Axiomatization of implication for probabilistic independence and unary variants of marginal identity and marginal distribution equivalence

Minna Hirvonen
University of Helsinki
minna.hirvonen@helsinki.fi

Helsinki Logic Seminar, March 27, 2024

Overview

Background
(Probabilistic) team semantics
Dependencies and independences
Logical implication and implication problems

PIA+UMI+UMDE implication
Axiomatization
A polynomial time algorithm

Team semantics

- For a finite set of variables D and a finite set of values A, an assignment is a function $s: D \rightarrow A$.
- A team X is a finite set of assignments $s: D \rightarrow A$.

x	y	z	u
a	b	c	a
a	b	d	a
b	a	c	a
b	a	d	a

Probabilistic team semantics

- A probabilistic team \mathbb{X} is a function $\mathbb{X}: X \rightarrow(0,1]$ such that $\sum_{s \in X} \mathbb{X}(s)=1$.

x	y	z	u	$\#$
a	b	c	a	$1 / 4$
a	b	d	a	$1 / 4$
b	a	c	a	$1 / 4$
b	a	d	a	$1 / 4$

Probabilistic independence

Let \bar{x} and \bar{y} be (possibly empty) tuples of variables from D.
An atom $\bar{x} \Perp \bar{y}$ is a probabilistic independence atom (PIA)
For a tuple of variables \bar{x} from D and a tuple of values \bar{a} from A, let

$$
\left|\mathbb{X}_{\bar{x}=\bar{a}}\right|:=\sum_{\substack{s(\bar{x})=\bar{a} \\ s \in X}} \mathbb{X}(s),
$$

i.e, $\left|\mathbb{X}_{\bar{x}=\bar{a}}\right|$ is the marginal probability of that the variables \bar{x} have the values \bar{a} in probabilistic team \mathbb{X}.
$\mathbb{X} \models \bar{x} \Perp \bar{y}$ iff $\left|\mathbb{X}_{\bar{x}=\bar{a}}\right| \cdot\left|\mathbb{X}_{\bar{y}=\bar{b}}\right|=\left|\mathbb{X}_{\bar{x} \bar{y}=\bar{a} \bar{b}}\right|$ for all $\bar{a} \bar{b} \in A^{\mid \bar{x} \bar{y}}$.
Let \mathbb{X} be the probabilistic team depicted below. Then $\mathbb{X} \vDash x \Perp u$, $\mathbb{X} \models u \Perp u$, and $\mathbb{X} \models y \Perp z$, but $\mathbb{X} \not \models x \Perp y$.

x	y	z	u	$\#$
a	b	c	a	$1 / 4$
a	b	d	a	$1 / 4$
b	a	c	a	$1 / 4$
b	a	d	a	$1 / 4$

Unary marginal identity and marginal distribution equivalence

Let x, y be variables from D.
An atom $x \approx y$ is called a unary marginal identity (UMI).
An atom $x \approx^{*} y$ is called a unary marginal distribution equivalence (UMDE).

Satisfaction:
(i) $\mathbb{X} \models x \approx y$ iff $\left|\mathbb{X}_{x=a}\right|=\left|\mathbb{X}_{y=a}\right|$ for all $a \in A$.
(ii) $\mathbb{X} \models x \approx^{*} y$ iff $\left\{\left\{\left|\mathbb{X}_{x=a}\right|: a \in A\right\}\right\}=\left\{\left\{\left|\mathbb{X}_{y=a}\right|: a \in A\right\}\right\}$.

Example

Let \mathbb{X} be the probabilistic team depicted below. Then $\mathbb{X} \models x \approx y$ and $\mathbb{X} \models y \approx^{*} z$, but $\mathbb{X} \not \models y \approx z$ and $\mathbb{X} \not \models x \approx^{*} u$.

x	y	z	u	$\#$
a	b	c	a	$1 / 4$
a	b	d	a	$1 / 4$
b	a	c	a	$1 / 4$
b	a	d	a	$1 / 4$

Logical implication and implication problems

A set of atoms Σ is said to logically imply another atom σ, if every (probabilistic) team that satisfies the set of atoms Σ also satisfies the atom σ.

