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Introduction
Introduction

» Parallel computation over an integral domain R
m Algebraic circuits (over R)
o AC%
» Logics & Descriptive complexity
AC® = FO [Im89]
NC! = FO[BIT]+GPRyound [DHV18]
AC! = FO[BIT]+GPR [DHV18]
ACS = FOg[Arbg] [BV21]
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Introduction

Basic algebraic definitions

Recall:

A ring (with unity) is a set R equipped with two binary operations + and
X, such that

» (R,+) is an abelian group,

» (R, x) is a monoid,

» in particular, thereisa 1 € Rsuch that r x 1 =1 x r = r, for all
reR.

» multiplication is distributive with respect to addition
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Introduction

Basic algebraic definitions

Recall:

An integral domain is a nonzero commutative ring without zero divisors,
i.e. foreverya,b#0€ R:ax b=#0

> every field (e.g. R,Q,C,Fp, for a prime p)
» Z, R[x], Z][i] ...
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Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

» Directed Acyclic Graph with
node types:

input (fan-in 0)

constant (fan-in 0)
arithmetic (fan-in > 0)
one of

@ sign (fan-in 1)
e < (fan-in 2)
output (fan-in 1)

6 /20

Barlag, Gaube

Logical Characterizations of AC%

August 22, 2022



Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

» Directed Acyclic Graph with
node types:

input (fan-in 0)

constant (fan-in 0)
arithmetic (fan-in > 0)
one of

@ sign (fan-in 1)
e < (fan-in 2)
output (fan-in 1)

August 22, 2022 6 /20

Barlag, Gaube

Logical Characterizations of AC%



Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

» Directed Acyclic Graph with

node types:

input (fan-in 0)

constant (fan-in 0)
arithmetic (fan-in > 0)
one of

@ sign (fan-in 1)
e < (fan-in 2)
output (fan-in 1)

Barlag, Gaube

Logical Characterizations of AC%

August 22, 2022

6 /20



Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

» Directed Acyclic Graph with

node types:

input (fan-in 0)

constant (fan-in 0)
arithmetic (fan-in > 0)
one of

@ sign (fan-in 1)
e < (fan-in 2)
output (fan-in 1)

6 /20

Barlag, Gaube

Logical Characterizations of AC%

August 22, 2022



Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

» Directed Acyclic Graph with

node types:

input (fan-in 0)
constant (fan-in 0)

arithmetic (fan-in > 0)

one of
@ sign (fan-in 1)
e < (fan-in 2)
output (fan-in 1)

6 /20

Barlag, Gaube

Logical Characterizations of AC%

August 22, 2022



Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

» Directed Acyclic Graph with

node types:

input (fan-in 0)
constant (fan-in 0)

arithmetic (fan-in > 0)

one of
@ sign (fan-in 1)
e < (fan-in 2)
output (fan-in 1)

6 /20

Barlag, Gaube

Logical Characterizations of AC%

August 22, 2022



Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

» Directed Acyclic Graph with

node types:

input (fan-in 0)
constant (fan-in 0)

arithmetic (fan-in > 0)

one of
@ sign (fan-in 1)
e < (fan-in 2)
output (fan-in 1)

6 /20

Barlag, Gaube

Logical Characterizations of AC%

August 22, 2022



Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

» Directed Acyclic Graph with
node types:
m input (fan-in 0)
m constant (fan-in 0)
m arithmetic (fan-in > 0)
m one of
@ sign (fan-in 1)
e < (fan-in 2)
m output (fan-in 1)
» size: number of gates

» depth: longest path from input
to output
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Models and Logics

Algebraic Circuits over R

Algebraic Circuits over R

» Directed Acyclic Graph with
node types:
m input (fan-in 0)
m constant (fan-in 0)
m arithmetic (fan-in > 0)
m one of
@ sign (fan-in 1)
e < (fan-in 2)
m output (fan-in 1)
» size: number of gates

» depth: longest path from input
to output

» non-uniform!
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Models and Logics
Circuit families

» Sequences C = (C1,Co, .. .) of circuits where C; has i input gates

» If C; computes f¢, for all i € N, then C computes fc(w) = f¢,, (w).
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Models and Logics
Circuit families

Circuit families deciding sets

A circuit family C decides a set S C |J R" iff C computes the
neN

characteristic function of S.

Circuit classes

| A\

» NCj: sets decided by bounded fan-in circuits families of size
O(n°M) and depth in O(log(n)’)

» ACk: sets decided by unbounded fan-in circuit families of size
O(n®M) and depth in O(log(n)’)
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Models and Logics
Uniformity

Uniform circuit families

» There is an R-machine M producing the circuit family.

m i.e. M computes the function n+— C,
» M works in polynomial time — P-uniform

m Up-C is the subclass of C decided by P-uniform families
» M works in logarithmic time — L-uniform

m Upp-C is the subclass of C decided by L-uniform families
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Models and Logics

First-order Logic over R

@ = Ixy3xp val(x;) = val(x2) + 7 A x1 = succ(x2)
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Models and Logics

First-order Logic over R

@ = Ixy3xp val(x;) = val(x2) + 7 A x1 = succ(x2)

Definition: metafinite R-structures

» R-structure D = (A, F) of signature o = (Ls, L¢)
m A: finite structure of Ls with universe A
o the skeleton of D
m F: finite set of functions X : AKX — R interpreting symbols in L¢
o the arithmetic part of D
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Models and Logics

First-order Logic over R

o = ({succ}, {val})

@ = Ixy3xp val(x;) = val(x2) + 7 A x1 = succ(x2)

Definition: FOgr
» formulas and terms over signature o = (Ls, L¢) for variables xi, xo, . . .

