Part I: Computability on uncountable structures

Arno Pauly

Swansea University

Minicourse Computable Analysis, Helsinki University

Coding in the classical setting

- Turing machines give us a notion of computability over finite sequences.
- We want computability over integers, graphs, matrices, logical formulas, finite groups, ...
- So we need to code the objects of interest over finite sequences.
- This is almost always utterly straight-forward.
- But what if we want to compute with objects from uncountable spaces such as real numbers?

Overview

- Day 1 Computability on Uncountable Structures: Computability on Cantor space, represented spaces and synthetic topology
- Day 2 Examples: The continuous functions on the unit interval; probability measures; the space of countable ordinals
- Day 3 Non-computability: An introduction to Weihrauch degrees

Type 2 Computability and represented spaces

Basic constructions on represented spaces

Synthetic topology

Admissibility

Further reading

Type-2 Machines

Figure: A Type-2 Machine

Alternative definition: Turing functionals

Definition

An Oracle-TM *M* computes $f :\subseteq \{0, 1\}^{\mathbb{N}} \to \{0, 1\}^{\mathbb{N}}$, if whenever *M* is provided $p \in \text{dom}(f)$ as an oracle, it computes the total function $n \mapsto f(p)(n)$.

 $\{0,1\}^{\mathbb{N}}$ carries the topology induced by the metric $d(p,q) = 2^{-\min\{n|p(n)\neq q(n)\}}$.

Theorem

A function $f :\subseteq \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ is continuous iff it is computable relative to some oracle.

Represented spaces and computability

Definition

A *represented space* **X** is a pair (X, δ_X) where X is a set and $\delta_X :\subseteq \{0, 1\}^{\mathbb{N}} \to X$ a surjective partial function.

Definition $F :\subseteq \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ is a realizer of $f :\subseteq \mathbf{X} \Rightarrow \mathbf{Y}$, iff $\delta_Y(F(p)) \in f(\delta_X(p))$ for all $p \in \text{dom}(f\delta_X)$.

$$\begin{array}{cccc} \{\mathbf{0},\mathbf{1}\}^{\mathbb{N}} & \stackrel{F}{\longrightarrow} & \{\mathbf{0},\mathbf{1}\}^{\mathbb{N}} \\ & & & \downarrow^{\delta_{X}} & & \downarrow^{\delta_{Y}} \\ \mathbf{X} & \stackrel{f}{\longrightarrow} & \mathbf{Y} \end{array}$$

Definition

 $f :\subseteq \mathbf{X} \Rightarrow \mathbf{Y}$ is called computable (continuous), iff it has a computable (continuous) realizer.

A first attempt at a definition

Idea: Just use the decimal representation of reals as a coding scheme.

Alan Turing.

On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the LMS 1936.

Can we multiply by 3? Input : 0.33333333333333333333333...

If we output 0.9, we could read a 4 next.

If we output 1.0, we could read a 2 next.

 \Rightarrow : We cannot.

A first attempt at a definition

Idea: Code a real number $x \in \mathbb{R}$ by a sequence $(a_n)_{n \in \mathbb{N}}$ of (dyadic) rational numbers such that $|x - a_n| < 2^{-n}$.

Alan Turing.

On computable numbers, with an application to the Entscheidungsproblem: Corrections.

Proceedings of the LMS 1937.

This works!

Products and sums

- Let $\langle p,q \rangle \in \{0,1\}^{\mathbb{N}}$ be defined via $\langle p,q \rangle(2n) = p(n)$ and $\langle p,q \rangle(2n+1) = q(n)$.
- Given represented spaces **X** and **Y**, let $\mathbf{X} \times \mathbf{Y} := (X \times Y, \delta_{X \times Y})$ be defined via $\delta_{X \times Y}(\langle p, q \rangle) = (\delta_X(p), \delta_Y(q)).$
- Moreover, let $\mathbf{X} + \mathbf{Y} := (\{0\} \times X \cup \{1\} \times Y, \delta_{X+Y})$ be defined via $\delta_{X+Y}(0p) = (0, \delta_X(p))$ and $\delta_{X+Y}(1p) = (1, \delta_Y(p))$.