We write $\Sigma \models \sigma$ for " Σ logically implies σ ".

An implication problem is the task of deciding whether a given set of atoms Σ logically implies another given atom σ.

Some related implication problems

Axiomatization and polynomial time algorithm for disjoint PIAs (Geiger et al., 1991). Note that a PIA $\bar{x} \Perp \bar{y}$ is disjoint if $\operatorname{Var}(\bar{x}) \cap \operatorname{Var}(\bar{y})=\emptyset$.

Axiomatization for (general) marginal identity (Hannula et al. 2022).

Axiomatization and polynomial time algorithm for FDs+UMIs+UMDEs (Hirvonen, 2022).

PIA+UMI+UMDE implication

Sound and complete axiomatization (Hirvonen, 2024) for PIA + UMI + UMDE:

UMI1: $x \approx x$
UMI2: If $x \approx y$, then $y \approx x$.
UMI3: If $x \approx y$ and $y \approx z$, then $x \approx z$.
UMDE1: $x \approx^{*} x$
UMDE2: If $x \approx^{*} y$, then $y \approx^{*} x$.
UMDE3: If $x \approx^{*} y$ and $y \approx^{*} z$, then $x \approx^{*} z$.
UMI \& UMDE: If $x \approx y$, then $x \approx^{*} y$.

PIA1: $\emptyset \Perp \bar{x}$
PIA2: If $\bar{x} \Perp \bar{y}$, then $\bar{y} \Perp \bar{x}$.
PIA3: If $\bar{x} \Perp \bar{y}$, then $\bar{x}^{\prime} \Perp \bar{y}^{\prime}$ for all $\operatorname{Var}\left(\bar{x}^{\prime}\right) \subseteq \operatorname{Var}(\bar{x})$,
$\operatorname{Var}\left(\bar{y}^{\prime}\right) \subseteq \operatorname{Var}(\bar{y})$.
PIA4: If $\bar{x} \Perp \bar{y}$ and $\bar{x} \bar{y} \Perp \bar{z}$, then $\bar{x} \Perp \bar{y} \bar{z}$.
PIA5: If $\bar{x} \Perp \bar{y}$ and $\bar{z} \Perp \bar{z}$, then $\bar{x} \Perp \bar{y} \bar{z}$.
PIA \& UMDE 1: If $x \approx^{*} y$ and $y \Perp y$, then $x \Perp x$.
PIA \& UMDE 2: If $x \Perp x$ and $y \Perp y$, then $x \approx^{*} y$.

Sound and complete axiomatizations

We write $\Sigma \vdash \sigma$, if σ can be deduced from Σ by using the axioms introduced above.

Theorem (Hirvonen, 2024)
For any set $\Sigma \cup\{\sigma\}$ of PIA, UMI, and UMDE atoms,

$$
\Sigma \models \sigma \text { if and only if } \Sigma \vdash \sigma .
$$

Since it is straightforward to check the soundness of the axioms, our axiomatization for PIA+UMI+UMDE implication is sound.

Theorem (Soundness)
For any set $\Sigma \cup\{\sigma\}$ of PIA, UMI, and UMDE atoms,

$$
\text { If } \Sigma \vdash \sigma \text {, then } \Sigma \models \sigma \text {. }
$$

Theorem (Completeness)
For any set $\Sigma \cup\{\sigma\}$ of PIA, UMI, and UMDE atoms,

$$
\text { If } \Sigma \models \sigma \text {, then } \Sigma \vdash \sigma \text {. }
$$

Completeness proof is a modified version of the completeness proof of the axiomatization for disjoint PIAs (Geiger et al., 1991)

The idea of the proof is to show the contraposition: we assume that $\Sigma \nvdash \sigma$, and construct a probabilistic team that witnesses $\Sigma \not \models \sigma$. We will handle the cases where σ is UMI, UMDE, or PIA separately in the following three lemmas. In the below, D is assumed to be the set of variables that appear in Σ.

