Part I: Computability on uncountable structures

Arno Pauly

Swansea University
Minicourse Computable Analysis, Helsinki University

Coding in the classical setting

- Turing machines give us a notion of computability over finite sequences.
- We want computability over integers, graphs, matrices, logical formulas, finite groups, ...
- So we need to code the objects of interest over finite sequences.
- This is almost always utterly straight-forward.
- But what if we want to compute with objects from uncountable spaces such as real numbers?

Overview

Day 1 Computability on Uncountable Structures: Computability on Cantor space, represented spaces and synthetic topology
Day 2 Examples: The continuous functions on the unit interval; probability measures; the space of countable ordinals
Day 3 Non-computability: An introduction to Weihrauch degrees

Outline

Type 2 Computability and represented spaces

Basic constructions on represented spaces

Synthetic topology

Admissibility

Further reading

Type-2 Machines

Figure: A Type-2 Machine

Alternative definition: Turing functionals

Definition
An Oracle-TM M computes $f: \subseteq\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$, if whenever M is provided $p \in \operatorname{dom}(f)$ as an oracle, it computes the total function $n \mapsto f(p)(n)$.
$\{0,1\}^{\mathbb{N}}$ carries the topology induced by the metric $d(p, q)=2^{-\min \{n \mid p(n) \neq q(n)\}}$.
Theorem
A function $f: \subseteq\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ is continuous iff it is computable relative to some oracle.

Represented spaces and computability

Definition

A represented space \mathbf{X} is a pair $\left(X, \delta_{X}\right)$ where X is a set and $\delta_{X}: \subseteq\{0,1\}^{\mathbb{N}} \rightarrow X$ a surjective partial function.

Definition
$F: \subseteq\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ is a realizer of $f: \subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$, iff $\delta_{Y}(F(p)) \in f\left(\delta_{X}(p)\right)$ for all $p \in \operatorname{dom}\left(f \delta_{X}\right)$.

$$
\begin{aligned}
&\{0,1\}^{\mathbb{N}} \xrightarrow{F}\{0,1\}^{\mathbb{N}} \\
& \downarrow_{X} \\
& \mathbf{X} \xrightarrow{\delta_{x}} \downarrow^{\delta_{y}} \\
& \mathbf{Y}
\end{aligned}
$$

Definition
$f: \subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$ is called computable (continuous), iff it has a computable (continuous) realizer.

A first attempt at a definition

Idea: Just use the decimal representation of reals as a coding scheme.
击 Alan Turing.
On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the LMS 1936.

Why that does not work

Can we multiply by 3 ? Input: 0.333333333333333333333333...

If we output 0.9 , we could read a 4 next.
If we output 1.0, we could read a 2 next.
\Rightarrow : We cannot.

A first attempt at a definition

Idea: Code a real number $x \in \mathbb{R}$ by a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of (dyadic) rational numbers such that $\left|x-a_{n}\right|<2^{-n}$.
量 Alan Turing.
On computable numbers, with an application to the Entscheidungsproblem: Corrections. Proceedings of the LMS 1937.

This works!

Products and sums

- Let $\langle p, q\rangle \in\{0,1\}^{\mathbb{N}}$ be defined via $\langle p, q\rangle(2 n)=p(n)$ and $\langle p, q\rangle(2 n+1)=q(n)$.
- Given represented spaces \mathbf{X} and \mathbf{Y}, let $\mathbf{X} \times \mathbf{Y}:=\left(X \times Y, \delta_{X \times Y}\right)$ be defined via $\delta_{X \times Y}(\langle p, q\rangle)=\left(\delta_{X}(p), \delta_{Y}(q)\right)$.
- Moreover, let $\mathbf{X}+\mathbf{Y}:=\left(\{0\} \times X \cup\{1\} \times Y, \delta_{X+Y}\right)$ be defined via $\delta_{X+Y}(0 p)=\left(0, \delta_{X}(p)\right)$ and $\delta_{X+Y}(1 p)=\left(1, \delta_{Y}(p)\right)$.

