , xn) = g′(x1, x1, . . . , xn), and if{
h′(0, x1, . . . , xn) = f(0, x1, . . . , xn)

h′(y + 1, x1, . . . , xn) = h′(y, x1, . . . , xn) + f(y + 1, x1, . . . , xn)

then h(x1, . . . , xn) = h′(x1, x1, . . . , xn).
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9. If R ⊆ Nn+1 is primitive recursive, then the relation

S = {〈x1, . . . , xn〉 | (∀z ≤ x1)(〈z, x1, . . . , xn〉 ∈ R)}

is primitive recursive, for fS(x1, . . . , xn) =
∏x1

i=0 fR(i, x1, . . . , xn). Simi-
larly,

S = {〈x1, . . . , xn〉 | (∃z ≤ x1)(〈z, x1, . . . , xn〉 ∈ R)}

is primitive recursive, for fS(x1, . . . , xn) = 1
.
− (1

.
−
∑x1

i=0 fR(i, x1, . . . xn)).

10. If R ⊆ Nn+1 is primitive recursive and f : Nn → N is obtained by bounded
minimalisation from R, i.e.

f(x1, . . . , xn) =

the least z ≤ x1 such that 〈z, x1, . . . , xn〉 ∈ R,
if there is such
0 otherwise

then f is primitive recursive, for if

f ′(0, x1, . . . , xn) = 0

f ′(y + 1, x1, . . . , xn) =


f ′(y, x1, . . . , xn) if (∃u ≤ y)(〈u, x1, . . . , xn〉 ∈ R)

y + 1 if 〈y + 1, x1, . . . , xn〉 ∈ R and
¬(∃u ≤ y)(〈u, x1, . . . , xn〉 ∈ R)

0 otherwise

then f(x1, . . . , xn) = f ′(x1, x1, . . . , xn). We then denote

f(x1, . . . , xn) = µz ≤ x1〈z, x1, . . . , xn〉 ∈ R.

11. Let [x] be the integer part of the real x.

f(x, y) = [x/y] is primitive recursive, since

f(x, y) = (µz ≤ x)(z· y + y > x) (We agree that [n/0] = 0.)

g(x) = [
√
x ] is primitive recursive, since

g(x) = (µz ≤ x)((z + 1)2 > x)

h(x) = [2 log(x+ 1)] is primitive recursive, since

h(x) = (µz ≤ x)(2z+1 > x+ 1). 2

What we call the pairing function, is the primitive recursive function

π(x, y) =
1

2
((x+ y)2 + 3x+ y).

This is a bijection N2 → N (Problem 5) whence we can define projection func-
tions

ρ(z) = (µx ≤ z)(∃y ≤ z)(π(x, y) = z)
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σ(z) = (µy ≤ z)(∃x ≤ z)(π(x, y) = z)

and
ρ(π(x, y)) = x, σ(π(x, y)) = y.

Thus π(x, y) codes the numbers x and y into one number. The functions ρ and
σ decode this code.

Now we need some elementary facts from number theory. For all x ∈ N and
y ∈ N \ {0} there are unique q ∈ N and r ∈ N such that following division
algorithm holds: x = q · y + r , r < y. The number r is the remainder. We
write r=rm(x, y) and agree that rm(x, 0) = x for all x. If rm(x, y) = 0, then
y is a factor of x and we write y | x , y divides x. We agree that 0 - x for all
x 6= 0. A natural number x is prime, x ∈ Pr, if its only factors are 1 and x and
if additionally x > 1. The numbers x and y are relative primes if they have no
other common factors than 1 and additionally x, y > 1. We then write 〈x, y〉 ∈
RP .

Example 5.9 The above fundamental concepts of number theory are all prim-
itive recursive.

1. The remainder function rm(x, y) is primitive recursive, since

rm(x, y) = (µz ≤ x)(∃n ≤ x)[(x = ny + z and z < y and y > 0)

or (y = 0 and z = x)].

2. The divisibility relation y|x is primitive recursive, since y|x ⇐⇒ rm(x, y) =
0.

3. The relation RP , i.e. “x and y are relative primes”, is primitive recursive,
since 〈x, y〉 ∈ RP ⇐⇒ x > 1 and y > 1 and not (∃n ≤ x)(n | x and n |
y and n > 1).

4. The set of primes Pr is primitive recursive, since x ∈ Pr ⇐⇒ x > 1 and not (∃n ≤
x)(n | x and n > 1 and n < x).

Let us denote consecutive primes as follows:

p0 = 2 p3 = 7 p100 = 547

p1 = 3 p4 = 11 p101 = · · ·

p2 = 5 p5 = 13
...

One of the fundamental truths of mathematics is that every m > 0 can be
expressed as a product of primes

m = 2a0 · 3a1 · . . . · pakk ,

where ak 6= 0, except if m = 1 in which case m = 20. This is the prime
factorisation of m. It can be generated simply by dividing the number m time
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after time, first by 2 as many times as the division is possible without remainder,
then by 3, then by 5 etc. Because of the uniqueness of prime factorisation,

ai = (µz ≤ m)(pzi | m and pz+1
i - m).

We use prime factorisation for coding an arbitrary sequence of numbers. In
order that the length of the sequence becomes coded as well, we add 1 to all
exponents. The code of a sequence 〈a0, . . . , ak〉 is the number

m = 2a0+1· 3a1+1 · . . . · pak+1
k . (5.1)

Conversely, if m > 1 is given, we denote:

k = len(m) = (µz ≤ m)(pz+1 - m)

ai = (m)i = (µz ≤ m)(pz+2
i - m).

Thus, if 〈a0, . . . , ak〉 ∈ Nk+1, then

k = len(2a0+1· . . . · pak+1
k )

ai = (2a0+1· . . . · pak+1
k )i.

