
Part I: Computability on uncountable
structures

Arno Pauly

Swansea University

Minicourse Computable Analysis, Helsinki University

Coding in the classical setting

I Turing machines give us a notion of computability over
finite sequences.

I We want computability over integers, graphs, matrices,
logical formulas, finite groups, . . .

I So we need to code the objects of interest over finite
sequences.

I This is almost always utterly straight-forward.
I But what if we want to compute with objects from

uncountable spaces such as real numbers?

Overview

Day 1 Computability on Uncountable Structures:
Computability on Cantor space, represented
spaces and synthetic topology

Day 2 Examples: The continuous functions on the unit
interval; probability measures; the space of
countable ordinals

Day 3 Non-computability: An introduction to Weihrauch
degrees

Outline

Type 2 Computability and represented spaces

Basic constructions on represented spaces

Synthetic topology

Admissibility

Further reading

Type-2 Machines

Figure: A Type-2 Machine

Alternative definition: Turing functionals

Definition
An Oracle-TM M computes f :⊆ {0,1}N → {0,1}N, if whenever
M is provided p ∈ dom(f) as an oracle, it computes the total
function n 7→ f (p)(n).

{0,1}N carries the topology induced by the metric
d(p,q) = 2−min{n|p(n)6=q(n)}.

Theorem
A function f :⊆ {0,1}N → {0,1}N is continuous iff it is
computable relative to some oracle.

Represented spaces and computability

Definition
A represented space X is a pair (X , δX) where X is a set and
δX :⊆ {0,1}N → X a surjective partial function.

Definition
F :⊆ {0,1}N → {0,1}N is a realizer of f :⊆ X⇒ Y, iff
δY (F (p)) ∈ f (δX (p)) for all p ∈ dom(f δX).

{0,1}N F−−−−→ {0,1}NyδX

yδY

X f−−−−→ Y

Definition
f :⊆ X⇒ Y is called computable (continuous), iff it has a
computable (continuous) realizer.

A first attempt at a definition

Idea: Just use the decimal representation of reals as a coding
scheme.

Alan Turing.
On computable numbers, with an application to the
Entscheidungsproblem.
Proceedings of the LMS 1936.

Why that does not work

Can we multiply by 3?
Input : 0.333333333333333333333333 . . .

If we output 0.9, we could read a 4 next.

If we output 1.0, we could read a 2 next.

⇒ : We cannot.

A first attempt at a definition

Idea: Code a real number x ∈ R by a sequence (an)n∈N of
(dyadic) rational numbers such that |x − an| < 2−n.

Alan Turing.
On computable numbers, with an application to the
Entscheidungsproblem: Corrections.
Proceedings of the LMS 1937.

This works!

Products and sums

I Let 〈p,q〉 ∈ {0,1}N be defined via 〈p,q〉(2n) = p(n) and
〈p,q〉(2n + 1) = q(n).

I Given represented spaces X and Y, let
X× Y := (X × Y , δX×Y) be defined via
δX×Y (〈p,q〉) = (δX (p), δY (q)).

I Moreover, let X + Y := ({0} × X ∪ {1} × Y , δX+Y) be
defined via δX+Y (0p) = (0, δX (p)) and
δX+Y (1p) = (1, δY (p)).

Function spaces

Definition
For represented spaces X, Y, define the function space C(X,Y)
by np ∈ NN being a name of f : X → Y , iff the n-th oracle
machine with oracle p realizes f .

I call the elements of C(X,Y) continuous functions. This is
not topological continuity!

