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Families of sets arising from team semantics

Consider a formula φ(x0,⋯, xn−1) and a structure M with a common vocabulary.
Supposing φ can be interpreted within team semantics, we may associate to φ and
M the family

∥φ∥M
= {T ⊆ M

n ∣ M ⊧T φ}.

Similarly, if K is a Kripke model with the set of worlds W and θ is a formula of
some modal logic with team semantics, we may consider

∥φ∥K
= {T ⊆W ∣ K,T ⊧ θ}.

In both cases, the expressive power of the corresponding logics reflect to the
structure of the arising families of sets. With this in mind, we shall consider some
dimensional concepts related to families of sets. Our emphasis will be on the first
case.
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Without going to through all of the details, we have for literals φ that

∥φ∥M
= P(φM),

for conjuction

∥φ ∧ ψ∥M
= ∥φ∥M

∩ ∥ψ∥M
,

and for disjunction

∥φ ∨ ψ∥M
= ∥φ∥M

∨ ∥ψ∥M
,

where on the right-hand side ∨ refers to the operation

A ∨ B = {A ∪ B ∣ A ∈ A, B ∈ B}

on families of sets. In general, each logical construct corresponds to an operation
on families of sets.
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Brief history of the upper dimension

The upper dimension of a family of sets was introduced in Hella, Luosto, Sano and
Virtema (2014) to study extensions of the modal dependence logic MDL. Similar
ideas were already developed in Ciardelli 2009. Originally, upper dimension was
only defined for downwards closed families, but Lück and Vilander 2019 extended
the definition for all families of sets. The version of upper dimension that we use in
this talk, is a reformulation of Lück’s and Vilander’s. We also introduce a dual
concept, dual upper dimension, and what we call the cylindrical dimension.
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Basic concepts

For sets B and C , we write

[B,C] = {S ∣ B ⊆ S ⊆ C}.

This notation is meaningful even if B /⊆ C , when [B,C] = ∅.

Let A be a family of sets. The family A is an interval or cylinder, if there exist L
and U such that L ⊆ U and A = [L,U]. The family A is convex if for all S ,T ∈ A,
we have [S ,T ] ⊆ A. A is downwards closed if A ∈ A and S ⊆ A imply S ∈ A.
A family of sets A is dominated (by ⋃A) if ⋃A ∈ A. The family A is supported
(by ⋂A) if A is nonempty and ⋂A ∈ A. Naturally, we say that A is dominated
convex if it is dominated and convex. Similarly, A is supported convex if it is
supported and convex.
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X

∅

U

L

interval

G

dominated convex family

K

supported convex family
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Denote Ad
= {X \ A ∣ A ∈ A}. The following facts are now immediate:

a The family A is an interval iff it is dominated, supported and convex.

b A is convex iff Ad
is convex.

c A is dominated iff Ad
is supported.

Let A be a family of sets. We say that a subfamily G ⊆ A dominates A if there
exist dominated convex families DG , G ∈ G, such that ⋃G∈G DG = A and
⋃DG = G , for each G ∈ G. The subfamily K ⊆ A supports A if there exist
supported convex families SK , K ∈ K such that ⋃K∈K SK = A ja ⋂SK = K , for
each K ∈ K.
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Dimensions

Definition
The upper dimension of the family is A

D(A) = min{∣G∣ ∣ G dominates the family A},

the dual upper dimension is

D
d(A) = min{∣G∣ ∣ G supports the family A}

and the cylindrical dimension is

CD(A) = min{∣I ∣ ∣ (Ai)i∈I is an indexed family of intervals with ⋃
i∈I

Ai = A}.
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Proposition

Let A be a finite family of sets. Then the following are equivalent:

a For all B,C ∈ A, if B ⊊ C , then [B,C] /⊆ A.

b D(A) = ∣A∣.
c D

d(A) = ∣A∣.
d CD(A) = ∣A∣.

Proof.
All the intervals contained in A are singletons iff the condition is met. The same
holds for dominated convex and supported convex families.

Fixing the base set X with ∣X ∣ = n, the family E of all subsets of X of even size is
a maximal family with this property (the other is O), so

D(E) = D
d(E) = CD(E) = 2

n−1
. It can also be shown that for all A ⊆ P(X )

(regardless if is satisfies the condition or not), then CD(A) ≤ 2
n−1

.
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Proposition

Let A be a family of sets. Then

D(A) ≤ CD(A) and D
d(A) ≤ CD(A).