Now we can both code an arbitrary sequence 〈a0, . . . , ak〉 into one number m
and decode an arbitrary number m > 0 into a sequence 〈(m)0, ..., (m)len(m)〉.
Decoding a number is only meaningful if the number m is indeed of the form
(5.1). As special cases we define len(1) = len(0) = 0 and (m)i = 0 when m = 0
or m = 1.

Example 5.10 The functions used in coding are all primitive recursive:

1. The function n 7→ pn is primitive recursive. (Problem 8).

2. The function len(x) is primitive recursive. Follows from 1.

3. The function 〈x, y〉 7→ (x)y is primitive recursive. Follows from 1.

The class of primitive recursive functions is closed under much more compli-
cated recursive definitions than Definition 5.5 (PR5). We use coding to prove
this, and demonstrate the method first with the example of double recursion:

Lemma 5.11 (Double recursion) Let
f1(0, x) = g1(x)

f2(0, x) = g2(x)

f1(y + 1, x) = h1(y, f1(y, x), f2(y, x), x)

f2(y + 1, x) = h2(y, f1(y, x), f2(y, x), x)

where g1, g2, h1, h2 are primitive recursive Then f1 and f2 are primitive recur-
sive.
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Proof. The following method is often useful: We define an auxiliary function

f∗(y, x) = 2f1(y,x)+1· 3f2(y,x)+1

and show that f∗ is primitive recursive. After that

f1(y, x) = (f∗(y, x))0

f2(y, x) = (f∗(y, x))1

are seen to be primitive recursive. Rather than trying to show that the functions
f1 and f2 are primitive recursive, we focus on the auxiliary function f∗ and
define the functions f1 and f2 in terms of that. For the function f∗ we obtain
the following equations:

f∗(0, x) = 2g1(x)+1 · 3g2(x)+1

f∗(y + 1, x) = 2f1(y+1,x)+1 · 3f2(y+1,x)+1

= 2h1(y,f1(y,x),f2(y,x),x)+1 · 3h2(y,f1(y,x),f2(y,x),x)+1

= 2h1(y,(f
∗(y,x))0,(f

∗(y,x))1,x)+1 · 3h2(y,(f
∗(y,x))0,(f

∗(y,x))1,x)+1

If we denote g∗(x) = 2g1(x)+1 · 3g2(x)+1 and

h∗(y, z, x) = 2h1(x,(z)0,(z)1,x)+1 · 3h2(x,(z)0,(z)1,x)+1,

then g∗ and h∗ are primitive recursive and

f∗(0, x) = g∗(x)

f∗(y + 1, x) = h∗(y, f∗(y, x), x)

2

Another example of recursion that is not of the simple type of Definition 5.5
is the following: 

h(0, x) = f1(x)

h(1, x) = f2(x)

h(y + 2, x) = g(y, h(y, x), h(y + 1, x), x).

To calculate h(y, x) in this example one has to calculate both h(y − 1, x) and
h(y − 2, x), while in the ordinary recursion{

h(0, x) = f(x)

h(y + 1, x) = g(y, h(y, x), x).

one has to calculate h(y− 1, x) only for calculating h(y, x). Another possibility
is that to calculate h(y, x) one has to calculate h([y/2], x). To deal with all
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examples of this type we prove a general result (Theorem 5.12). To this end, if
f(y, x1, . . . , xn) is a function, then we define

f̃(y, x1, . . . , xn) =

y∏
i=0

p
f(i,x1,...,xn)+1
i

whence f(i, x1, . . . , xn) = (f̃(i, x1, . . . , xn))i.
Note. If f is primitive recursive, then also f̃ is primitive recursive. If f̃ is
primitive recursive, then so is f .

Theorem 5.12 If{
f(0, x1, . . . , xn) = g(x1, . . . , xn)

f(y + 1, x1, . . . , xn) = h(y, f̃(y, x1, . . . , xn), x1, . . . , xn)

where g and h are primitive recursive, then f is primitive recursive.

Proof. It suffices to prove that f̃ is primitive recursive.{
f̃(0, x1, . . . , xn) = 2g(x1,...,xn)+1

f̃(y + 1, x1, . . . , xn) = f̃(y, x1, . . . , xn) · ph(y,f̃(y,x1,...,xn),x1,...,xn)+1
y+1

Example 5.13 The Fibonacci sequence is defined as follows: a0 = 0, a1 =
1, an+2 = an+an+1. The function f(n) = an is primitive recursive, for f(0) = 0

and f(n+ 1) = (f̃(n))
n
.
−1 + (f̃(n))n + (1

.
− n).

5.2 Recursive functions
We have observed that the class of primitive recursive functions is closed under
bounded minimalisation. Bounded minimalisation is a kind of search operation
with a bound on how large numbers we have to go through. The class of recursive
functions generalizes this to search without an upper bound, as long as we known
in advance that a solution can be found. Emphasizing the difference may seem
like splitting hairs, but in fact the class of recursive functions is much bigger
than the class of primitive recursive functions.

Let R ⊆ Nn+1 and f : Nn → N. We say that f is obtained from R by
minimalisation if

1. for all x1, . . . , xn ∈ N there is y such that 〈y, x1, . . . , xn〉 ∈ R.

2. for all x1, . . . , xn ∈ N we have f(x1, . . . , xn) is the least y such that
〈y, x1, . . . , xn〉 ∈ R.

Then we write
f(x1, . . . , xn) = µy(〈y, x1, . . . , xn〉 ∈ R)
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Definition 5.14 (Recursiveness) The class of recursive2 functions is defined
as follows:

1. S, Prni ,+, ·,
.
−, xy are recursive.

2. A function obtained from recursive functions by composition is recursive.

3. If R ⊆ Nn+1 is a relation such that fR is a recursive function (i.e. R is a
recursive relation) and f(x1, . . . , xn) = µy(〈y, x1, . . . , xn〉 ∈ R) then f is
recursive.