Function spaces

Definition

For represented spaces \mathbf{X}, \mathbf{Y}, define the function space $\mathcal{C}(\mathbf{X}, \mathbf{Y})$ by $n p \in \mathbb{N}^{\mathbb{N}}$ being a name of $f: X \rightarrow Y$, iff the n-th oracle machine with oracle p realizes f.
I call the elements of $\mathcal{C}(\mathbf{X}, \mathbf{Y})$ continuous functions. This is not topological continuity!

Properties of function spaces

Proposition

Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{U}$ be represented spaces. Then the following functions are computable:

1. eval : $\mathcal{C}(\mathbf{X}, \mathbf{Y}) \times \mathbf{X} \rightarrow \mathbf{Y}$ defined via eval $(f, x)=f(x)$.
2. curry: $\mathcal{C}(\mathbf{X} \times \mathbf{Y}, \mathbf{Z}) \rightarrow \mathcal{C}(\mathbf{X}, \mathcal{C}(\mathbf{Y}, \mathbf{Z}))$ defined via curry $(f)=x \mapsto(y \mapsto f(x, y))$.
3. uncurry : $\mathcal{C}(\mathbf{X}, \mathcal{C}(\mathbf{Y}, \mathbf{Z})) \rightarrow \mathcal{C}(\mathbf{X} \times \mathbf{Y}, \mathbf{Z})$ defined via uncurry $(f)=(x, y) \mapsto f(x)(y)$.
4. ○: $\mathcal{C}(\mathbf{Y}, \mathbf{Z}) \times \mathcal{C}(\mathbf{X}, \mathbf{Y}) \rightarrow \mathcal{C}(\mathbf{X}, \mathbf{Z})$, the composition of functions
5. $\times: \mathcal{C}(\mathbf{X}, \mathbf{Y}) \times \mathcal{C}(\mathbf{U}, \mathbf{Z}) \rightarrow \mathcal{C}(\mathbf{X} \times \mathbf{U}, \mathbf{Y} \times \mathbf{Z})$
6. const : $\mathbf{Y} \rightarrow \mathcal{C}(\mathbf{X}, \mathbf{Y})$ defined via const $(y)=(x \mapsto y)$.

Closed and open sets

Definition (Sierpiński space)
Let \mathbb{S} be defined via $\delta_{\mathbb{S}}\left(0^{\mathbb{N}}\right)=1$ and $\delta_{\mathbb{S}}(p)=0$ for $p \neq 0^{\mathbb{N}}$.
Definition
Introduce $\mathcal{O}(\mathbf{X})$ by identifying $U \subseteq X$ with $\chi u \in \mathcal{C}(\mathbf{X}, \mathbb{S})$.
Introduce $\mathcal{A}(\mathbf{X})$ by identifying $A \subseteq X$ with $(X \backslash A) \in \mathcal{O}(\mathbf{X})$.
Remark: The sets in $\mathcal{O}(\mathbf{X})$ happen to be the final topology on X along δ_{X}.

Basic operations on sets

Proposition

Let \mathbf{X}, \mathbf{Y} be represented spaces. Then the following functions are well-defined and computable:

1. ${ }^{c}: \mathcal{O}(\mathbf{X}) \rightarrow \mathcal{A}(\mathbf{X}),{ }^{c}: \mathcal{A}(\mathbf{X}) \rightarrow \mathcal{O}(\mathbf{X})$ mapping a set to its complement
2. $\cup: \mathcal{O}(\mathbf{X}) \times \mathcal{O}(\mathbf{X}) \rightarrow \mathcal{O}(\mathbf{X}), \cup: \mathcal{A}(\mathbf{X}) \times \mathcal{A}(\mathbf{X}) \rightarrow \mathcal{A}(\mathbf{X})$
3. $\cap: \mathcal{O}(\mathbf{X}) \times \mathcal{O}(\mathbf{X}) \rightarrow \mathcal{O}(\mathbf{X}), \cap: \mathcal{A}(\mathbf{X}) \times \mathcal{A}(\mathbf{X}) \rightarrow \mathcal{A}(\mathbf{X})$
4. $\cup: \mathcal{C}(\mathbb{N}, \mathcal{O}(\mathbf{X})) \rightarrow \mathcal{O}(\mathbf{X})$ mapping a sequence $\left(U_{n}\right)_{n \in \mathbb{N}}$ of open sets to their union $\bigcup_{n \in \mathbb{N}} U_{n}$
5. $\cap: \mathcal{C}(\mathbb{N}, \mathcal{A}(\mathbf{X})) \rightarrow \mathcal{A}(\mathbf{X})$ mapping a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of closed sets to their intersection $\bigcap_{n \in \mathbb{N}} A_{n}$
6. ${ }^{-1}: \mathcal{C}(\mathbf{X}, \mathbf{Y}) \rightarrow \mathcal{C}(\mathcal{O}(\mathbf{Y}), \mathcal{O}(\mathbf{X}))$ mapping f to f^{-1} as a set-valued function for open sets
7. $\in \mathbf{X} \times \mathcal{O}(\mathbf{X}) \rightarrow \mathbb{S}$ defined via $\in(x, U)=1$, if $x \in U$.
8. $\times: \mathcal{A}(\mathbf{X}) \times \mathcal{A}(\mathbf{Y}) \rightarrow \mathcal{A}(\mathbf{X} \times \mathbf{Y})$