UMI

Suppose that $\Sigma \nvdash x \approx y$. We show that $\Sigma \not \models x \approx y$.
Let z_{1}, \ldots, z_{n} be a list of those variables $z_{i} \in D$ for which $\Sigma \vdash x \approx^{*} z_{i}$, and let u_{1}, \ldots, u_{m} be a list of those variables $u_{j} \in D$ for which $\Sigma \nvdash x \approx^{*} u_{j}$. These lists are clearly disjoint, and $D=\left\{z_{1}, \ldots, z_{n}\right\} \cup\left\{u_{1}, \ldots, u_{m}\right\}$.

Let team $X=\{s\}$, where

$$
s(v)= \begin{cases}0, & \text { if } v \in\left\{z_{1}, \ldots, z_{n}\right\} \\ 1, & \text { if } v \in\left\{u_{1}, \ldots, u_{m}\right\} .\end{cases}
$$

Define then $\mathbb{X}: X \rightarrow(0,1]$ such that $\mathbb{X}(s)=1$.

Since $\Sigma \vdash x \approx x$ and $\Sigma \nvdash x \approx y$, we have $x \in\left\{z_{1}, \ldots, z_{n}\right\}$ and $y \in\left\{u_{1}, \ldots, u_{m}\right\}$. Hence, by the construction, $\mathbb{X} \not \vDash x \approx y$.

Suppose that $\Sigma \vdash v \approx v^{\prime}$. Now, because of the transitivity axiom UMI3, either $v, v^{\prime} \in\left\{z_{1}, \ldots, z_{n}\right\}$ or $v, v^{\prime} \in\left\{u_{1}, \ldots, u_{m}\right\}$. This means that $\mathbb{X} \vDash v \approx v^{\prime}$.

It is easy to see that all UMDEs and PIAs are satisfied by \mathbb{X}, so $\mathbb{X} \neq \Sigma$.

UMDE

Suppose that $\Sigma \nvdash x \approx^{*} y$. We show that $\Sigma \not \models x \approx^{*} y$.
First, note that $\Sigma \vdash x \Perp x$ and $\Sigma \vdash y \Perp y$ imply $\Sigma \vdash x \approx^{*} y$, so either $\Sigma \nvdash x \Perp x$ or $\Sigma \nvdash y \Perp y$. Without loss of generality, assume that $\sum \forall x \Perp x$.

Let z_{1}, \ldots, z_{n} be a list of those variables $z_{i} \in D$ for which $\Sigma \vdash x \approx^{*} z_{i}$, and let u_{1}, \ldots, u_{m} be a list of those variables $u_{j} \in D$ for which $\Sigma \nvdash x \approx^{*} u_{j}$. These lists are clearly disjoint, and $D=\left\{z_{1}, \ldots, z_{n}\right\} \cup\left\{u_{1}, \ldots, u_{m}\right\}$.

Let team X consist of all the tuples from the set

$$
Z_{1} \times \cdots \times Z_{n} \times U_{1} \times \cdots \times U_{m}
$$

where $Z_{i}=\{0,1\}$ and $U_{j}=\{0\}$ for $i=1, \ldots, n$ and $j=1, \ldots, m$. Define then \mathbb{X} as the uniform distribution over X.

It is easy to see that $\mathbb{X} \not \vDash x \approx^{*} y$. Suppose that $\Sigma \vdash v \approx v^{\prime}$. Now, since $v \approx v^{\prime}$ implies $v \approx^{*} v^{\prime}$, because of the transitivity axiom UMDE3, either $v, v^{\prime} \in\left\{z_{1}, \ldots, z_{n}\right\}$ or $v, v^{\prime} \in\left\{u_{1}, \ldots, u_{m}\right\}$. This means that $\mathbb{X} \models v \approx v^{\prime}$. The case $\Sigma \vdash v \approx^{*} v^{\prime}$ is analogous.