Properties of function spaces

Proposition
Let X, Y, Z, U be represented spaces. Then the following
functions are computable:

1. eval : C(X,Y)× X→ Y defined via eval(f , x) = f (x).
2. curry : C(X× Y,Z)→ C(X, C(Y,Z)) defined via

curry(f) = x 7→ (y 7→ f (x , y)).
3. uncurry : C(X, C(Y,Z))→ C(X× Y,Z) defined via

uncurry(f) = (x , y) 7→ f (x)(y).
4. ◦ : C(Y,Z)× C(X,Y)→ C(X,Z), the composition of

functions
5. × : C(X,Y)× C(U,Z)→ C(X× U,Y× Z)

6. const : Y→ C(X,Y) defined via const(y) = (x 7→ y).

Closed and open sets

Definition (Sierpiński space)
Let S be defined via δS(0N) = 1 and δS(p) = 0 for p 6= 0N.

Definition
Introduce O(X) by identifying U ⊆ X with χU ∈ C(X,S).
Introduce A(X) by identifying A ⊆ X with (X \ A) ∈ O(X).
Remark: The sets in O(X) happen to be the final topology on
X along δX .

Basic operations on sets
Proposition
Let X, Y be represented spaces. Then the following functions
are well-defined and computable:

1. C : O(X)→ A(X), C : A(X)→ O(X) mapping a set to its
complement

2. ∪ : O(X)×O(X)→ O(X), ∪ : A(X)×A(X)→ A(X)

3. ∩ : O(X)×O(X)→ O(X), ∩ : A(X)×A(X)→ A(X)

4.
⋃

: C(N,O(X))→ O(X) mapping a sequence (Un)n∈N of
open sets to their union

⋃
n∈N Un

5.
⋂

: C(N,A(X))→ A(X) mapping a sequence (An)n∈N of
closed sets to their intersection

⋂
n∈N An

6. −1 : C(X,Y)→ C(O(Y),O(X)) mapping f to f−1 as a
set-valued function for open sets

7. ∈: X×O(X)→ S defined via ∈ (x ,U) = 1, if x ∈ U.
8. × : A(X)×A(Y)→ A(X× Y)

Compactness

Definition
A represented space X is (computably) compact, if the map
isEmptyX : A(X)→ S defined via isEmptyX(∅) = 1 and
isEmptyX(A) = 0 otherwise is continuous (computable).

Equivalent characterizations

1. X is (computably) compact.
2. IsFullX : O(X)→ S is continuous (computable).
3. For every (computable) A ∈ A(X) the subspace A is

(computably) compact.
4. ⊆: A(X)×O(X)→ S is continuous (computable).
5. IsCover : C(N,O(X))→ S is continuous (computable).
6. FiniteSubcover :⊆ C(N,O(X))⇒ N is continuous

(computable).
7. Enough :⊆ C(N,A(X))⇒ N is continuous (computable).
8. For all Y, the map π2 : A(X× Y)→ A(Y) is continuous

(computable).
9. For some non-empty Y (containing a computable point),

the map π2 : A(X×Y)→ A(Y) is continuous (computable).

Compact sets
Definition
Define K(X) by identifying K ⊆ X with
{U ∈ O(X) | K ⊆ U} ∈ O(O(X)) whenever
K =

⋂
{U ∈ O(X) | K ⊆ U}.

Proposition
The following are computable:

1. ⊆: K(X)×O(X)→ S
2. ∪ : K(X)×K(X)→ K(X)

3. ∩ : K(X)×A(X)→ K(X)

4. −1 :⊆ C(O(Y),O(X))→ C(K(X),K(Y))

5. f 7→ f : C(X,Y)→ C(K(X),K(Y))

Proposition
X is computably compact iff id : A(X)→ K(X) is well-defined
and computable.

Overt spaces

Definition
Call X computably overt, iff isNotEmptyX : O(X)→ S is
computable.
Remark: isNotEmptyX : O(X)→ S is always continuous.

Overt sets

Definition
Define V(X) by identifying A ⊆ X with
{U ∈ O(X) | A ∩ U 6= ∅} ∈ O(O(X)) whenever A = A.