Compactness

Definition

A represented space \mathbf{X} is (computably) compact, if the map isEmpty $\mathbf{x}: \mathcal{A}(\mathbf{X}) \rightarrow \mathbb{S}$ defined via isEmpty $\mathbf{x}(\emptyset)=1$ and $\operatorname{isEmpty}_{\mathbf{x}}(A)=0$ otherwise is continuous (computable).

Equivalent characterizations

1. \mathbf{X} is (computably) compact.
2. IsFull $\mathbf{X}: \mathcal{O}(\mathbf{X}) \rightarrow \mathbb{S}$ is continuous (computable).
3. For every (computable) $A \in \mathcal{A}(\mathbf{X})$ the subspace \mathbf{A} is (computably) compact.
4. $\subseteq: \mathcal{A}(\mathbf{X}) \times \mathcal{O}(\mathbf{X}) \rightarrow \mathbb{S}$ is continuous (computable).
5. IsCover: $\mathcal{C}(\mathbb{N}, \mathcal{O}(\mathbf{X})) \rightarrow \mathbb{S}$ is continuous (computable).
6. FiniteSubcover $: \subseteq \mathcal{C}(\mathbb{N}, \mathcal{O}(\mathbf{X})) \rightrightarrows \mathbb{N}$ is continuous (computable).
7. Enough $: \subseteq \mathcal{C}(\mathbb{N}, \mathcal{A}(\mathbf{X})) \rightrightarrows \mathbb{N}$ is continuous (computable).
8. For all \mathbf{Y}, the map $\pi_{2}: \mathcal{A}(\mathbf{X} \times \mathbf{Y}) \rightarrow \mathcal{A}(\mathbf{Y})$ is continuous (computable).
9. For some non-empty \mathbf{Y} (containing a computable point), the map $\pi_{2}: \mathcal{A}(\mathbf{X} \times \mathbf{Y}) \rightarrow \mathcal{A}(\mathbf{Y})$ is continuous (computable).

Compact sets

Definition
Define $\mathcal{K}(\mathbf{X})$ by identifying $K \subseteq X$ with
$\{U \in \mathcal{O}(\mathbf{X}) \mid K \subseteq U\} \in \mathcal{O}(\mathcal{O}(\mathbf{X}))$ whenever
$K=\bigcap\{U \in \mathcal{O}(\mathbf{X}) \mid K \subseteq U\}$.
Proposition
The following are computable:

$$
\begin{aligned}
& \text { 1. } \subseteq: \mathcal{K}(\mathbf{X}) \times \mathcal{O}(\mathbf{X}) \rightarrow \mathbb{S} \\
& \text { 2. } \cup: \mathcal{K}(\mathbf{X}) \times \mathcal{K}(\mathbf{X}) \rightarrow \mathcal{K}(\mathbf{X}) \\
& \text { 3. } \cap: \mathcal{K}(\mathbf{X}) \times \mathcal{A}(\mathbf{X}) \rightarrow \mathcal{K}(\mathbf{X}) \\
& \text { 4. } \quad \text { - }: \subseteq \mathcal{C}(\mathcal{O}(\mathbf{Y}), \mathcal{O}(\mathbf{X})) \rightarrow \mathcal{C}(\mathcal{K}(\mathbf{X}), \mathcal{K}(\mathbf{Y})) \\
& \text { 5. } f \mapsto f: \mathcal{C}(\mathbf{X}, \mathbf{Y}) \rightarrow \mathcal{C}(\mathcal{K}(\mathbf{X}), \mathcal{K}(\mathbf{Y}))
\end{aligned}
$$