Suppose that $\Sigma \vdash v \Perp v$. Suppose for a contradiction that $\mathbb{X} \not \models v \Perp v$. Then by the construction of $\mathbb{X}, v \in\left\{z_{1}, \ldots, z_{n}\right\}$. This means that $\Sigma \vdash x \approx^{*} v$, and thus by applying the axiom PIA \& UMDE 1, we obtain $\Sigma \vdash x \Perp x$. This contradicts the assumption that $\sum \forall x \Perp x$.

Suppose then that $\Sigma \vdash \bar{w} \Perp \bar{w}^{\prime}$. If $\operatorname{Var}(\bar{w}) \cap \operatorname{Var}\left(\bar{w}^{\prime}\right) \neq \emptyset$, then by the decomposition axiom PIA3, $\Sigma \vdash v \Perp v$ for all $v \in \operatorname{Var}(\bar{w}) \cap \operatorname{Var}\left(\bar{w}^{\prime}\right)$. By the previous case, we know that then $\mathbb{X} \models v \Perp v$. Thus, by the constancy axiom PIA5, we may assume that $\operatorname{Var}(\bar{w}) \cap \operatorname{Var}\left(\bar{w}^{\prime}\right)=\emptyset$. But then it is easy to see that by the construction, $\mathbb{X} \models \bar{w} \Perp \bar{w}^{\prime}$.

PIA

Suppose first that $\Sigma \nvdash x \Perp x$. Then the construction from the UMDE case shows that $\Sigma \not \vDash x \Perp x$.

Suppose then that $\sum \nvdash \bar{x} \Perp \bar{y}$. We show that $\Sigma \not \models \bar{x} \Perp \bar{y}$.
First, assume that $\operatorname{Var}(\bar{x}) \cap \operatorname{Var}(\bar{y}) \neq \emptyset$. Let $v \in \operatorname{Var}(\bar{x}) \cap \operatorname{Var}(\bar{y})$. If $\Sigma \nvdash v \Perp v$, then $\Sigma \not \models v \Perp v$ already follows from the previous case, and thus by the decomposition axiom PIA3, we also have $\Sigma \not \vDash \bar{x} \Perp \bar{y}$. If $\Sigma \vdash v \Perp v$, we can use the constancy axiom PIA5 to infer $\Sigma \nvdash \bar{x}^{\prime} \Perp \bar{y}^{\prime}$ where \bar{x}^{\prime} and \bar{y}^{\prime} are obtained from \bar{x} and \bar{y} by removing v. Hence, we may assume that $\operatorname{Var}(\bar{x}) \cap \operatorname{Var}(\bar{y})=\emptyset$.

We may additionally assume that the atom $\bar{x} \Perp \bar{y}$ is minimal in the sense that $\Sigma \vdash \bar{x}^{\prime} \Perp \bar{y}^{\prime}$ for all $\bar{x}^{\prime}, \bar{y}^{\prime}$ such that
$\operatorname{Var}\left(\bar{x}^{\prime}\right) \subseteq \operatorname{Var}(\bar{x}), \operatorname{Var}\left(\bar{y}^{\prime}\right) \subseteq \operatorname{Var}(\bar{y})$, and $\operatorname{Var}\left(\bar{x}^{\prime} \bar{y}^{\prime}\right) \neq \operatorname{Var}(\bar{x} \bar{y})$.
If not, we can remove elements from \bar{x} and \bar{y} until this holds. By the decomposition axiom PIA3, it suffices to show the claim for the minimal atom.

Note that due to the trivial independence axiom PIA1 both \bar{x} and \bar{y} are at least of length one.

Let $\bar{x}=x_{1} \ldots x_{n}$ and $\bar{y}=y_{1} \ldots y_{m}$. Note that by the minimality of $\bar{x} \Perp \bar{y}$, we have $\Sigma \nvdash x_{i} \Perp x_{i}$ and $\Sigma \nvdash y_{j} \Perp y_{j}$ for all $i=1, \ldots, n$ and $j=1, \ldots, m$.