If in addition A is convex, then

CD(A) ≤ D(A)D
d(A).

There are no further restrictions in the following sense: for every m, n, s ∈ Z+
satisfying max{m, n} ≤ s ≤ mn, there is a convex family C with D(C) = m,

D
d(C) = n and CD(C) = s.
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Shadows

To facilitate dimension calculations, we develop some auxiliary tools.

Let A be a family of sets and A ∈ A. The convex shadow of A in the family A is
the family

∂A(A) = {B ⊆ A ∣ [B,A] ⊆ A}.
Similarly, the dual convex shadow of A in A is

∂
A(A) = {B ∈ A ∣ A ⊆ B, [A,B] ⊆ A}.
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Lemma
Let A be a family of sets and A ∈ A.

a ∂A(A) is the largest dominated convex family C ⊆ A with ⋃ C = A. Similarly,

∂
A(A) is the largest supported convex family C ⊆ A with ⋂ C = A.

b A family G ⊆ A dominates A iff ⋃G∈G ∂G (A) = A. Dually, H ⊆ A supports

A iff ⋃H∈H ∂
H(A) = A.

c If G dominates A, then Max(A) ⊆ G, and if H supports A, then Min(A) ⊆ H.
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Families related to team-semantic atoms

Let X and Y be non-empty base sets. Consider:

F = {f ⊆ X × Y ∣ f is a mapping},
I⊆ = {R ⊆ X × X ∣ dom(R) ⊆ rg(R)},
I⊥ = {A × B ∣ A ⊆ X , B ⊆ Y },
X = {R ⊆ X × X ∣ dom(R) ∩ rg(R) = ∅}.
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Theorem
Let X and Y be finite sets with m = ∣X ∣ ≥ 2 and n = ∣Y ∣ ≥ 2. Then:

D(F) = n
m
, D

d(F) = 1, CD(F) = D(F),

D(I⊆) = 2
m
−m, D

d(I⊆) = 1 +
m

∑
k=2

(mk )k
k
, CD(I⊆) = D

d(I⊆),

D(I⊥) =(2m−m−1)(2n−n−1)+m+n, D
d(I⊥) =(2m−m−1)(2n−n−1)+1, CD(I⊥) = D(I⊥),

D(X ) = 2
m
− 2, D

d(X ) = 1, CD(X ) = D(X ).
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Tensor semantics of connectives
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Connectives
There are 2

4
= 16∗ binary operations ⊛ on the set {0, 1}, each related to a

connective. Given a base set X , for each connective ⊛ there is a corresponding
set-theoretic operation ∗,

A ∗ B = {x ∈ X ∣ χA(x)⊛ χB(x) = 1}
where χC is the characteristic function related to a set C . We lift this operation ∗
on the level of families of sets putting

A⊛ B = {A ∗ B ∣ A ∈ A, B ∈ B}.

In particular,

A ∨ B = {A ∪ B ∣ A ∈ A, B ∈ B},
A ∧ B = {A ∩ B ∣ A ∈ A, B ∈ B},
A − B = {A ∖ B ∣ A ∈ A, B ∈ B} and

A⊕ B = {A△ B ∣ A ∈ A, B ∈ B}.
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Characteristic function of families
Employ a new symbol u ≠ 0, 1 ’unknown’. Let ⊛ be a binary operation on {0, 1}.
Write V0 = {0}, V1 = {1} and Vu = {0, 1} and A⊛ B = {u ⊛ v ∣ a ∈ A, b ∈ B}, for
A,B ⊆ {0, 1}. We now define Kleene’s extension ⊛̃ of ⊛ as follows:

u⊛̃v = w if and only if Vu ⊛ Vv = Vw ,

for u, v ,w ∈ {0, 1,u}. Overloading the notation, we shall denote also the extension
by ⊛ instead on ⊛̃ in the sequel.

Definition
The characteristic function of a family of sets A ⊆ P(X ) is
ξA∶X → {0, 1,u},

ξA(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, for E(x) = {1}
u, for E(x) = {0, 1}
0, for E(x) = {0}

where E(x) = {χA(x) ∣ A ∈ A}.
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Tables for connectives

∧ 0 u 1

0 0 0 0
u 0 u u

1 0 u 1

∨ 0 u 1

0 0 u 1
u u u 1
1 1 1 1

− 0 u 1

0 0 0 0
u u u 0
1 1 u 0

⊕ 0 u 1

0 0 u 1
u u u u

1 1 u 0
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Preserving intervals

Lemma
Let ⊛ be a binary operation on {0, 1} and A,B ⊆ P(X ). Then for every x ∈ X , it
holds that

ξA⊛B(x) = ξA(x)⊛ ξB(x).