Proposition

\mathbf{X} is computably compact iff id : $\mathcal{A}(\mathbf{X}) \rightarrow \mathcal{K}(\mathbf{X})$ is well-defined and computable.

Overt spaces

Definition
Call \mathbf{X} computably overt, iff isNotEmpty $\mathbf{X}: \mathcal{O}(\mathbf{X}) \rightarrow \mathbb{S}$ is computable.
Remark: isNotEmpty $: \mathbf{O}(\mathbf{X}) \rightarrow \mathbb{S}$ is always continuous.

Overt sets

Definition

Define $\mathcal{V}(\mathbf{X})$ by identifying $A \subseteq X$ with $\{U \in \mathcal{O}(\mathbf{X}) \mid A \cap U \neq \emptyset\} \in \mathcal{O}(\mathcal{O}(\mathbf{X}))$ whenever $A=\bar{A}$.

Proposition

The following are computable:

1. Intersects : $\mathcal{V}(\mathbf{X}) \times \mathcal{O}(\mathbf{X}) \rightarrow \mathbb{S}$
2. $\cup: \mathcal{V}(\mathbf{X}) \times \mathcal{V}(\mathbf{X}) \rightarrow \mathcal{V}(\mathbf{X})$
3. $\bar{U}: \mathcal{C}(\mathbb{N}, \mathcal{V}(\mathbf{X})) \rightarrow \mathcal{V}(\mathbf{X})$
4. $\cap: \mathcal{V}(\mathbf{X}) \times \mathcal{O}(\mathbf{X}) \rightarrow \mathcal{V}(\mathbf{X})$
5. $(f, A) \mapsto \overline{f(A)}: \mathcal{C}(\mathbf{X}, \mathbf{Y}) \times \mathcal{V}(\mathbf{X}) \rightarrow \mathcal{V}(\mathbf{Y})$

Quantifying

Theorem

The following are computable:

1. $\exists: \mathcal{O}(\mathbf{X} \times \mathbf{Y}) \times \mathcal{V}(\mathbf{X}) \rightarrow \mathcal{O}(\mathbf{Y}$ mapping (R, A) to $\{y \in \mathbf{Y} \mid \exists x \in A(x, y) \in R\}$
2. $\forall: \mathcal{O}(\mathbf{X} \times \mathbf{Y}) \times \mathcal{K}(\mathbf{X}) \rightarrow \mathcal{O}(\mathbf{Y}$ mapping (R, A) to $\{y \in \mathbf{Y} \mid \forall x \in A(x, y) \in R\}$

T_{2} separation

Definition
A represented space \mathbf{X} is (computably) T_{2}, if the map $x \mapsto\{x\}: \mathbf{X} \rightarrow \mathcal{A}(\mathbf{X})$ is well-defined and continuous (computable).

Example

The cofinite space $\{\{n\} \in \mathcal{A}(\mathbb{N}) \mid n \in \mathbb{N}\}$ is not T_{2}.

T_{2}, characterization

1. \mathbf{X} is computably T_{2}.
2. id : $\mathcal{K}(\mathbf{X}) \rightarrow \mathcal{A}(\mathbf{X})$ is well-defined and computable.
3. $\cap: \mathcal{K}(\mathbf{X}) \times \mathcal{K}(\mathbf{X}) \rightarrow \mathcal{K}(\mathbf{X})$ is well-defined and computable, and \mathbf{X} is T_{0}.
4. $\neq: \mathbf{X} \times \mathbf{X} \rightarrow \mathbb{S}$ defined via $\neq(x, x)=0$ and $\neq(x, y)=1$ otherwise is computable.
5. $\Delta_{\mathbf{x}}=\{(x, x) \mid x \in \mathbf{X}\} \in \mathcal{A}(\mathbf{X} \times \mathbf{X})$ is computable.