Let $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq D$ be the set of those variables for which $\Sigma \vdash u_{i} \Perp u_{i}$. Let

$$
\left\{z_{1}, \ldots, z_{l}\right\}=D \backslash\left(\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{y_{1}, \ldots, y_{m}\right\} \cup\left\{u_{1}, \ldots, u_{k}\right\}\right)
$$

Define a team X_{0} over $D \backslash\left\{x_{1}\right\}$ such that it consists of all the tuples from the set

$$
X_{2} \times \cdots \times X_{n} \times Y_{1} \times \ldots Y_{m} \times Z_{1} \times \cdots \times Z_{I} \times U_{1} \times \cdots \times U_{k}
$$

where $X_{2}=\cdots=X_{n}=Y_{1}=\ldots Y_{m}=Z_{1}=\cdots=Z_{I}=\{0,1\}$ and $U_{1}=\cdots=U_{k}=\{0\}$.

Let then $X=\left\{s \cup\left\{\left(x_{1}, a\right)\right\} \mid s \in X_{0}\right\}$, where

$$
a=\sum_{i=2}^{n} s\left(x_{i}\right)+\sum_{j=1}^{m} s\left(y_{j}\right) \quad(\bmod 2)
$$

Define then \mathbb{X} as the uniform distribution over X.

Now $\mathbb{X} \not \vDash \bar{x} \Perp \bar{y}$. Let $s, s^{\prime} \in X$ be such that $s\left(x_{1}\right)=1, s\left(x_{i}\right)=0$, and $s^{\prime}\left(y_{j}\right)=0$ for all $2 \leq i \leq n$ and $1 \leq j \leq m$. Then there is no $s^{\prime \prime} \in X$ such that $s^{\prime \prime}(\bar{x})=s(\bar{x})$ and $s^{\prime \prime}(\bar{y})=s^{\prime}(\bar{y})$.

Suppose that $\Sigma \vdash v \approx v^{\prime}$. Suppose for a contradiction that $\Sigma \not \models v \approx v^{\prime}$. Then one of v and v^{\prime} must be in $\left\{u_{1}, \ldots, u_{k}\right\}$ and one in $D \backslash\left\{u_{1}, \ldots, u_{k}\right\}^{1}$. Assume that $v^{\prime} \in\left\{u_{1}, \ldots, u_{k}\right\}$. This means that $\Sigma \vdash v^{\prime} \Perp v^{\prime}$. Since $\Sigma \vdash v \approx v^{\prime}$, by applying UMI \& UMDE and PIA \& UMDE 1, we obtain $\Sigma \vdash v \Perp v$. But then $v \in\left\{u_{1}, \ldots, u_{k}\right\}$, which is a contradiction.

The case $\Sigma \vdash v \approx^{*} v^{\prime}$. is analogous.

[^0]Suppose then that $\Sigma \vdash \bar{w} \Perp \bar{w}^{\prime}$.
If $\operatorname{Var}(\bar{w}) \cap \operatorname{Var}\left(\bar{w}^{\prime}\right) \neq \emptyset$, then by the decomposition axiom PIA3, $\Sigma \vdash v \Perp v$ for all $v \in \operatorname{Var}(\bar{w}) \cap \operatorname{Var}\left(\bar{w}^{\prime}\right)$. Then $v \in\left\{u_{1}, \ldots, u_{k}\right\}$, and thus $\mathbb{X} \models v \Perp v$. Thus, by the constancy axiom PIA5, we may assume that $\operatorname{Var}(\bar{w}) \cap \operatorname{Var}\left(\bar{w}^{\prime}\right)=\emptyset$.

Note that by a similar reasoning, we may more generally assume that $u_{i} \notin \operatorname{Var}\left(\bar{w} \bar{w}^{\prime}\right)$ for all $1 \leq i \leq 1$.

Assume first that $\operatorname{Var}\left(\bar{w} \bar{w}^{\prime}\right) \cap \operatorname{Var}(\bar{x} \bar{y})=\emptyset$.
Then $\operatorname{Var}\left(\bar{w} \bar{w}^{\prime}\right) \subseteq \operatorname{Var}(\bar{z})$, where $\bar{z}=z_{1} \ldots z_{1}$. It is clear by the definition of \mathbb{X} that $\mathbb{X} \models \bar{w} \Perp \bar{w}^{\prime}$.