Function spaces

Definition

For represented spaces **X**, **Y**, define the function space $C(\mathbf{X}, \mathbf{Y})$ by $np \in \mathbb{N}^{\mathbb{N}}$ being a name of $f : X \to Y$, iff the *n*-th oracle machine with oracle *p* realizes *f*.

I call the elements of $\mathcal{C}(\mathbf{X}, \mathbf{Y})$ continuous functions. This is not topological continuity!

Properties of function spaces

Proposition

Let **X**, **Y**, **Z**, **U** be represented spaces. Then the following functions are computable:

- 1. eval : $C(\mathbf{X}, \mathbf{Y}) \times \mathbf{X} \rightarrow \mathbf{Y}$ defined via eval(f, x) = f(x).
- 2. curry : $C(\mathbf{X} \times \mathbf{Y}, \mathbf{Z}) \rightarrow C(\mathbf{X}, C(\mathbf{Y}, \mathbf{Z}))$ defined via curry(f) = $x \mapsto (y \mapsto f(x, y))$.
- 3. uncurry : $C(\mathbf{X}, C(\mathbf{Y}, \mathbf{Z})) \rightarrow C(\mathbf{X} \times \mathbf{Y}, \mathbf{Z})$ defined via uncurry(f) = $(x, y) \mapsto f(x)(y)$.
- 4. $\circ: \mathcal{C}(Y, Z) \times \mathcal{C}(X, Y) \to \mathcal{C}(X, Z)$, the composition of functions
- 5. $\times : \mathcal{C}(\mathbf{X}, \mathbf{Y}) \times \mathcal{C}(\mathbf{U}, \mathbf{Z}) \rightarrow \mathcal{C}(\mathbf{X} \times \mathbf{U}, \mathbf{Y} \times \mathbf{Z})$
- 6. const : $\mathbf{Y} \to \mathcal{C}(\mathbf{X}, \mathbf{Y})$ defined via $\operatorname{const}(y) = (x \mapsto y)$.

Definition (Sierpiński space)

Let S be defined via $\delta_{\mathbb{S}}(0^{\mathbb{N}}) = 1$ and $\delta_{\mathbb{S}}(p) = 0$ for $p \neq 0^{\mathbb{N}}$.

Definition

Introduce $\mathcal{O}(\mathbf{X})$ by identifying $U \subseteq X$ with $\chi_U \in \mathcal{C}(\mathbf{X}, \mathbb{S})$. Introduce $\mathcal{A}(\mathbf{X})$ by identifying $A \subseteq X$ with $(X \setminus A) \in \mathcal{O}(\mathbf{X})$.

Remark: The sets in $\mathcal{O}(\mathbf{X})$ happen to be the final topology on *X* along δ_X .

Basic operations on sets

Proposition

Let **X**, **Y** be represented spaces. Then the following functions are well-defined and computable:

- 1. ^{*C*} : $\mathcal{O}(X) \to \mathcal{A}(X)$, ^{*C*} : $\mathcal{A}(X) \to \mathcal{O}(X)$ mapping a set to its complement
- $\textbf{2. } \cup : \mathcal{O}(\textbf{X}) \times \mathcal{O}(\textbf{X}) \rightarrow \mathcal{O}(\textbf{X}), \cup : \mathcal{A}(\textbf{X}) \times \mathcal{A}(\textbf{X}) \rightarrow \mathcal{A}(\textbf{X})$
- $\textbf{3.} \ \cap: \mathcal{O}(\textbf{X}) \times \mathcal{O}(\textbf{X}) \rightarrow \mathcal{O}(\textbf{X}), \cap: \mathcal{A}(\textbf{X}) \times \mathcal{A}(\textbf{X}) \rightarrow \mathcal{A}(\textbf{X})$
- 4. $\bigcup : \mathcal{C}(\mathbb{N}, \mathcal{O}(\mathbf{X})) \to \mathcal{O}(\mathbf{X})$ mapping a sequence $(U_n)_{n \in \mathbb{N}}$ of open sets to their union $\bigcup_{n \in \mathbb{N}} U_n$
- 5. $\bigcap : C(\mathbb{N}, \mathcal{A}(\mathbf{X})) \to \mathcal{A}(\mathbf{X})$ mapping a sequence $(A_n)_{n \in \mathbb{N}}$ of closed sets to their intersection $\bigcap_{n \in \mathbb{N}} A_n$
- 6. $^{-1}$: $\mathcal{C}(\mathbf{X}, \mathbf{Y}) \rightarrow \mathcal{C}(\mathcal{O}(\mathbf{Y}), \mathcal{O}(\mathbf{X}))$ mapping f to f^{-1} as a set-valued function for open sets
- 7. $\in: \mathbf{X} \times \mathcal{O}(\mathbf{X}) \rightarrow \mathbb{S}$ defined via $\in (x, U) = 1$, if $x \in U$.
- 8. $\times : \mathcal{A}(\mathbf{X}) \times \mathcal{A}(\mathbf{Y}) \rightarrow \mathcal{A}(\mathbf{X} \times \mathbf{Y})$

Compactness

Definition

A represented space **X** is (computably) compact, if the map $\mathsf{isEmpty}_{\mathbf{X}} : \mathcal{A}(\mathbf{X}) \to \mathbb{S}$ defined via $\mathsf{isEmpty}_{\mathbf{X}}(\emptyset) = 1$ and $\mathsf{isEmpty}_{\mathbf{X}}(A) = 0$ otherwise is continuous (computable).

Equivalent characterizations

- 1. X is (computably) compact.
- 2. IsFull_X : $\mathcal{O}(X) \to \mathbb{S}$ is continuous (computable).
- 3. For every (computable) $A \in \mathcal{A}(\mathbf{X})$ the subspace **A** is (computably) compact.
- 4. $\subseteq: \mathcal{A}(X) \times \mathcal{O}(X) \to \mathbb{S}$ is continuous (computable).
- 5. IsCover : $\mathcal{C}(\mathbb{N}, \mathcal{O}(\mathbf{X})) \to \mathbb{S}$ is continuous (computable).
- FiniteSubcover :⊆ C(N, O(X)) ⇒ N is continuous (computable).
- 7. Enough $:\subseteq \mathcal{C}(\mathbb{N}, \mathcal{A}(\mathbf{X})) \rightrightarrows \mathbb{N}$ is continuous (computable).
- 8. For all **Y**, the map $\pi_2 : \mathcal{A}(\mathbf{X} \times \mathbf{Y}) \to \mathcal{A}(\mathbf{Y})$ is continuous (computable).
- 9. For some non-empty **Y** (containing a computable point), the map $\pi_2 : \mathcal{A}(\mathbf{X} \times \mathbf{Y}) \to \mathcal{A}(\mathbf{Y})$ is continuous (computable).

Compact sets

Definition Define $\mathcal{K}(\mathbf{X})$ by identifying $K \subseteq X$ with $\{U \in \mathcal{O}(\mathbf{X}) \mid K \subseteq U\} \in \mathcal{O}(\mathcal{O}(\mathbf{X}))$ whenever $K = \bigcap \{U \in \mathcal{O}(\mathbf{X}) \mid K \subseteq U\}.$

Proposition

The following are computable:

1.
$$\subseteq$$
: $\mathcal{K}(\mathbf{X}) \times \mathcal{O}(\mathbf{X}) \to \mathbb{S}$
2. \cup : $\mathcal{K}(\mathbf{X}) \times \mathcal{K}(\mathbf{X}) \to \mathcal{K}(\mathbf{X})$
3. \cap : $\mathcal{K}(\mathbf{X}) \times \mathcal{A}(\mathbf{X}) \to \mathcal{K}(\mathbf{X})$
4. $^{-1}$: \subseteq $\mathcal{C}(\mathcal{O}(\mathbf{Y}), \mathcal{O}(\mathbf{X})) \to \mathcal{C}(\mathcal{K}(\mathbf{X}), \mathcal{K}(\mathbf{Y}))$
5. $f \mapsto f$: $\mathcal{C}(\mathbf{X}, \mathbf{Y}) \to \mathcal{C}(\mathcal{K}(\mathbf{X}), \mathcal{K}(\mathbf{Y}))$

Proposition

X is computably compact iff id : $\mathcal{A}(X) \to \mathcal{K}(X)$ is well-defined and computable.

Overt spaces

Definition Call X computably overt, iff isNotEmpty_X : $\mathcal{O}(X) \to \mathbb{S}$ is computable.

Remark: isNotEmpty_X : $\mathcal{O}(X) \to \mathbb{S}$ is always continuous.

Overt sets

Definition Define $\mathcal{V}(\mathbf{X})$ by identifying $A \subseteq X$ with $\{U \in \mathcal{O}(\mathbf{X}) \mid A \cap U \neq \emptyset\} \in \mathcal{O}(\mathcal{O}(\mathbf{X}))$ whenever $A = \overline{A}$.

Proposition

The following are computable:

1. Intersects : $\mathcal{V}(\mathbf{X}) \times \mathcal{O}(\mathbf{X}) \to \mathbb{S}$ 2. $\cup : \mathcal{V}(\mathbf{X}) \times \mathcal{V}(\mathbf{X}) \to \mathcal{V}(\mathbf{X})$ 3. $\overline{\bigcup} : \mathcal{C}(\mathbb{N}, \mathcal{V}(\mathbf{X})) \to \mathcal{V}(\mathbf{X})$ 4. $\cap : \mathcal{V}(\mathbf{X}) \times \mathcal{O}(\mathbf{X}) \to \mathcal{V}(\mathbf{X})$ 5. $(f, A) \mapsto \overline{f(A)} : \mathcal{C}(\mathbf{X}, \mathbf{Y}) \times \mathcal{V}(\mathbf{X}) \to \mathcal{V}(\mathbf{Y})$

Quantifying

Theorem

The following are computable:

1.
$$\exists$$
 : $\mathcal{O}(\mathbf{X} \times \mathbf{Y}) \times \mathcal{V}(\mathbf{X}) \rightarrow \mathcal{O}(\mathbf{Y} \text{ mapping } (R, A) \text{ to } \{y \in \mathbf{Y} \mid \exists x \in A (x, y) \in R\}$

2.
$$\forall$$
 : $\mathcal{O}(\mathbf{X} \times \mathbf{Y}) \times \mathcal{K}(\mathbf{X}) \rightarrow \mathcal{O}(\mathbf{Y} \text{ mapping } (R, A) \text{ to } \{y \in \mathbf{Y} \mid \forall x \in A (x, y) \in R\}$

T_2 separation

Definition

A represented space **X** is (computably) T_2 , if the map $x \mapsto \{x\} : \mathbf{X} \to \mathcal{A}(\mathbf{X})$ is well-defined and continuous (computable).

Example

The cofinite space $\{\{n\} \in \mathcal{A}(\mathbb{N}) \mid n \in \mathbb{N}\}$ is **not** T_2 .

T_2 , characterization

- 1. **X** is computably T_2 .
- 2. id : $\mathcal{K}(X) \to \mathcal{A}(X)$ is well-defined and computable.
- 3. $\cap : \mathcal{K}(X) \times \mathcal{K}(X) \to \mathcal{K}(X)$ is well-defined and computable, and X is T_0 .
- 4. \neq : $\mathbf{X} \times \mathbf{X} \rightarrow \mathbb{S}$ defined via $\neq (x, x) = 0$ and $\neq (x, y) = 1$ otherwise is computable.
- 5. $\Delta_{\mathbf{X}} = \{(x, x) \mid x \in \mathbf{X}\} \in \mathcal{A}(\mathbf{X} \times \mathbf{X}) \text{ is computable.}$

Observation

 $\mathcal{K}(\mathbf{X})$ and $\mathcal{A}(\mathbf{X})$ are computably identical, iff **X** is a computably compact computable T_2 space.