We can immediately observe that the class of recursive relations includes the
relations x = y, x < y and x ≤ y and is closed under conjunction, disjunction
and complement. Also restricted quantification preserves recursiveness:

(∀z ≤ y)(〈z, x1, . . . , xn〉 ∈ R)⇐⇒
(µz)(〈z, x1, . . . , xn〉 /∈ R ∨ z = y + 1) = y + 1

(∃z ≤ y)(〈z, x1, . . . , xn〉 ∈ R)⇐⇒
(µz)(〈z, x1, . . . , xn〉 ∈ R ∨ z = y + 1) ≤ y

Thus also rm(x, y), π(x, y), ρ(x, y) and σ(x, y) are recursive.

Note. If R = {〈y, x1, . . . , xn〉 | y = f(x1, . . . , xn)} is primitive recur-
sive, then f is not necessarily primitive recursive, but it is recursive, since
f(x1, . . . , xn) = µy(〈y, x1, . . . , xn〉 ∈ R).

Theorem 5.15 If{
f(0, x1, . . . , xn) = g(x1, . . . , xn)

f(y + 1, x1, . . . , xn) = h(y, f(y, x1, . . . , xn), x1, . . . , xn)

where g and h are recursive, then f is recursive.

Proof. We commence with a proof that the function n 7→ pn is recursive. We
code a number n and a sequence p0, p1, ..., pn into one number z:

z = 20 · 31 · ... · pnn.

Now b = pn satisfies

b is a prime
not 2|z
If p and q are consecutive primes, p < q ≤ b and i < n+ 1, then
pi|z ⇐⇒ qi+1|z
bn|z but not bn+1|z

2Also known as computable functions.
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Let R be the set of triples 〈z, b, n〉, where z b and n satisfy the above property.
It is easy to see (by induction) that R is a recursive relation and that for
all n there is one and only one z and one and only one b which satisfy the
condition 〈z, b, n〉 ∈ R. Now pn is easy to compute from the number (µz)(∃y ≤
z)R(z, y, n).

We now return to the original task and take advantage of the knowledge
that the function n 7→ pn is recursive: For given y and ~x we code the sequence
f(0, ~x), f(1, ~x), . . . , f(y, ~x) into one number z:

z = 2f(0,~x)+1 · 3f(1,~x)+1 · . . . · pyf(y,~x)+1

Now

(z)0 = f(0, ~x)

(z)1 = f(1, ~x)

...
(z)y = f(y, ~x)

It is clear that

f(y, ~x) = (µz((z)0 = g(~x) ∧ ∀i < y((z)i+1 = h(i, (z)i, ~x))))y.

Therefore f is recursive. 2

Theorem 5.15 holds also if the function xy is left out from Definition 5.14,
case 1. Then the above coding can be replaced by appeal to the so-called Chinese
Remainder Theorem.

We have now seen that the class of recursive functions is closed under the
same operations as the class of primitive recursive functions. In addition, re-
cursiveness is preserved by unbounded minimalisation. In fact recursiveness is
closed under much more complicated recursions than primitive recursiveness.
The Ackermann function

A(0, x) = x+ 1

A(y + 1, 0) = A(y, 1)

A(y + 1, x+ 1) = A(y,A(y + 1, x))

is an example of a recursive function that is not primitive recursive (Prob-
lems 15,)

According to the so-called Church’s Thesis the class of recursive functions is
exactly the same as the class of intuitively computable functions i.e. functions
computable by a human following an algorithm. This thesis has a lot of evidence.
All different attempts to define the concept of an intuitively computable function
have turned out equivalent with recursiveness.
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5.3 Definability in number theory
We prove in this section that recursive functions are definable in the standard
model of number theory. For simplicity3 we extend the vocabulary of number
theory with a symbol for the exponential function: Lexp = {⊕,⊗, 0, 1, exp},
where exp is a 2-place function symbol. Let Nexp = (N,+, ·, 0, 1, exp), where
exp(n,m) = nm and exp(0, 0) = 1.

Recall that a function f : Mn →M is said to be definable in a structureM
(see Definition 4.30) if the relation

{〈x1, . . . , xn, y〉|f(x1, . . . , xn) = y}

is definable inM.

Theorem 5.16 Let L vocabulary andM an L-structure. The class of functions
definable in M is closed under composition: Let f : Mn → M and gi : Mm →
M (1 ≤ i ≤ n) be definable. Then also h : Mm →M ,

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

is definable.

Proof. Let ϕ be an L-formula such that

M |=s ϕ⇐⇒ f(s(0), . . . , s(n− 1)) = s(n)

and ψi L-formulas, (1 ≤ i ≤ n), such that

M |=s ψi ⇐⇒ gi(s(0), . . . , s(m− 1)) = s(m).

In the formula ϕ the variable vn is playing the role of the value of the func-
tion f when its arguments are v0, ..., vn−1. Respectively, in the formula ψi
the variable vm plays the role of the value of the function gi when the argu-
ments are v0, ..., vm−1. Now h(a0, ..., am−1) = am if and only if there are values
b0, ..., bn such that for all i = 0, ..., n gi(a0, ..., am−1) = bi and additionally
f(b0, ..., bn) = am. We now write the same, but using predicate logic. First we
need some auxiliary variables that do not occur yet in these formulas. Let there-
fore k be greater than any j, for which vj occurs in the formula ϕ,ψ1, . . . , ψn.

h(s(0), . . . , s(m− 1)) = s(m)

⇐⇒
M |=s ∃vk . . . ∃vk+n(ϕ(vk/v0, . . . , vk+n/vn) ∧

ψ1(vk/vm) ∧
ψ2(vk+1/vm) ∧ . . .
. . . ∧ ψn(vk+n−1/vm) ∧
≈ vk+nvm)

2

3This could be avoided if desired.
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Theorem 5.17 The class of functions and relations definable in the model Nexp
is closed under minimalisation: If R ⊆ Nn+1 is definable in Nexp and f : Nn →
N such that

f(x1, . . . , xn) = µy(〈x1, . . . , xn, y〉 ∈ R)

then f is definable in Nexp.