Assume then that $\operatorname{Var}\left(\bar{w} \bar{w}^{\prime}\right) \cap \operatorname{Var}(\bar{x} \bar{y}) \neq \emptyset$, but $\operatorname{Var}(\bar{x} \bar{y}) \nsubseteq \operatorname{Var}\left(\bar{w} \bar{w}^{\prime}\right)$.

Then $\mathbb{X} \models \bar{w} \Perp \bar{w}^{\prime}$ because $\left|\mathbb{X}_{\bar{w}=\bar{a}}\right|=(1 / 2)^{|\bar{w}|}$ for all $a \in\{0,1\}^{|\bar{w}|}$ and $\left|\mathbb{X}_{\bar{w}^{\prime}=\bar{a}}\right|=(1 / 2)^{\left|\bar{w}^{\prime}\right|}$ for all $a \in\{0,1\}^{\left.\right|^{\prime \bar{w}^{\prime}}}$.

Assume lastly that $\operatorname{Var}(\bar{x} \bar{y}) \subseteq \operatorname{Var}\left(\bar{w} \bar{w}^{\prime}\right)$. We show that this case is not possible.

We may assume that $\bar{w}=\bar{x}^{\prime} \bar{y}^{\prime} \bar{z}^{\prime}$ and $\bar{w}^{\prime}=\bar{x}^{\prime \prime} \bar{y}^{\prime \prime} \bar{z}^{\prime \prime}$, where $\operatorname{Var}(\bar{x})=\operatorname{Var}\left(\bar{x}^{\prime} \bar{x}^{\prime \prime}\right), \operatorname{Var}(\bar{y})=\operatorname{Var}\left(\bar{y}^{\prime} \bar{y}^{\prime \prime}\right)$, and $\operatorname{Var}\left(\bar{z}^{\prime} \bar{z}^{\prime \prime}\right) \subseteq \operatorname{Var}(\bar{z})$. By the axiom PIA3, we have $\Sigma \vdash \bar{x}^{\prime} \bar{y}^{\prime} \Perp \bar{x}^{\prime \prime} \bar{y}^{\prime \prime}$.

Note that by the minimality of $\bar{x} \Perp \bar{y}$, we have $\Sigma \vdash \bar{x}^{\prime} \Perp \bar{y}^{\prime}$.
By using the exchange axiom PIA4 to $\bar{x}^{\prime} \Perp \bar{y}^{\prime}$ and $\bar{x}^{\prime} \bar{y}^{\prime} \Perp \bar{x}^{\prime \prime} \bar{y}^{\prime \prime}$, we obtain $\Sigma \vdash \bar{x}^{\prime} \Perp \bar{y}^{\prime} \bar{x}^{\prime \prime} \bar{y}^{\prime \prime}$.

So now (by PIA3), $\Sigma \vdash \bar{x}^{\prime} \Perp \bar{y} \bar{x}^{\prime \prime}$, and by the symmetry axiom PIA2, $\Sigma \vdash \bar{y} \bar{x}^{\prime \prime} \Perp \bar{x}^{\prime}$.

Again, by the minimality of $\bar{x} \Perp \bar{y}$ and the symmetry axiom PIA2, we have $\Sigma \vdash \bar{y} \Perp \bar{x}^{\prime \prime}$.

Then by using the exchange axiom PIA4 again, this time to $\bar{y} \Perp \bar{x}^{\prime \prime}$ and $\bar{y} \bar{x}^{\prime \prime} \Perp \bar{x}^{\prime}$, we obtain $\Sigma \vdash \bar{y} \Perp \bar{x}^{\prime \prime} \bar{x}^{\prime}$. By (PIA3 and) the symmetry axiom PIA2, we have $\Sigma \vdash \bar{x} \Perp \bar{y}$, which is a contradiction.

A polynomial time algorithm

The polynomial-time algorithm for disjoint PIA implication (Geiger et al., 1991) can also be used to construct an algorithm for PIA + UMI+UMDE implication.

