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Hyperfine Structure

I Introduced by Friedman and Koepke in “An elementary
approach to the fine structure of L”, Bulletin of
Symbolic Logic, 1997

I An alternative to Jensen’s fine structure theory for
looking at L.

I Uses simple model theory

I makes the combinatorial aspects of proofs more
accessible
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The Constructible Hierarchy

L is constructed by iterating the definable power set through
the ordinals:

L0 = ∅
Lλ =

⋃
α<λ Lα for limit ordinals λ

Lα+1 = Def (Lα)

We will look more closely at how a set first appears in L.

x ∈ Def (Lα)↔ x = {z ∈ Lα : Lα � ϕ(z , ~y)}

for some sentence ϕ and parameters ~y from Lα.

I the triple (α,ϕ, ~y) can be thought of as a name for the
constructible set x

I we will also see such triples as locations in the hyperfine
hierarchy
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Interpretation

We call a triple (γ, ϕ, ~y) a location if γ is an ordinal, ϕ is a
formula with n free variables and ~y is an n − 1-tuple of sets
from Lγ .

We have seen that such a location can be seen as a name for
a set in Lγ+1; the interpretation operator, I , formalises this,
maping locations to constructible sets:

I (γ, ϕ, ~y) = {z ∈ Lγ : Lγ � ϕ(z , ~y)}

We also want to be able to give a unique name for a set (as
there will be many with the same interpretation). We will
take the first name that works - but for that we need to
well-order the locations.
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<̃, <L and Naming

I First order locations by the level of L.

I Fix an ordering of formulae 〈ϕn : n ∈ ω〉 in order type ω
such that sub-formulae appear earlier

I Use the canonical well-ordering of L to order the
parameter sequences lexicographically.

(α,ϕn, ~y)<̃(β, ϕm, ~x) iff α < β or
α = β ∧ n < m or
α = β ∧ n = m ∧ x <lex

L y

For a constructible set y set

N(y) = <̃ least location r such that y = I (r)

Note: <L can be inductively defined together with <̃ by
taking the <̃ ordering of names to order the next level of L
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Skolem functions

Define a Skolem operator S with locations as domain so that

S(γ, ϕ, ~y) =<L least z ∈ Lγ such that Lγ � ϕ(z , ~y)

(if such exists - otherwise set S(γ, ϕ, ~y) = 0.)

We say X ⊆ L is constructible closed if X is closed under
I ,N and S , i.e. if a location r ∈ X then I (r), S(r) ∈ X and
for any set x ∈ X , N(x) ∈ X .

Constructible closure condensation:
If X ⊆ Lα is constructible closed then M ∼= Lᾱ for some
ᾱ ≤ α. Moreover, the collapsing map preserves I ,N, S and
<L.
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Hulls and intermediate Skolem functions

We can extend this condensation result to the whole
hierarchy of locations, by defining an intermediate notion of
Skolem functions associated with locations.

Let Sγϕ(~x) := S(γ, ϕ, ~x).

A location r = (γ, ϕn, ~x) corresponds to the structure:

Lr := 〈Lγ ,∈, <L, I ,N,S , S
γ
ϕ0
, . . . ,Sγϕn

� ~x〉

We define a hull operation associated with this location:
For X ⊆ Lγ , Lr{X} is the algebraic closure of X as a
substructure of Lr .
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Example: collapse of an ordinal

What is the first location where we can see α is not a
cardinal?

Suppose f : β → α onto. Suppose we can define f over Lγ
by f (x) = y ↔ Lγ � ϕ(y , ~p, x), where ~p are parameters from
Lγ . Then we could say f appears at the location
(γ, ϕ, ~p_β). As f is onto we have Sγϕ”{~p_δ : δ < β} = α.

Claim: α is not a cardinal (in L) iff there exists a location
s = (γ, ϕ, ~x) and a finite set p ⊂ Lγ such that

{β < α : α 6= α ∩ Ls{β ∪ p}}

is bounded in α.

So we can say α is first collapsed at the <̃ least location
such location.
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Key properties: Condensation

We have condensation for this finer hierarchy:

Fine Condensation:
Let r = (γ, ϕn, ~x) be a location and X = Lr{X}. Then there
is a unique isomorphism
π : 〈X ,∈, <L, I ,N, S ,S

γ
ϕ0 , . . . ,S

γ
ϕn � ~x〉

∼= Lr̄ = 〈Lγ̄ ,∈, <L, I ,N,S ,S
γ
ϕ0 , . . . ,S

γ
ϕn̄ � ~̄x〉

To prove this we use the Condensation result for
constructible closure.
Note :

I r̄ is the least upper bound of locations s such that
π−1(s)<̃r

I n̄ = n or n̄ = n + 1 with ~̄x = ∅.
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Key properties: Growth

Let r = (γ, ϕ, ~x) and X ⊆ Lγ .

Monotonicity:
(a) If r ′ is also a γ location with r ′>̃r then

Lr{X} ⊆ L′r{X}

(b) If r ′ is a β location with β > γ then

Lr{X} ⊆ Lr ′{X ∪ {γ}}

Successor stages: Finiteness
If r+ the successor of r under <̃ there is some z ∈ Lγ such
that for any X ⊆ Lγ we have

Lr+{X} = Lr{X ∪ {z}}
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Limit stages: Continuity
(a) If r is a limit location but r 6= (γ, ϕ0, ∅) then

Lr{X} =
⋃
{Ls{X} : s<̃r and s is a γ location}

(b) If r = (γ, ϕ0, ∅) and γ is a limit ordinal then

Lr{X} =
⋃
β<γ

L(β,ϕ0,∅){X ∩ Lβ}

(c) If r = (α + 1, ϕ0, ∅) and X ⊆ Lα then

Lr{X ∪ {α}} ∩ Lα =
⋃
{Ls{X} : s is a α location}
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uses and limitations

So far hyperfine structure has been used to prove the
following hold within L:

I Global Square

I Morasses

I Equivalence of stationary reflection and weak
compactness

I and the Covering Lemma for L

This seems to only work in L, not extending to Core models.
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Thank you!


