
On standard deviation and 
standard error of the mean 
 
This little document is meant to explain the differences between the standard 
deviation and standard error of the mean (SEM) and what they imply. This is 
relevant if you want to know what you are communicating to the reader. 
Scientific publications are in-effect just means to convey information. Pictures 
and graphs are inevitably subservient to this purpose. When drafting a graph, a 
great care must be taken to ensure that the reader can come to the relevant 
conclusions on their own from the data presented. In most cases this 
inarguably means presenting your data as clearly and openly as possible.  
 
While a lot can be said about designing your graphs, the aim of this document 
is to discuss the difference between standard deviation and standard error and 
what do they ‘mean’ and ‘convey’ to your reader. Both of these parameters 
have their uses and implications, but they are not comparable as they are 
meant to portray different things.  

 

Standard deviation 
 
Standard deviation is formulated as follows:  
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where 𝑥  is your i:th measurement, 𝑥  is your average and N is the 
number of elements in your sample. This document is not going to 
delve into ‘why’ the equation is as it is, only what it represents.  
 
 



As the name implies, the standard deviation presents information on 
how your data is distributed around the mean. The larger the 
standard deviance, the more widely your results are distributed.  

  
Example of samples from two populations with the same mean but different 
standard deviations. Red population has mean 100 and SD 10; blue population 
has mean 100 and SD 50. 
 
Sometimes the property of you measurement is scientifically relevant. Usually 
(but not always) you are comparing two samples to each other and you want 
to argue that they are either different or similar. When you wish to make a 
statement regarding the nature of the distribution you have measured you 
should use standard deviation as your measure of uncertainty.  
 
Standard deviation (be definition) is a measure of how much on average a 
measurement deviates from the mean. The higher the standard deviation, the 
more your measurement is expected to differ from the mean.  
 
If and if your data is normally distributed, mean and standard deviation will 
describe your data perfectly.  That is to say – if your data is normally 
distributed you can use mean and standard deviation in place of the data you 
have gathered, allowing you to employ parametric statistical tests (e.g. t-test).  

 



 

Standard error of the mean 

Standard error of the mean (SEM) is a slightly misleading term. Since SEM is 
calculated from your measurements and as far as you are concerned, all of 
your measurements are true results that reflect the reality being studied, any 
parameter deducted from your data is not ‘error’ as far as the word is 
commonly defined.  So calling this parameter ‘standard error’ is rather 
misleading.   
 
SEM is given by: 
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measurements in your data set. This can be deducted by calculating the 
variance of the mean, which again demonstrates that this is not really ‘error’ in 
any sense.  However, SEM is a measure of mean. This is something to keep in 
mind as we dwell deeper into the topic.  
 
Something to consider is ‘confidence interval’.   
 
Confidence interval 
 
Confidence interval proposes a range of plausible values for an 
unknown variable – usually the mean. The given interval has an 
associated confidence level that the true parameter is in the proposed range. 
 
Various interpretations of a confidence interval can be given. I am going with 
one that I think that makes the most sense.  

“If confidence intervals are constructed using a given confidence level in an 
infinite number of independent experiments, the proportion of those intervals 
that contain the true value of the parameter will match the confidence level.” 
 
A particular confidence interval of 95% calculated from an experiment does 
not mean that there is a 95% probability of a sample parameter from a repeat 
of the experiment falling within this interval.  Once the interval is calculated 
the true mean is either within it or it isn’t.  



The 95% probability relates to the reliability of the estimation procedure, not 
to a specific calculated interval. 

The desired level of confidence is set by the researcher (notably this is not 
determined by data). Most commonly, the 95% confidence level is 
used.  Factors affecting the width of the confidence interval include the size of 
the sample, the confidence level, and the variability in the sample. A larger 
sample size normally will lead to a better estimate of the population 
parameter. 

 

Confidence Interval is calculated for any desired degree of confidence by using 
sample size and variability (SD) of the sample, although 95% CIs are by far the 
most used.   Confidence interval for a data following normal distribution is 
given by:  
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where 𝑋 is mean, t is value of t-distribution with the specific level of  
confidence and the term 

√
 is SEM as calculated before.  

 
Note that we write t = 1 the equation yields  

 

√
,   which is basically mean ± SEM.  Meaning of which will 

become relevant later.  
 
The t-value must be checked from a table (see the next page) with degrees of 
freedom (df) given by N-1.   
 
If we want 95% confidence interval for N=10 we look at Two-Tail = 0.05 and df 
= 9 getting t= 2.262. 
 
Notably, t = 1 (i.e. when SEM) equals to 68.26% confidence interval.  This is 
something to consider.  



  
 

 

 

 

 

 

 

 

 

 

 

 

 
t-value table used to compute / check the confidence intervals.  
 
This is to say that when you report SEM you are reporting your uncertainty 
regarding the true mean. SEM gets smaller with N as more information you 
have regarding your dataset, the more reliably you can estimate your mean. 
No claims are made about the distribution of the data.  
 
Standard deviation expresses how your data is distributed around the mean, 
i.e. the shape of the distribution measured as long as your data is normal.  
 
Because you can never measure the whole population, you have to rely on 
taking random samples from that distribution to estimate how far the sample 
mean is from the true population mean.  If this is your goal, then you calculate 
the standard error of the mean.  
 
One standard error of the mean is then the interval in which the true 
population mean would fall 68% of the time if sampling was repeated over and 
over again. Usually in statistics a 95% confidence interval is used, which you 
can calculate as shown above.  Given the formula for the standard error of the 
mean, it is also apparent that if the sample size goes up, the interval tends to 



zero and you are closing in on your population mean μ. Thus, the standard 
error of the mean is a tool in inferential statistics, that is inferring from the 
distribution of a random sample (observed data) to properties of an underlying 
unknown distribution, or the population. 
 
The standard deviation on the other hand is used to describe the variability in 
the observed data only (i.e. the sample) without making any inferences with 
respect to properties of the underlying unknown distribution. The standard 
deviation is commonly used in descriptive statistics. 
 
Now depending on whether you want to infer properties of an unknown 
distribution from a random sample or whether you want to simply describe the 
variability in your sample, you should use the standard error of the mean and 
the standard deviation, respectively. 
 