m index terms: variables, functions f € Lg
m number terms: ring elements, functions g € L¢, t) + tp, t1 X to, sign(ty)
m formulas
e atomic: t1 = b, t1 < t, predicates P € L,
@ non-atomic: closure of atomic formulas under Boolean connectives and
quantification (3, V)

Barlag, Gaube Logical Characterizations of AC% August 22, 2022 10 / 20



Models and Logics

First-order Logic over R - Example

o = ({succ}, {val})

@ = 3x13Ixp val(x1) = val(x2) + m A x1 = succ(xp)
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Models and Logics

First-order Logic over R - Example

o = ({succ}, {val}) Circuit C:

@ = 3x13Ixp val(x1) = val(x2) + m A x1 = succ(xp)

Structure D :
A={v|veC(},

1
val(v) = the value of v on inputs e and 5>

succ(v) = the successor gate of v
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Models and Logics
Extensions to FOgr

Additional functions / relations

» FOR[S] for a set S of functions and relations

Additional constructions

» the sum, product and maximization rules for creating number terms

m touse Y t(i), J] t(/) and max(¢(/)) in formulas
i€A i€A iEA

= 3vi sum(g(v2)) > g(v1) x 2
A={", 8}, g={0— 7, & — 42}
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Models and Logics
Extensions to FOgr

Additional functions / relations

» FORg[S] for a set S of functions and relations

Additional constructions

» the sum, product and maximization rules for creating number terms

m touse Y t(i), J] t(i/) and max(t(/)) in formulas
i€A i€A i€A

4241

—
p =3 sum(g(vz)) > g(v1) x 2
A={0, 8}, g=1{0r 7,8 42)
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Some Characterizations
Logical Characterizations

Non-uniform AC%

ACY% = FOg[Arbg]

| A\

Polynomial-time uniform AC%

Up-AC% = FOR[FTIMER(n®™M)]

\

Logarithmic-time uniform AC%

Upr-AC% = FOR[FTIMERg(log(n))] + SUMg + PRODg
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Some Characterizations
Guarded predicative/functional recursion

Definition: [Durand, Haak, Vollmer, 2018]
A formula ¢ is in FO + GPR! if it has the form

p = [P(x,Y) = 0(x,y, P)le(P)4,
where 1 and € are FO formulae with free variables X,y such that each
atomic sub-formula involving the symbol P
Q is of the form P(X,Z), where Z is in the scope of a guarded
quantification Qz.((z < y/2) AN &(y,Z)) with Q € {V,3}, £ € FO and

@ never occur in the scope of any quantification not guarded this way.
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Some Characterizations

Results

Former results [DHV, 2018]

@ NC! = FO[BIT] + GPRL,
@ SAC! = FO[BIT] + GPR.
@ AC! = FO[BIT] + GPR!
Q #AC® = #Win-FO[BIT]
@ #NC! = #Win-FO[BIT] + GPR{,,nq
Q@ #SAC! = #Win-FO[BIT] + GPR]

@ #AC! = #Win-FO[BIT] + GPR!

semi

semi
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Some Characterizations

Guarded predicative logic - ideas of adaptations

» Extend GPR in order to characterize the whole AC, NC and SAC
-hierachies
m Substitute the factor 3 by 2'°8(")/108:i(") for AC’ etc.
@ But exponantiation is not part of the logic
= GPR’}? by tuples
» Add a similar construction to logics over metafinite structures
m probably functional instead of predicative recursion
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Some Characterizations

Further results

@ NC' = FO[BIT] + GPR{ g
@ SAC' = FO[BIT] + GPR!

© AC' = FO[BIT] + GPR/

Q@ #NC' = #Win-FO[BIT] + GPR{ .4
@ #SAC' = #Win-FO[BIT] + GPR.;
Q@ #AC' = #Win-FO[BIT] + GPR/

@ NCj = FORg[Arbg] + GPRR pound

O ACL = FOg[Arbg] + GPRk
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Some Characterizations

Relationship between versions of AC% over different rings

— canonical maps

Definition:

A canonical ring map from a ring R; to a ring Ry is a fixed injective
function fg, g,: R1 — RX for some k € N.

fry,Rr, is the identity function.

| \

Definition:
For two complexity classes Cg,,Cg, over the respective rings Ry, Ry, we

write
Cr, Cc Cry,

if for all languages A € Cg, the following holds:

{le,Rz(X) | X € A} € CR2*

The relations =. and C. are defined analogously.
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Some Characterizations
special cases of AC%

> ACY =c AC) =c ACY; =c ACY; =c ACY,
> AC% = AC]%[I] = AC]% —=c AC%{X] —c ACIQR[X
> ACY C. ACY

87

57

Write a number z = 2 € Q (resp. z = a+ bi € C ) as tuple (a, b) and use
a node per tuple.

v
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Outlook
Future/Current Research

» How can these classes be contextualized?
m separate AC% and NCk?
» Can we find a meaningful analogue of TCg?
m investigate then in particular the question, whether TCY = NC}??

» How are AC%p and AC%q for p # q (prime?) related?
» Define SACK classes
m Is it important which gate type we bound?

» Is there a connection between GPR-variations and fixed point logics
like FO(LFP)?
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NN
Definition (GPR)

For i >0, a formula ¢ is in FOg(GPRY}) if it has the form
p =[Py, 7)) = 051, ¥ (P,

where 1 and 6 are FOgformulae with free variables X, y1, .. .,¥; such that
each atomic sub-formula involving the symbol P

Q is of the form P(X,y1,...,Y;), the y1,...,¥; are in the scope of a
guarded aggregation

1 1
A\ T <Ti2A N\ ZH<THNEGR - Vi AL T)
j=i k=j—1
with A € {max, sum, prod} and

@ never occur in the scope of any aggregation (or quantification) not
guarded this way.
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