Proof. Let ϕ be a formula of number theory such that

Nexp |=s ϕ⇐⇒ 〈s(0), . . . , s(n)〉 ∈ R

Let k be greater than any i, for which vi occurs in ϕ. Now

f(x1, ..., xn) = y ⇐⇒ (〈x1, . . . , xn, y〉 ∈ R and for all z < y(〈x1, . . . , xn, z〉 /∈ R)).

Therefore f(s(0), . . . , s(n − 1)) = s(n) ⇐⇒ Nexp |=s ϕ ∧ ∀vk(∃vk+1 ≈ ⊕ ⊕
vkvk+11vn → ¬ϕ(vk/vn)). 2

Theorem 5.18 All recursive functions are definable in Nexp.

Proof. The starting functions Z, S, +, ·, Prni ,
.
− and mn are clearly definable,

whence the claim follows from Theorem 5.16 and Theorem 5.17. 2

We now define Gödel-numbering. We associate terms and formulas of pred-
icate logic with natural numbers in a certain simple manner. This makes it
possible to apply number theory to terms and formulas. If w is a sequence (or
a word)

w = w0 . . . wk

built up from the symbols

0, 1,⊕,⊗, exp,≈, (, ),→,¬,∀, vi,

then the Gödel-number of w is the natural number

pwq = p0
#(w0)+1 · . . . · pk#(wk)+1

where
#(0) = 0 #(≈) = 5 #(¬) = 9
#(1) = 1 #(() = 6 #(∀) = 10
#(⊕) = 2 #()) = 7 #(vi) = 11 + i
#(⊗) = 3 #(→) = 8
#(exp) = 4

For example

p ≈ v0v1q = 26 · 312 · 513 = 2767921875000000
p∀v1 ≈ ⊕v0v1v2q = 211 · 313 · 56 · 73 · 1112 · 1313 · 1714

= 2800793635698292693582235331913008197087098733012068896000000
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Theorem 5.19 The set Trm = {ptq | t is an Lexp-term} is primitive recursive.

Proof. The following relations are primitive recursive:

Zero(x) ⇐⇒ x = p0q

One(x) ⇐⇒ x = p1q

V ariable(x) ⇐⇒ x = pviq for some i ≤ x
x ∗ y = z ⇐⇒ len(z) = len(x) + len(y) + 1 and

(∀i ≤ len(x))((z)i = (x)i) and
(∀i ≤ len(y))((z)len(x)+i+1 = (y)i)

Sum(x, y, z) ⇐⇒ z = p⊕q ∗ x ∗ y
Product(x, y, z) ⇐⇒ z = p⊗q ∗ x ∗ y

Exp(x, y, z) ⇐⇒ z = pexpq ∗ x ∗ y

Here x ∗ y is an associative operation corresponding to concatenation4 of words.
We now show that fTrm is a primitive recursive function. Note that fTrm(z) = 1
iff

Zero(z) ∨One(z) ∨ V ariable(z)∨
(∃x ≤ z)(∃y ≤ z)(Sum(x, y, z) ∨ Product(x, y, z) ∨ Exp(x, y, z))
∧fTrm(x) = fTrm(y) = 1)

If x ≤ z, then fTrm(x) = (f̃Trm(z))x. Thus fTrm(z) = 1 ⇐⇒ Zero(z) or
One(z) or V ariable(z) or (∃x < z)(∃y < z)((Sum(x, y, z) or Product(x, y, z)
or Exp(x, y, z)) and (f̃Trm(z))x = (f̃Trm(z))y = 1). The right hand side of the
equivalence is:

〈z − 1, f̃Trm(z − 1)〉 ∈ R

where R is primitive recursive, since x and y above can be chosen strictly smaller
than z. Now we have{

fTrm(0) = 0

fTrm(z + 1) = fR(z, f̃Trm(z))

Hence fTrm is primitive recursive 2

Theorem 5.20 The set Fml = {pϕq | ϕ Lexp-formula} is primitive recursive.

Proof. See Problem 24. 2

We now define a substitution operation which is purely number theoretic
but in fact codes substitution among words. Let Sub ⊆ N3 be the relation

4Note that 2a0+1 · . . . · pan+1
n ∗ 2an+1+1 · . . . · pan+m+1+1

m = 2a0+1 · . . . · pan+m+1+1
n+m+1 . For

example 288 ∗ 10800 = 25 · 32 ∗ 24 · 33 · 52 = 25 · 32 · 54 · 73 · 112 = 7470540000.
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〈x, y, z〉 ∈ Sub⇐⇒ there are words w and w′ such that
x = pwq, y = pw′q and w′ is obtained w
by replacing each v0 by the symbol z,

where 0 is the term 0 and n+ 1 is the term n⊕ 1.

Lemma 5.21 The relation Sub is primitive recursive.

Proof. Let E ⊆ N be the primitive recursive set

E = {x ∈ N|(∀y ≤ x)((x)y 6= #(v0))}

Now

〈x, y, z〉 ∈ Sub iff (x ∈ E and x = y) or
(∃i < x)(∃j < x)(∃k < y)(〈i, k, z〉 ∈ Sub
and x = i ∗ pv0q ∗ j and y = k ∗ pzq ∗ j
and j ∈ E)

The function z 7→ pzq is clearly primitive recursive. Hence Sub is. 2

Our goal now is to show that the property “ϕ is true” of a number theoretic
sentence ϕ is not a definable property of the Gödel number of ϕ, and therefore
also not a recursive property. In short, truth in number theory cannot be defined
in a recursive way (see Corollary 5.24). Combined with Church’s Thesis (see
page 5.2) this means that the truth of number theoretic statements cannot be
decided mechanically. This result of Gödel from 1931 caused an uproar which
has not completely subsided.