There is much more...

Proposition

Let **X** be (computably) compact and **Y** (computably) T_2 . Then the continuous maps in $C(\mathbf{X}, \mathbf{Y})$ are uniformly proper, i.e. the map $(f, K) \mapsto f^{-1}(K) : C(\mathbf{X}, \mathbf{Y}) \times \mathcal{K}(\mathbf{Y}) \to \mathcal{K}(\mathbf{X})$ is well-defined and continuous (computable).

Standard injection

Definition

A computable canonic injection $\kappa : \mathbf{X} \to \mathcal{K}(\mathbf{X})$ is obtained via $x \mapsto (U \mapsto (x \in U))$. We denote its image by \mathbf{X}_{κ} .

Admissibility

Definition

Call **X** (computably) admissible, iff $\kappa : \mathbf{X} \to \mathbf{X}_{\kappa}$ is (computably) continuously invertible.

- Assume that *f* : X → Y is continuous w.r.t. the final topologies of δ_X and δ_Y.
- ▶ Then $f^{-1} : \mathcal{O}(\mathbf{Y}) \to \mathcal{O}(\mathbf{Y})$ is well-defined and continuous.
- ► Hence $f : \mathcal{K}(\mathbf{X}) \to \mathcal{K}(\mathbf{Y})$ is well-defined and continuous.
- And by composition so is $(f \circ \kappa) : \mathbf{X} \to \mathbf{Y}_{\kappa}$.
- ▶ Now if **Y** is admissible, then $f : \mathbf{X} \rightarrow \mathbf{Y}$ is continuous.

Proposition

The map $f^{-1} \mapsto f : \mathcal{C}(\mathcal{O}(\mathbf{Y}), \mathcal{O}(\mathbf{X})) \to \mathcal{C}(\mathbf{X}, \mathbf{Y})$ is well-defined and computable, provided that \mathbf{Y} is computably admissible.

Another warning

Even for admissible spaces, the product $\mathbf{X} \times \mathbf{Y}$ is not necessarily the topological product.

The admissible coreflector

Theorem

Let **X**, **Y** be represented spaces, and let **Y** be (computably) admissible. There is a (computable) continuous map $\mathfrak{R} : \mathcal{C}(\mathbf{X}, \mathbf{Y}) \to \mathcal{C}(\mathbf{X}_{\kappa}, \mathbf{Y})$ such that $f = \mathfrak{R}(f) \circ \kappa$ for all $f \in \mathcal{C}(\mathbf{X}, \mathbf{Y})$.

Remark: $\mathbf{X} \mapsto \mathbf{X}_{\kappa}$ behaves like an effective Kolmogorov quotient.

Example

 $(\mathbb{R}_{10})_{\kappa} \cong \mathbb{R}$

How to use admissibility: An example

Assume that

- 1. We can recognize wrong solutions (i.e. the set of correct solutions is a computable set $A \in \mathcal{A}(\mathbf{X})$.
- 2. We have a candidate set $K \in \mathcal{K}(\mathbf{X})$
- 3. We know that there is a unique solution x in K.

Then x is computable!

Standard text book, very different approach

Klaus Weihrauch: Computable Analysis. Springer, 2000.

Primary source

Arno Pauly:

On the topological aspects of the theory of represented spaces.

Computability, 2016, http://arxiv.org/abs/1204.3763.

Functional programming, cartesian closed categories and topology

Martín Escardó: Synthetic topology of datatypes and classical spaces. ENTCS 2004.

Implementing compactness

Martín Escardó:

Seemingly impossible functional programs.

http://math.andrej.com/2007/09/28/seemingly-impossiblefunctional-programs/