Proposition
The following are computable:

1. Intersects : V(X)×O(X)→ S
2. ∪ : V(X)× V(X)→ V(X)

3.
⋃

: C(N,V(X))→ V(X)

4. ∩ : V(X)×O(X)→ V(X)

5. (f ,A) 7→ f (A) : C(X,Y)× V(X)→ V(Y)

Quantifying

Theorem
The following are computable:

1. ∃ : O(X× Y)× V(X)→ O(Y mapping (R,A) to
{y ∈ Y | ∃x ∈ A (x , y) ∈ R}

2. ∀ : O(X× Y)×K(X)→ O(Y mapping (R,A) to
{y ∈ Y | ∀x ∈ A (x , y) ∈ R}

T2 separation

Definition
A represented space X is (computably) T2, if the map
x 7→ {x} : X→ A(X) is well-defined and continuous
(computable).

Example
The cofinite space {{n} ∈ A(N) | n ∈ N} is not T2.

T2, characterization

1. X is computably T2.
2. id : K(X)→ A(X) is well-defined and computable.
3. ∩ : K(X)×K(X)→ K(X) is well-defined and computable,

and X is T0.
4. 6=: X× X→ S defined via 6= (x , x) = 0 and 6= (x , y) = 1

otherwise is computable.
5. ∆X = {(x , x) | x ∈ X} ∈ A(X× X) is computable.

Observation

K(X) and A(X) are computably identical, iff X is a computably
compact computable T2 space.

There is much more. . .

Proposition
Let X be (computably) compact and Y (computably) T2. Then
the continuous maps in C(X,Y) are uniformly proper, i.e. the
map (f ,K) 7→ f−1(K) : C(X,Y)×K(Y)→ K(X) is well-defined
and continuous (computable).

Standard injection

Definition
A computable canonic injection κ : X→ K(X) is obtained via
x 7→ (U 7→ (x ∈ U)). We denote its image by Xκ.

Admissibility

Definition
Call X (computably) admissible, iff κ : X→ Xκ is (computably)
continuously invertible.

I Assume that f : X → Y is continuous w.r.t. the final
topologies of δX and δY.

I Then f−1 : O(Y)→ O(Y) is well-defined and continuous.
I Hence f : K(X)→ K(Y) is well-defined and continuous.
I And by composition so is (f ◦ κ) : X→ Yκ.
I Now if Y is admissible, then f : X→ Y is continuous.

Proposition
The map f−1 7→ f : C(O(Y),O(X))→ C(X,Y) is well-defined and
computable, provided that Y is computably admissible.

Another warning

Even for admissible spaces, the product X× Y is not
necessarily the topological product.

The admissible coreflector

Theorem
Let X, Y be represented spaces, and let Y be (computably)
admissible. There is a (computable) continuous map
R : C(X,Y)→ C(Xκ,Y) such that f = R(f) ◦ κ for all f ∈ C(X,Y).
Remark: X 7→ Xκ behaves like an effective Kolmogorov
quotient.

Example
(R10)κ ∼= R

How to use admissibility: An example

Assume that
1. We can recognize wrong solutions (i.e. the set of correct

solutions is a computable set A ∈ A(X).
2. We have a candidate set K ∈ K(X)

3. We know that there is a unique solution x in K .
Then x is computable!

Standard text book, very different approach

Klaus Weihrauch:
Computable Analysis.
Springer, 2000.

Primary source

Arno Pauly:
On the topological aspects of the theory of represented
spaces.
Computability, 2016, http://arxiv.org/abs/1204.3763.

Functional programming, cartesian closed categories
and topology

Martín Escardó:
Synthetic topology of datatypes and classical spaces.
ENTCS 2004.

Implementing compactness

Martín Escardó:
Seemingly impossible functional programs.
http://math.andrej.com/2007/09/28/seemingly-impossible-
functional-programs/

	Type 2 Computability and represented spaces
	Basic constructions on represented spaces
	Synthetic topology
	Admissibility
	Further reading