Behind Gödel’s result is the age-old Liar Paradox. A man says he is lying.
Is he telling the truth? If he is, he is lying, whence he is telling the truth after
all. So it cannot be that he is telling the truth. But that means he is lying i.e.
what he says is true. Either way we end up in a contradiction. The same can
be presented as follows: Consider the sentence

The sentence (5.2) is not true. (5.2)

Is the sentence (5.2) true or not true? If it is true, it is not true. If it is not true,
it is true. We cannot decide the truth of (5.2). From this it seems to follow that
there is something wrong with the sentence (5.2).

Gödel’s extraordinary achievement was to replace in this argument “not true”
by “unprovable” and use Theorem 5.18 to show that the following sentence really
exists:

The sentence (5.3) is unprovable. (5.3)

Is the sentence (5.3) provable? If it is, it is by the Soundness Theorem true and
hence unprovable. Hence (5.3) cannot be provable. But then (5.3) is true. We
have an example of a true sentence that cannot be proved.
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Gödel’s proof is based on the so-called Gödel’s Fixed-Point Theorem 5.22,
which has the following idea: Consider a formula ϕ of number theory with one
free variable v0. The formula ϕ expresses some number theoretic property of the
number v0. But v0 can have as its value the Gödel-number of a number theoretic
formula ψ. Thus in this case ϕ expresses a property of the Gödel-number of ψ.
The Fixed-Point Theorem says that ψ can be chosen in such a way that if v0 is
interpreted as the Gödel-number of ψ, then ϕ expresses exactly the property ψ.
In other words, the sentence ϕ(pψq/v0) says the same thing as the sentence ψ,
when pψq connotes the constant term ⊕...⊕ 01 (pψq ⊕-symbols).

Mathematics has many fixed-point theorems. For example the following:
If f is a continuous function of the closed interval [0, 1] into itself, then there
is a point x on the interval such that f(x) = x. One way of finding this x
is to compute f(0), f(f(0)), f(f(f(0))), .... It can be shown that this sequence
converges to some point x on the interval. Then we use continuity to show that
f(x) = x.

In logic one finds fixed points in principle in the same way, i.e. by iteration.
Iteration may, however, lead to a sentence of infinite length. We can avoid arriv-
ing at an infinite sentence by utilizing diagonalisation, based on a substitution
operation.

Theorem 5.22 (Gödel’s Fixed-Point Theorem) If ϕ is a formula of num-
ber, then there is formula ψ if number theory such that for all s : N→ Nexp.

Nexp |=s ψ ⇐⇒ Nexp |=s ϕ(pψq/v0)

and, in addition, the formulas ψ and ϕ(pψq/v0) have the same free variables.

Proof. Let σ be a formula for which

〈s(0), s(1), s(2)〉 ∈ Sub⇐⇒ Nexp |=s σ

Remember: 〈pwq, pw′q, z〉 ∈ Sub⇐⇒ w′ is obtained by replacing every v0 in w
by the term z. We may assume that v0 does not occur bound in σ and neither
does v0 or v1 in ϕ. Let θ be the formula

∃v1(ϕ(v1/v0) ∧ σ(v0/v2)).

It is worth noting that

Nexp |=s(pwq/0) θ ⇐⇒ Nexp |=s(pw′q/0) ϕ,

where w′ is obtained from w by replacing v0 by the term pwq. Let k = pθq and
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ψ = θ(k/v0). Now

Nexp |=s ψ ⇐⇒ Nexp |=s θ(k/v0)

⇐⇒ Nexp |=s(pθq/0) θ

⇐⇒ Nexp |=s(pw′q/0) ϕ, where w′ is obtained from θ

by replacing v0 by the term pθq(= k)

⇐⇒ Nexp |=s(pψq/0) ϕ

⇐⇒ Nexp |=s ϕ(pψq/v0)

2

Theorem 5.23 (Tarski’s Theorem) The set

Tr = {pψq | ψ is an Lexp-sentence and Nexp |= ψ}

is not definable in Nexp.

Proof. Suppose that there is an Lexp-formula ϕ such that s(0) ∈ Tr ⇐⇒
Nexp |=s ϕ

5. By Gödel’s Fixed-Point Theorem (5.22) there is an Lexp-formula
ψ such that Nexp |=s ψ ⇐⇒ Nexp |=s ¬ϕ(pψq/v0). Let s(0) = pψq. Since ψ is
an Lexp-sentence, we have

Nexp |=s ψ ⇐⇒ pψq ∈ Tr

⇐⇒ s(0) ∈ Tr

⇐⇒ Nexp |=s ϕ

⇐⇒ Nexp |=s ϕ(pψq/v0), since s(0) = pψq

⇐⇒ Nexp 6|=s ψ,

a contradiction. 2

Corollary 5.24 Tr is not a recursive set.

Proof. Theorem 5.18! 2

5.4 Recursively enumerable sets
A recursive set is intuitively such a set of natural numbers that of any given
number one can decide mechanically in finite time whether it belongs to the
set or not. In other words, the characteristic function of a recursive set is

5We may assume that the only free variable of ϕ is v0.
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mechanically (algorithmically) computable. Recursively enumerable sets are
such that we have again a mechanical algorithm for deciding whether a given
number is in the set and the algorithm gives a positive answer if the number
indeed is in the set, but if the number is not in the set the algorithm may
keep computing for ever and we will never find the answer (unless we wait
for an infinite amount of time). In other words, we can list the elements of a
recursively enumerable set mechanically with an algorithm, but the numbers do
not come in increasing order, so we may never know whether e.g. 15 pops up
in the list after a long wait or never.