Proposition

Let ⊛ be a tensor operator. Then if A,B ⊆ P(X ) are intervals, then so is A⊛ B,
too. Indeed, if we write ξ = ξA⊛B, C0 = ξ

−1[{1}] and C1 = ξ
−1[{u, 1}], then

A⊛ B = [C0,C1].

Corollary

For all families of sets A and B, we have CD(A⊛ B) ≤ CD(A)CD(B).
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Dimension functions
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Growth classes

As the sizes of finite structures vary, we need study the following dimension
functions:

Dimφ∶N→ N, Dimφ(n) = sup {D(∥φ∥M) ∣ card(M) = n} ,
Dim

d
φ∶N→ N, Dim

d
φ(n) = sup {D

d(∥φ∥M) ∣ card(M) = n} ,
CDimφ∶N→ N, CDimφ(n) = sup {CD(∥φ∥M) ∣ card(M) = n} .

We are interested in the rate of growth:
A set O of mappings f ∶N→ N is a growth class if the following conditions hold for
all f , g ∶N→ N:

a If g ∈ O and f ≤ g , then f ∈ O.

b If f , g ∈ O, then f + g ∈ O and fg ∈ O.
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For k ∈ N, the class Ek consist all f ∶N→ N such that there exists a polynomial
p∶N→ N of degree k and with coefficients in N such that f ≤ 2

p
. In addition, Fk

is the class of functions f ∶N→ N such that there exists a polynomial p∶N→ N of
degree k and with coefficients in N such that for every n ∈ N∖ {0, 1} we have that

f (n) ≤ n
p(n)

.

Obviously, every Ek and Fk (for k ∈ N) is a growth class. We shall see that these
classes are naturally useful in studying the dependence logic and its friends. It is
also important that we have a hierarchy:

E0 ⊊ F0 ⊊ E1 ⊊ F1 ⊊⋯ ⊊ Ek ⊊ Fk ⋅
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Growth classes of atoms
Let M be a finite structure with domain M. When we do the substitutions
indicated in the table, we get families of sets corresponding to the interpretations
of some of the key atoms, i.e., A = ∥α∥M

where A is the family and α is the atom
indicated in the row. Fix parameters k , l ∈ Z+ related to arities of the atoms and
tuples x⃗ and y⃗ of variables with ∣x⃗∣ = ∣y⃗∣ = k and ∣z⃗∣ = l .

Growth class of

family X Y atom α Dimα Dim
d
α CDimα

F M
k

M =(x⃗ , t) Fk E0 Fk

I⊆ M
k

M
k

x⃗ ⊆ y⃗ Ek Fk Fk

I⊥ M
k

M
l

x⃗ ⊥ z⃗ Ek+l Ek+l Ek+l

X M
k

M
k

x⃗ ∣ y⃗ Ek E0 Ek

Note: The growth class in the table is the least appropriate class in the hierarchy.
Thus, we actually have Dim=(x⃗ ,t) ∈ Fk ∖ Ek , Dimx⃗⊆y⃗ ∈ Ek ∖ Fk−1 and so forth.
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Logical operators

We are interested in the behaviour of dimensions under various operators. Our goal
is to find natural criteria for operators to preserve growth classes.

In general, an operator on a set X is a function ∆∶P(P(X ))n → P(P(X )) for
some n ∈ N. Now let R ⊆ P(X )n+1 be an (n + 1)-ary relation. The corresponding
operator ∆R∶P(P(X ))n → P(P(X )) is defined by

A ∈ ∆R(A0, . . . ,An−1) ⟺ ∃A0 ∈ A0 . . .∃An−1 ∈ An−1 ∶ (A,A0, . . . ,An−1) ∈ R.

Definition
Let X be a set. A function ∆∶P(P(X ))n → P(P(X )) is a (second-order)

Kripke-operator, if there is a relation R ⊆ P(X )n+1 such that ∆ = ∆R.