Observation

$\mathcal{K}(\mathbf{X})$ and $\mathcal{A}(\mathbf{X})$ are computably identical, iff \mathbf{X} is a computably compact computable T_{2} space.

There is much more...

Proposition

Let \mathbf{X} be (computably) compact and \mathbf{Y} (computably) T_{2}. Then the continuous maps in $\mathcal{C}(\mathbf{X}, \mathbf{Y})$ are uniformly proper, i.e. the $\operatorname{map}(f, K) \mapsto f^{-1}(K): \mathcal{C}(\mathbf{X}, \mathbf{Y}) \times \mathcal{K}(\mathbf{Y}) \rightarrow \mathcal{K}(\mathbf{X})$ is well-defined and continuous (computable).

Standard injection

Definition

A computable canonic injection $\kappa: \mathbf{X} \rightarrow \mathcal{K}(\mathbf{X})$ is obtained via $x \mapsto(U \mapsto(x \in U))$. We denote its image by \mathbf{X}_{κ}.

Admissibility

Definition

Call \mathbf{X} (computably) admissible, iff $\kappa: \mathbf{X} \rightarrow \mathbf{X}_{\kappa}$ is (computably) continuously invertible.

- Assume that $f: X \rightarrow Y$ is continuous w.r.t. the final topologies of $\delta_{\mathbf{X}}$ and $\delta_{\mathbf{Y}}$.
- Then $f^{-1}: \mathcal{O}(\mathbf{Y}) \rightarrow \mathcal{O}(\mathbf{Y})$ is well-defined and continuous.
- Hence $f: \mathcal{K}(\mathbf{X}) \rightarrow \mathcal{K}(\mathbf{Y})$ is well-defined and continuous.
- And by composition so is $(f \circ \kappa): \mathbf{X} \rightarrow \mathbf{Y}_{\kappa}$.
- Now if \mathbf{Y} is admissible, then $f: \mathbf{X} \rightarrow \mathbf{Y}$ is continuous.

Proposition

The map $f^{-1} \mapsto f: \mathcal{C}(\mathcal{O}(\mathbf{Y}), \mathcal{O}(\mathbf{X})) \rightarrow \mathcal{C}(\mathbf{X}, \mathbf{Y})$ is well-defined and computable, provided that \mathbf{Y} is computably admissible.

Another warning

Even for admissible spaces, the product $\mathbf{X} \times \mathbf{Y}$ is not necessarily the topological product.

The admissible coreflector

Theorem
Let \mathbf{X}, \mathbf{Y} be represented spaces, and let \mathbf{Y} be (computably) admissible. There is a (computable) continuous map $\mathfrak{R}: \mathcal{C}(\mathbf{X}, \mathbf{Y}) \rightarrow \mathcal{C}\left(\mathbf{X}_{\kappa}, \mathbf{Y}\right)$ such that $f=\mathfrak{R}(f) \circ \kappa$ for all $f \in \mathcal{C}(\mathbf{X}, \mathbf{Y})$.
Remark: $\mathbf{X} \mapsto \mathbf{X}_{\kappa}$ behaves like an effective Kolmogorov quotient.

Example
$\left(\mathbb{R}_{10}\right)_{\kappa} \cong \mathbb{R}$

How to use admissibility: An example

Assume that

1. We can recognize wrong solutions (i.e. the set of correct solutions is a computable set $A \in \mathcal{A}(\mathbf{X})$.
2. We have a candidate set $K \in \mathcal{K}(\mathbf{X})$
3. We know that there is a unique solution x in K.

Then x is computable!

Standard text book, very different approach

圊 Klaus Weihrauch:
Computable Analysis.
Springer, 2000.

Primary source

國 Arno Pauly:
On the topological aspects of the theory of represented spaces.
Computability, 2016, http://arxiv.org/abs/1204.3763.

Functional programming, cartesian closed categories and topology

國 Martín Escardó:
Synthetic topology of datatypes and classical spaces.
ENTCS 2004.

Implementing compactness

E
Martín Escardó:
Seemingly impossible functional programs.
http://math.andrej.com/2007/09/28/seemingly-impossible-functional-programs/

