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Introduction

Introduction

I Parallel computation over an integral domain R
� Algebraic circuits (over R)

AC0
R

I Logics & Descriptive complexity

� AC0 = FO [Im89]
� NC1 = FO[BIT]+GPRbound [DHV18]
� AC1 = FO[BIT]+GPR [DHV18]
� AC0

R = FOR[ArbR] [BV21]
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Introduction

Basic algebraic definitions

Recall:

A ring (with unity) is a set R equipped with two binary operations + and
×, such that

I (R,+) is an abelian group,

I (R,×) is a monoid,

I in particular, there is a 1 ∈ R such that r × 1 = 1× r = r , for all
r ∈ R.

I multiplication is distributive with respect to addition
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Introduction

Basic algebraic definitions

Recall:

An integral domain is a nonzero commutative ring without zero divisors,
i.e. for every a, b 6= 0 ∈ R : a× b 6= 0

I every field (e.g. R,Q,C,Fp, for a prime p)

I Z, R[x ], Z[i ] . . .

Barlag, Gaube Logical Characterizations of AC0
R August 22, 2022 5 / 20



Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

I Directed Acyclic Graph with
node types:

� input (fan-in 0)
� constant (fan-in 0)
� arithmetic (fan-in ≥ 0)
� one of

sign (fan-in 1)
< (fan-in 2)

� output (fan-in 1)

I size: number of gates

I depth: longest path from input
to output

I non-uniform!
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Models and Logics

Circuit families

Circuit families

I Sequences C = (C1, C2, . . .) of circuits where Ci has i input gates

I If Ci computes fCi for all i ∈ N, then C computes fC(w) = fC|w|(w).

out

sign

in1

C1:

out

sign

+

in1 in2

C2:

out

sign

+

in1 in2 in3

C3: . . .
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Models and Logics

Circuit families

Circuit families deciding sets

A circuit family C decides a set S ⊆
⋃
n∈N

Rn iff C computes the

characteristic function of S .

Circuit classes

I NCi
R : sets decided by bounded fan-in circuits families of size

O(nO(1)) and depth in O(log(n)i )

I ACi
R : sets decided by unbounded fan-in circuit families of size

O(nO(1)) and depth in O(log(n)i )
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Models and Logics

Uniformity

Uniform circuit families

I There is an R-machine M producing the circuit family.

� i.e. M computes the function n 7→ Cn
I M works in polynomial time → P-uniform

� UP-C is the subclass of C decided by P-uniform families

I M works in logarithmic time → L-uniform

� ULT-C is the subclass of C decided by L-uniform families
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Models and Logics

First-order Logic over R

σ = ({succ}, {val})

ϕ := ∃x1∃x2 val(x1) = val(x2) + π ∧ x1 = succ(x2)

[CM99]
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Models and Logics

First-order Logic over R

σ = ({succ}, {val})

ϕ := ∃x1∃x2 val(x1) = val(x2) + π ∧ x1 = succ(x2)

Definition: metafinite R-structures

I R-structure D = (A,F) of signature σ = (Ls , Lf )
� A: finite structure of Ls with universe A

the skeleton of D
� F : finite set of functions X : Ak → R interpreting symbols in Lf

the arithmetic part of D

[CM99]
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Models and Logics

First-order Logic over R

σ = ({succ}, {val})
ϕ := ∃x1∃x2 val(x1) = val(x2) + π ∧ x1 = succ(x2)

Definition: FOR

I formulas and terms over signature σ = (Ls , Lf ) for variables x1, x2, . . .

� index terms: variables, functions f ∈ Ls
� number terms: ring elements, functions g ∈ Lf , t1 + t2, t1× t2, sign(t1)
� formulas

atomic: t1 = t2, t1 ≤ t2, predicates P ∈ Ls

non-atomic: closure of atomic formulas under Boolean connectives and
quantification (∃, ∀)

[CM99]
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Models and Logics

First-order Logic over R - Example

σ = ({succ}, {val})
ϕ := ∃x1∃x2 val(x1) = val(x2) + π ∧ x1 = succ(x2)

Structure D :
A = {v | v ∈ C},

val(v) = the value of v on inputs e and
1

2
,

succ(v) = the successor gate of v

Circuit C :

out1

sign1

+π + 1
2 + e

2

×e
2

in1e in2
1
2

+ π + 1
2

π
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Models and Logics

Extensions to FOR

Additional functions / relations

I FOR [S ] for a set S of functions and relations

Additional constructions

I the sum, product and maximization rules for creating number terms

� to use
∑
i∈A

t(i),
∏
i∈A

t(i) and max
i∈A

(t(i)) in formulas

ϕ = ∃v1 sum
v2

(g(v2)) > g(v1)× 2

A = {♦,♠}, g = {♦ 7→ π,♠ 7→ 42}
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Some Characterizations

Logical Characterizations

Non-uniform AC0
R

AC0
R = FOR [ArbR ]