Definition 5.25 (Recursive enumerability) A set A ⊆ N is recursively enu-
merable6 (shorthand r.e.), if A = ∅ or there is a recursive function f : N → N
such that

A = {f(n) | n ∈ N}.

Note. The question m ∈ A? can be decided by computing f(0), f(1),... until
f(n) = m, if m ∈ A. But if m /∈ A, one has to compute infinitely many values
f(0), f(1),... before the answer m /∈ A is settled.

Theorem 5.26 Every recursive set is recursively enumerable.

Proof. Let A 6= ∅ recursive i.e. fA is a recursive function. Let a ∈ A be
arbitrary. Let

f(n) =

{
n, if fA(n) = 1
a, if fA(n) = 0

Now f is recursive and A = {f(n) | n ∈ N}. 2

Theorem 5.27 Let A ⊆ N. the following conditions are equivalent:

(1) A is recursive.
(2) A and N \A are recursively enumerable

Proof. (1)⇒ (2) follows from from Theorem 5.26 because the complement
of a recursive set is always recursive.
(2)⇒ (1). Let for non-empty A

A = {f(n) | n ∈ N}
N \A = {g(n) | n ∈ N}

where f and g are recursive. If h(n) = µm(f(m) = n or g(m) = n) then h is
recursive and n ∈ A⇐⇒ f(h(n)) = n, whence A is recursive. 2

Theorem 5.28 The class of recursively enumerable sets is closed under union
and intersection.

6Recursively enumerable sets are also called computably enumerable.
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Proof. First:

Lemma 5.29 A set A ⊆ N is recursively enumerable if and only if there is a
recursive relation R ⊆ N× N such that

(∗) n ∈ A⇐⇒ (∃m ∈ N)(〈n,m〉 ∈ R)

Proof. Let first A ⊆ N be non-empty recursively enumerable, e.g. A = {f(n) |
n ∈ N}, where f is recursive. Let R = {〈n,m〉 | f(m) = n}. Now R is recursive
and (∗) holds. Let conversely R be recursive such that (∗) holds. Let a ∈ A and

f(n) =

{
ρ(n) if 〈ρ(n), σ(n)〉 ∈ R
a otherwise

Now f is recursive. If n ∈ N and 〈ρ(n), σ(n)〉 ∈ R, then ρ(n) ∈ A by (∗) i.e.
f(n) ∈ A. If on the other hand n ∈ A and 〈n,m〉 ∈ R then n = f(π(n,m)).
Hence A = {f(n) | n ∈ N}. 2

Corollary Recursively enumerable sets are definable in Nexp.

We return to the proof of Theorem 5.28. Let

n ∈ A⇐⇒ (∃m ∈ N)(〈n,m〉 ∈ R)

n ∈ B ⇐⇒ (∃m ∈ N)(〈n,m〉 ∈ R′).

Then

n ∈ A ∪B ⇐⇒ (∃m ∈ N)(〈n,m〉 ∈ R or 〈n,m〉 ∈ R′)
n ∈ A ∩B ⇐⇒ (∃m ∈ N)(〈n, ρ(m)〉 ∈ R and 〈n, σ(m)〉 ∈ R′).

2

Theorem 5.30 The set

Thm = {pϕq | P ` ϕ, ϕ a sentence of number theory }

is recursively enumerable.

Proof. Let Prf be the set of such numbers m, that 〈(m)0, (m)1, ...(m)len(m)〉
is a deduction.
Claim: Prf is primitive recursive
Proof. We make a sequence of observations, each one of which is provable by
methods we have already introduced, albeit one has to carry out a lot of details:
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(10) PeAx = {pϕq | ϕ is a member of Peano’s axioms } is p.r.
(20) PrAx = {pϕq | ϕ is an axiom of propositional ogic } is p.r.
(30) IdAx = {pϕq | ϕ is an L-identity axiom } is p.r.
(40) QuAx = {pϕq | ϕ is an L-quantifier axiom } is p.r.
(50) MP = {〈pϕq, p(ϕ→ ψ)q, pψq〉 | ϕ,ψ are formulas

of number theory } is p.r.
(60) Ug = {〈pn, (ϕ→ ψ)q, p(ϕ→ ∀vjψ)q〉 | ϕ,ψ are

formulas of number theory, 〈(n)0, . . . , (n)len(n)〉 = 〈θ0, . . . , θlen(n)〉,
and vj does not occur free in ϕ, θ0, . . . , or θlen(n) is p.r.

(70) Sen = {pϕq | ϕ is a sentence of number theory } is p.r.
Now

m ∈ Prf ⇐⇒ ∀i ≤ len(m)((m)i ∈ PeAx or (m)i ∈ PrAx tai (m)i ∈ IdAx

tai (m)i ∈ QuAx or
(∃j ≤ i)(∃k ≤ i)(〈(m)j , (m)k, (m)i〉 ∈ MP)

tai (∃n ≤ m)(∃p ≤ m)(∃j ≤ i)(〈n, (m)j , (m)i〉 ∈ Ug

and (∀s ≤ len(n))(∃t < i)((n)s = (m)t).

Finally:

n ∈ Thm⇐⇒ ∃m(m ∈ Prf and (m)len(m) = n and n ∈ Sen).

2

Corollary 5.31 (Gödel) There is a sentence of number theory which is true
but not provable from Peano’s axioms.

Proof. In Tarski’s Theorem 5.23 we defined the set

Tr = {pϕq | Nexp |= ϕ, ϕ a sentence of number theory}

and showed that Tr is not definable in Nexp. Therefore Thm 6= Tr. By the
Soundness Theorem 4.52, Thm ⊆ Tr. Thus Tr \ Thm 6= ∅. 2

Theorem 5.32 (Gödel’s 1st Incompleteness Theorem) Peano’s axioms P
are an incomplete theory i.e. there is a sentence ϕ of number theory such that
P 0 ϕ and P 0 ¬ϕ.