Theorem (Hirvonen, 2024)
The implication problem for PIA+UMI+UMDE has a polynomial-time algorithm.

Let D be the set of the variables that appear in $\Sigma \cup\{\sigma\}$.
We partition Σ into the sets of PIAs, UMIs, and UMDEs, and denote these sets by $\Sigma_{\text {PIA }}, \Sigma_{\text {UMI }}$, and $\Sigma_{\text {UMDE }}$, respectively.

For a UMI atom $\sigma:=v \approx w$, it suffices to check whether $\Sigma_{\text {UMI }} \models \sigma$ because no new UMIs can be obtained by using the inference rules for PIAs and UMDEs.

The set $\Sigma_{\text {UMI }}$ can be viewed as an undirected graph $G\left(\Sigma_{\mathrm{UMI}}\right)=(D, \approx)$ such that each $x \approx y \in \Sigma_{\text {UMI }}$ corresponds to an undirected edge between x and y.

Then $\Sigma_{\text {UMI }} \models v \approx w$ iff w is reachable from v in $G\left(\Sigma_{\text {UMI }}\right)$. This can be checked in linear-time by using a breadth-first search.

Consider then the case for PIA or UMDE. We use ideas similar to (Hannula et al., 2018) in order to isolate constancy atoms.

Close the set $\Sigma_{\text {umde }}$ under UMI \& UMDE rule, i.e., define $\Sigma_{\text {UMDE }}^{\prime}:=\Sigma_{\text {UMDE }} \cup\left\{x \approx^{*} y \mid x \approx y \in \Sigma_{\text {UMI }}\right\}$.

Construct then the undirected graph $G\left(\Sigma_{\text {UMDE }^{\prime}}\right)=\left(D, \approx^{*}\right)$ for $\Sigma_{\text {UMDE }}^{\prime}$ analogously to the case $\Sigma_{\text {UMI }}$ above. Let $\operatorname{Const}\left(\Sigma_{\text {PIA }}\right):=$ $\left\{v \in D \mid v \in \operatorname{Var}(\bar{x}) \cap \operatorname{Var}(\bar{y})\right.$ for some $\left.\bar{x} \Perp \bar{y} \in \Sigma_{\text {PIA }}\right\}$.

Now, we can compute a set of variables Const and a graph G in polynomial-time by using Algorithm 1.

```
Algorithm \(1 \operatorname{Comp}(\Sigma)\)
Require: \(\Sigma_{\text {PIA }}, \Sigma_{\mathrm{UMI}}\), and \(\Sigma_{\mathrm{UMDE}}\)
Ensure: Const and \(G:=(D, E)\)
    Const \(\leftarrow \operatorname{Const}\left(\Sigma_{\text {PIA }}\right) \quad\left(=\left\{v \in D \mid v \in \operatorname{var}(\bar{x}) \cap \operatorname{var}(\bar{y})\right.\right.\) for some \(\left.\left.\bar{x} \Perp \bar{y} \in \Sigma_{\text {PIA }}\right\}\right)\)
    \(G \leftarrow G\left(\Sigma_{\mathrm{UMDE}}^{\prime}\right)\)
    while \(E^{\prime}:=E \cap((D \backslash\) Const \() \times\) Const \() \neq \emptyset\) do
        Const \(\leftarrow\) Const \(\cup\left\{x \mid \exists y:(x, y) \in E^{\prime}\right\}\)
    for all \(x, y \in\) Const, and \((x, y) \notin E\) do add \((x, y)\) to \(E\)
```

For $A \subseteq D$, denote by $\sigma(A)$, the restriction of a PIA σ to the variables in A.

For example, if $\sigma:=x y z \Perp u w$ and $A=\{x, y, u\}$, then $\sigma(A)=x y \Perp u$. Analogously, for set Σ of PIAs, we define $\Sigma(A):=\{\sigma(A) \mid \sigma \in \Sigma\}$.