Polynomial-time uniform AC0
R

UP-AC0
R = FOR [FTIMER(nO(1))]

Logarithmic-time uniform AC0
R

ULT-AC0
R = FOR [FTIMER(log(n))] + SUMR + PRODR
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Some Characterizations

Guarded predicative/functional recursion

Definition: [Durand, Haak, Vollmer, 2018]

A formula ϕ is in FO + GPR1 if it has the form

ϕ ::= [P(x , y) ≡ θ(x , y ,P)]ϕ(P)|ψ,

where ψ and θ are FO formulae with free variables x , y such that each
atomic sub-formula involving the symbol P

1 is of the form P(x , z), where z is in the scope of a guarded
quantification Qz .((z ≤ y/2) ∧ ξ(y , z)) with Q ∈ {∀,∃}, ξ ∈ FO and

2 never occur in the scope of any quantification not guarded this way.
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Some Characterizations

Results

Former results [DHV, 2018]

1 NC1 = FO[BIT] + GPR1
bound

2 SAC1 = FO[BIT] + GPR1
semi

3 AC1 = FO[BIT] + GPR1

4 #AC0 = #Win-FO[BIT]

5 #NC1 = #Win-FO[BIT] + GPR1
bound

6 #SAC1 = #Win-FO[BIT] + GPR1
semi

7 #AC1 = #Win-FO[BIT] + GPR1

Barlag, Gaube Logical Characterizations of AC0
R August 22, 2022 15 / 20



Some Characterizations

Guarded predicative logic - ideas of adaptations

ideas

I Extend GPR in order to characterize the whole AC,NC and SAC
-hierachies

� Substitute the factor 1
2 by 2log2(n)/ log2i (n) for ACi etc.

But exponantiation is not part of the logic

⇒ GPRi
R by tuples

I Add a similar construction to logics over metafinite structures

� probably functional instead of predicative recursion
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Some Characterizations

Further results

Goal

1 NCi = FO[BIT] + GPRi
bound

2 SACi = FO[BIT] + GPRi
semi

3 ACi = FO[BIT] + GPRi

4 #NCi = #Win-FO[BIT] + GPRi
bound

5 #SACi = #Win-FO[BIT] + GPRi
semi

6 #ACi = #Win-FO[BIT] + GPRi

7 NCi
R = FOR [ArbR ] + GPRi

R,bound

8 ACi
R = FOR [ArbR ] + GPRi

R

Barlag, Gaube Logical Characterizations of AC0
R August 22, 2022 17 / 20



Some Characterizations

Relationship between versions of AC0
R over different rings

– canonical maps

Definition:

A canonical ring map from a ring R1 to a ring R2 is a fixed injective
function fR1,R2 : R1 → Rk

2 for some k ∈ N.
fR1,R1 is the identity function.

Definition:

For two complexity classes CR1 , CR2 over the respective rings R1,R2, we
write

CR1 ⊆c CR2 ,

if for all languages A ∈ CR1 the following holds:

{fR1,R2(x) | x ∈ A} ∈ CR∗2 .

The relations =c and ⊂c are defined analogously.
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Some Characterizations

special cases of AC0
R

Theorem

I AC0
Q =c AC0

Z =c AC0
Z[i ] =c AC0

Z[x] =c AC0
Z[x ,y ]

I AC0
C =c AC0

R[i ] =c AC0
R =c AC0

R[x] =c AC0
R[x ,y ]

I AC0
Z ⊂c AC0

R

idea:

Write a number z = a
b ∈ Q (resp. z = a + bi ∈ C ) as tuple (a, b) and use

a node per tuple.
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Outlook

Future/Current Research

I How can these classes be contextualized?

� separate AC0
R and NC1

R?

I Can we find a meaningful analogue of TCR?

� investigate then in particular the question, whether TC0
R = NC1

R?

I How are AC0
Fp

and AC0
Fq

for p 6= q (prime?) related?

I Define SACi
R classes

� Is it important which gate type we bound?

I Is there a connection between GPR-variations and fixed point logics
like FO(LFP)?
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Definition (GPRi
R)

For i ≥ 0, a formula ϕ is in FOR(GPRi
R) if it has the form

ϕ ::= [P(x , y1, . . . , yi ) ≡ θ(x , y1, . . . , yi ,P)]ϕ(P)]|ψ,

where ψ and θ are FOR formulae with free variables x , y1, . . . , yi such that
each atomic sub-formula involving the symbol P

1 is of the form P(x , y1, . . . , yi ), the y1, . . . , yi are in the scope of a
guarded aggregation

Ay1,...,yi .(
1∨

j=i

zj ≤ yj/2 ∧
1∧

k=j−1
zk ≤ yk ∧ ξ(y1, . . . , yi , z1, . . . , zi ))

with A ∈ {max, sum, prod} and

2 never occur in the scope of any aggregation (or quantification) not
guarded this way.
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