Proof. By Corollary 5.31 there is a true sentence ϕ such that P 0 ϕ. If P ` ¬ϕ,
then N |= ¬ϕ and ϕ is not true. Therefore P 0 ¬ϕ. 2

It follows from Theorem 5.32 that P has two modelsM1 andM2 in one of
which ϕ is true and in the other false. This means that models of P are not
all elementarily equivalent. Hence non-standard models have number theoretic
properties that the standard model N does not share.
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In view of Theorem 14.6 there is a formula Bew of number theory with just
v0 free such that

s(0) ∈ Thm⇐⇒ Nexp |=s Bew

i.e. if ϕ is a sentence of number theory, then

P ` ϕ⇐⇒ Nexp |= Bew(pϕq/v0).

By Gödel’s Fixed-Point Theorem there is sentence ψ such that (letting ϕ =
¬Bew):

Nexp |= ψ ⇐⇒ Nexp |= ¬Bew(pψq/v0).

If P ` ψ, then Nexp |= Bew(pψq/v0), whence Nexp |= ¬ψ. On the other hand
P ` ψ implies Nexp |= ψ, whence

P ` ψ =⇒ Nexp |= (ψ ∧ ¬ψ).

Therefore P 0 ψ i.e. Nexp |= ¬Bew(pϕq/v0) i.e. Nexp |= ψ.
Hence ψ is an example of a true sentence which is not provable. Note that

ψ says “ψ is not provable”

i.e. ψ is a version of the Liar Paradox.
We know that P is consistent since Nexp |= P . The consistency of P is

equivalent to P 0≈ 01 (since P ` [ϕ∧¬ϕ]↔≈ 01, whatever the formula ϕ is).
But

P 0≈ 01⇐⇒ Nexp |= ¬Bew(p≈ 01q/v0),

which is why we use a shorthand

Con(P )

of its own for ¬Bew(p≈ 0 1q/v0).

Theorem 5.33 (Gödel’s 2nd Incompleteness Theorem) The consistency
of Peano’s axioms is not provable from Peano’s axioms i.e. Con(P ) is a true
sentence such that

P 0 Con(P )

Proof. (Sketch) In this proof we assume that the usual definition of exp is
included in P. Let ψ be as above. Now if P ` ψ, then Nexp |= Bew(pψq/v0).
Inspection of the proof of Theorem 5.30 indicates that P ` ψ implies even
P ` Bew(pψq/v0). Inspection of the proof of Gödel’s Fixed-Point Theorem 5.22
indicates that even

P ` (ψ ↔ ¬Bew(pψq/v0)).

Thus P ` ψ implies P ` ¬ψ, i.e. P ` ψ implies P ` [ψ ∧ ¬ψ], i.e. P `≈ 01, i.e.
Nexp |= ¬Con(P ). This entire inference can be carried out in P , which yields

P ` Bew(pψq/v0)→ ¬Con(P )
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i.e.
P ` Con(P )→ ¬Bew(pψq/v0)

i.e.
P ` Con(P )→ ψ.

Thus if P ` Con(P ), then P ` ψ, contrary to P 0 ψ. 2

Gödel’s 2nd Incompleteness Theorem holds for all axiom sets (theories) in
mathematics as long as they are simple enough for the proof of Theorem 5.30 to
go through and strong enough that basic facts of number theory can be proved.
No such axiom system can prove its own consistency: This can be interpreted
as saying that mathematics can never prove its own consistency.

Theorem 5.33 has the interesting consequence that P has a non-standrad
model M for which M |= ¬Con(P ) i.e. M |= Bew(p≈ 01q/v0). Thus there is
an element t ofM which satisfies inM all the conditions of being a deduction
and the last element of the “deduction” t is ≈ 01. Loosely speaking, we can
“prove” inM that 0 = 1 but the “proof” is infinitely long.
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5.5 Problems

1. Show that the functions c(y, x) = xy and Ck(x) = k, k ∈ N, are primitive
recursive.

2. Prove directly on the basis of Definition 5.5 that the function f(n) = n−̇1
is primitive recursive.

3. Prove directly on the basis of Definition 5.5 that bounded subtraction

x
.
− y =

{
x− y if x ≥ y
0 if x < y

is primitive recursive. Hint: You may find Problem 2 useful.

4. Prove directly on the basis of Definition 5.5, that if the function f(n,m)
is primitive recursive, then also the function g(n,m) = f(f(0,m), f(1, n))
is.

5. Show that function π : N2 → N, π(x, y) = ((x + y)2 + 3x + y)/2 is a
bijection.

6. Suppose R is a 1-place primitive recursive relation. Define Rn = {x ∈
R|x < n}. Show that f : N → N is primitive recursive when f(n) is the
number of the elements in the set Rn for all n ∈ N.

7. Suppose that f, g : N → N are primitive recursive and (g ◦ f)(x) ≥ x for
all x ∈ N. Show that the set {f(n)|n ∈ N} is primitive recursive.

8. Prove that the function n 7→ pn is primitive recursive.

9. Show that an infinite set R ⊆ N is recursive if and only if there exists a
strictly increasing recursive function f : N→ N for which R = {f(n) | n ∈
N}.

10. Let f be a recursive function such that A = {f(n) : n ∈ N} is non-
recursive. Let B = {2f(2n) : n ∈ N}, C = {3f(2n+1) : n ∈ N} Prove that
at least one of the sets B and C is non-recursive.