Consider then $\sum_{\text {PIA }}\left(D^{\prime}\right)$ and $\sigma\left(D^{\prime}\right)$ for $D^{\prime}=D \backslash$ Const. We will use the following lemma:

Lemma
$\Sigma \models \sigma$ if and only if $\Sigma_{P I A}\left(D^{\prime}\right) \models \sigma\left(D^{\prime}\right)$.

Now, we show how to use Const and G to decide whether $\Sigma \models \sigma$.
Suppose that $\sigma:=v \approx^{*} w$. Then it suffices to check whether w is reachable from v in G (by using a breadth-first search).

Suppose then that $\sigma:=\bar{v} \Perp \bar{w}$. If $\operatorname{Var}(\bar{v}) \cap \operatorname{Var}(\bar{w}) \cap D^{\prime} \neq \emptyset$, then $\Sigma \not \vDash \sigma$.

Otherwise, by the lemma, it suffices to check whether $\Sigma_{\text {PIA }}\left(D^{\prime}\right) \models \sigma\left(D^{\prime}\right)$, which is now an instance of the implication problem for disjoint probabilistic independence that was shown to be in polynomial-time in (Geiger et al., 1991).

Let G be a graph and v and w two of its vertices. We write $\operatorname{Reach}(G, v, w)$ for the linear breadth-first search algorithm that outputs true if w is reachable from v in G and false otherwise.

```
Algorithm 2 PIA + UMI + UMDE-Implication \((\Sigma, \sigma)\)
Require: \(\Sigma, \sigma\)
Ensure: true if and only if \(\Sigma \models \sigma\)
    if \(\sigma=v \approx w\) then return \(\operatorname{Reach}\left(G\left(\Sigma_{\mathrm{UMI}}\right), v, w\right)\)
    else
        construct Const and \(G\) using \(\operatorname{Comp}(\Sigma)\)
        if \(\sigma=v \approx^{*} w\) then return \(\operatorname{Reach}(G, v, w)\)
        else if \(\sigma=\bar{v} \Perp \bar{w}\) then
        \(D^{\prime} \leftarrow D \backslash\) Const
        if \(\operatorname{var}(\bar{v}) \cap \operatorname{var}(\bar{w}) \cap D^{\prime} \neq \emptyset\) then return false
        else
            return true if \(\Sigma_{\text {PIA }}\left(D^{\prime}\right) \models \sigma\left(D^{\prime}\right)\) and false otherwise
```


Conclusion

The implication problem for PIAs, UMIs, and UMDEs has a sound and complete axiomatization and a polynomial-time algorithm.

Some open questions:

- Can we extend the axiomatization to nonunary marginal identity and marginal distribution equivalence?
- Can we find an axiomatization for unary functional dependency, probabilistic independence, (unary) marginal identity and marginal distribution equivalence?

References

D. Geiger, A. Paz, and J. Pearl.

Axioms and algorithms for inferences involving probabilistic independence.
Information and Computation, 91(1):128-141, 1991.
唔
M. Hannula, S. Link.

On the interaction of functional and inclusion dependencies with independence atoms.
In Database Systems for Advanced Applications. 353-369, 2018
R M. Hannula, J. Virtema
Tractability frontiers in probabilistic team semantics and existential second-order logic over the reals.
APAL 173(10), 103108, 2022.
R
M. Hirvonen.

Axiomatization of implication for probabilistic independence and unary variants of marginal identity and marginal distribution equivalence.
To appear in FolKS, volume 14589, Springer, 2024.
层
M. Hirvonen.

The implication problem for functional dependencies and variants of marginal distribution equivalences.
In FolKS, volume 13388, 130-146. Springer, 2022.

[^0]: ${ }^{1}$ Note that clearly $\left|\mathbb{X}_{w=0}\right|=1$ for all $w \in\left\{u_{1}, \ldots, u_{k}\right\}$, and $\left|\mathbb{X}_{w=a}\right|=1 / 2$ for all $a \in\{0,1\}$ and $w \in D \backslash\left\{x_{1}, u_{1}, \ldots, u_{k}\right\}$. An easy induction proof shows that $\left|\mathbb{X}_{x_{1}=a}\right|=1 / 2$ for all $a \in\{0,1\}$.