For example, ∩ and ∨ are Kripke-operators.
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Dimension inequalities

The following are desired properties of logical operators.

Definition
Let ∆∶P(P(X ))n → P(P(X )) be an operator. We say that ∆ (weakly) preserves
dominated (supported, resp.) convexity if ∆(A0, . . . ,An−1) is dominated
(supported, resp.) and convex or ∆(A0, . . . ,An−1) = ∅, whenever Ai is dominated
(supported, resp.) and convex for each i < n.

It can be shown, e.g., that ∩ and ∨ weakly preserve dominated and supported
convexity.
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We can now prove the following dimension inequalities for Kripke-operators that
preserve dominated and/or supported convexity:

Theorem
Let ∆R∶P(P(X ))n → P(P(X )) be a Kripke-operator, and A = ∆(A0, . . . ,An−1).

a If ∆ preserves dominated convexity, then D(A) ≤ D(A0) ⋅ . . . ⋅ D(An−1).

b If ∆ preserves supported convexity, then D
d(A) ≤ D

d(A0) ⋅ . . . ⋅ D
d(An−1).

c If ∆ has both preservation properties, then CD(A) ≤ CD(A0) ⋅ . . . ⋅CD(An−1).

Corollary

For all families of sets A and B and any of the dimension above d, we have

d(A ∩ B) ≤ d(A) ⋅ d(B) and d(A ∨ B) ≤ d(A) ⋅ d(B).
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Preserving growth classes

As a direct consequence to the dimension inequalities we get the following
application to logics with team semantics:

Theorem
Let L be a logic, whose formulas are built from atomic formulas using connectives
and quantifiers, and let O be a growth class. Assume that Dimα ∈ O for every
atomic formula α of L, and ∆⊙ is a Kripke-operator that preserves dominated
convexity for every connective and quantifier ⊙ in L. Then Dimφ ∈ O for every
formula φ in L.

The theorem above can be used for proving inexpressibility results: If ψ is a formula
in some other logic such that Dimψ ∉ O, then ψ is not expressible in L.

Naturally, a similar result can be formulated for the dual upper dimension D
d

and
the cylindrical dimension CD.
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Hierarchy result for dependency atoms

We get the following strong arity hierarchy theorem for dependency atoms:

Theorem
Let L be the extension of first-order logic with all dependence, inclusion, exclusion
and independence atoms of arity at most k − 1. Then the k-ary dependence,
inclusion, exclusion and independence atoms are not expressible in L.

Remark
The arity hierarchy result above can be strengthened by extending L with

1 tensor conjunction (and other similar tensor connectives),

2 the Boolean disjunction, and

3 arbitrary generalized quantifiers.



Applying
dimension
concepts to

team
semantics

Kerkko Luosto

Dimensions of
families

Tensor
semantics of
connectives

Dimension
functions

Operators

Hierarchy result for dependency atoms

We get the following strong arity hierarchy theorem for dependency atoms:

Theorem
Let L be the extension of first-order logic with all dependence, inclusion, exclusion
and independence atoms of arity at most k − 1. Then the k-ary dependence,
inclusion, exclusion and independence atoms are not expressible in L.

Remark
The arity hierarchy result above can be strengthened by extending L with

1 tensor conjunction (and other similar tensor connectives),

2 the Boolean disjunction, and

3 arbitrary generalized quantifiers.



Applying
dimension
concepts to

team
semantics

Kerkko Luosto

Dimensions of
families

Tensor
semantics of
connectives

Dimension
functions

Operators

Conclusion

• We defined three notions of dimension for families of sets A ∈ P(P(X )):

upper, dual upper, and cylindrical dimensions D(A), D
d(A), and CD(A).

• For each formula φ of a team semantical logic L we defined the corresponding
dimensional function Dimφ∶N→ N by setting

Dimφ(n) = sup{D(∥φ∥M) ∣ ∣M∣ = n} (and similarly Dim
d
φ and CDimφ).

• We developed a systematic method for proving that certain well-behaved
logical operators preserve the growth class of dimensional functions:
If Dimα ∈ O for all atomic formulas α of L, and all logical operators ∆ in L
are local (and separable), then Dimφ ∈ O for every formula φ of L.

• Since k-ary dependence, inclusion, exclusion and independence atoms are in a
higher growth class than any lower arity atoms, as a corollary we obtained a
strong arity hierarchy result for dependenct atoms.
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