11. Show that for all a, b ∈ N there is a finite Xab ⊆ N× N such that:

(i) (a, b) ∈ Xab,

(ii) If (0, x+ 1) ∈ Xab then (0, x) ∈ Xab,

(iii) If (y + 1, 0) ∈ Xab then (y, 1) ∈ Xab,

(iv) If (y+1, x+1) ∈ Xab then (y+1, x) ∈ Xab and (y,A(y+1, x)) ∈ Xab.

12. Not so easy: Show that the Ackermann function is recursive.

13. Show that A(2, x) = 2x+ 3.
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14. Prove that : y + x < A(y, x) < A(y, x+ 1) ≤ A(y + 1, x).

15. Not so easy: Show that the Ackermann function is not primitive recursive.
(Hint: Show that for every primitive recursive function f(x1, . . . , xn) there
is a number a such that for all x1, . . . , xn we have f(x1, . . . , xn) < A(a, x1+
. . .+ xn).)

16. Let us call R ⊆ N number theoretic if it is definable in the model Nexp.
Suppose R ⊆ N2 is such that for all number theoretic P ⊆ N there is
m ∈ N such that for all x ∈ N: x ∈ P if and only if (x,m) ∈ R. Show that
R is not number theoretic.

17. Let n be the smallest number that cannot be defined with an English
sentence which has at most one thousand letters. What can you say about
the number n? What about the smallest natural number that cannot be
defined with an Lexp-formula with at most one thousand symbols?

18. Prove that if a 2-place relation R is definable in Nexp, then also the set
P = {a+ b : (a, b) ∈ R} is definable in Nexp.

19. A formula ψ of number theory is a fixed-point of a formula ϕ of number
theory if for all s : N→ Nexp we haveNexp |=s ψ ⇐⇒ Nexp |=s ϕ(pψq/v0).
Give an example of a fixed-point for the formula ≈ v0v0. What about
¬ ≈ v0v0?

20. Suppose f : N → N is recursive. Show that there is an Lexp-sentence ϕ
such that Nexp |= ϕ if and only if f(pϕq) = pϕq.

21. Give a function f : N→ N, which is not definable in Nexp .

22. Define the class of F-functions as follows:

(i) The functions Z, S, + and Prnm ovat F-functions,

(ii) If f : N → N and gi : N → N, 1 ≤ i ≤ n, are F-functions then also
h(x1, ..., xm) = f(g1(x1, ..., xm), ..., gn(x1, ..., xm)) is an F-function.

Show that multiplication is not an F-function (Hint: Investigate the growth
rate of multiplication).

23. Show that the set {pϕq : Nexp |= ϕ,ϕ is an Lexp-atomic formula} is prim-
itive recursive.

24. Show that the set {pϕq : Nexp |= ϕ,ϕ is an Lexp-formula} is primitive
recursive.

25. A relation R ⊆ N2 is said to be recursively enumerable if the set {π(x, y) :
R(x, y)} is recursively enumerable. Prove that if f : N→ N is a function,
then the following conditions are equivalent:

(a) f is recursive.
(b) The relation {(n, f(n)) : n ∈ N} is recursive.
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(c) The relation {(n, f(n)) : n ∈ N} is recursively enumerable.

26. Prove that if A and B are non-empty sets, then the following conditions
are equivalent:

(a) Both A and B are recursively enumerable sets.

(b) A×B is a recursively enumerable relation.

27. Show that every infinite recursively enumerable contains an infinite recur-
sive set.

28. Suppose R ⊆ N3 is a recursive relation. Show that the set

{n ∈ N : ∀z ≤ n∃yR(n, y, z)}

is recursively enumerable.

29. Suppose the sets An ⊆ N, n ∈ N, are such that the set {π(m,n) : m ∈ An}
is recursively enumerable. Show that the diagonal intersection

∆n∈NAn = {m ∈ N : m ∈ An kaikilla n ≤ m}

is recursively enumerable.

30. Let f : N → N recursive and A is the set of n ∈ N for which there exists
> n such m ∈ N that f(m) = n. Show that A is recursively enumerable.

31. Suppose A and B are recursively enumerable sets. Show that the set of n
such that 2n+ 3m ∈ B for some m ∈ A, is recursively enumerable.
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Chapter 6

Further reading

Good textbooks that are more or less similar to the current one, but are broader
in scope, are [5] and [6]. A good overview of mathematical logic conveying the
basics of the subject through to the 1960s is [14]. For later developments the
reader is referred to [1]. For anyone interested in the early development of
mathematical logic from Frege to Gödel the book [19] is invaluable.

The material presented above leads naturally to at least two directions of re-
search. The first is model theory which aims at classifying models of a given first
order theory, and at the same time aims at classifying theories according to what
their models look like. Model theory originates in the work of Alfred Tarski and
Abraham Robinson. It has developed into a rich and deep area of mathematics
with close connections to both algebra and analysis. Recommendable model
theory textbooks are [3] and [13].

Another direction of research that deserves to be mentioned is set theory.
We have learnt above that there are number theoretic statements that the Peano
axioms cannot decide. The same holds for the standard Zermelo-Fraenkel ax-
iomatisation of set theory. But with set theory the situation is also a little
different. It is not only that specifically drafted sentences can be undecided.
There are statements arising directly from mathematical practice that are un-
decidable. The most notorious is the Continuum Hypothesis, the claim that
every set of real numbers either permits an injection into natural numbers or
surjection onto the real numbers. The proof that the Continuum Hypothesis
is independent of the Zermelo-Fraenkel axioms of set theory is much more in-
volved than the proof of Gödel’s Incompleteness Theorem. The proof involves
the concept of forcing introduced by Paul Cohen in 1962. During the last fifty
years set theory has developed into a rich and deep field of mathematics. The
independence phenomenon is just one feature of set theory. Other important
topics are large cardinals and so-called inner models. Excellent textbooks on set
theory are [10] and [11].
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