Institut für Theoretische Informatik

Leibniz Universität Hannover

Logical Charactarizations of algebraic circuit classes over rings

Timon Barlag and Sabrina Alexandra Gaube

August 22, 2022

2 Models and Logics

3 Some Characterizations

Introduction

Basic algebraic definitions

Recall:

A ring (with unity) is a set R equipped with two binary operations + and $\times,$ such that

- (R, +) is an abelian group,
- (R, \times) is a monoid,
- ▶ in particular, there is a $1 \in R$ such that $r \times 1 = 1 \times r = r$, for all $r \in R$.
- multiplication is distributive with respect to addition

Basic algebraic definitions

Recall:

An integral domain is a nonzero commutative ring without zero divisors, i.e. for every $a, b \neq 0 \in R$: $a \times b \neq 0$

- Directed Acyclic Graph with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - one of
 - sign (fan-in 1)
 - < (fan-in 2)
 - output (fan-in 1)

- Directed Acyclic Graph with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - one of
 - sign (fan-in 1)
 - < (fan-in 2)
 - output (fan-in 1)

- Directed Acyclic Graph with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - one of
 - sign (fan-in 1)
 - < (fan-in 2)
 - output (fan-in 1)

- Directed Acyclic Graph with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - one of
 - sign (fan-in 1)
 - < (fan-in 2)
 - output (fan-in 1)

- Directed Acyclic Graph with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - one of
 - sign (fan-in 1)
 - < (fan-in 2)
 - output (fan-in 1)

- Directed Acyclic Graph with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - one of
 - sign (fan-in 1)
 - < (fan-in 2)
 - output (fan-in 1)

- Directed Acyclic Graph with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - one of
 - sign (fan-in 1)
 - < (fan-in 2)
 - output (fan-in 1)

- Directed Acyclic Graph with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - one of
 - sign (fan-in 1)
 - < (fan-in 2)
 - output (fan-in 1)
- size: number of gates
- *depth*: longest path from input to output

Algebraic Circuits over R

- Directed Acyclic Graph with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - one of
 - sign (fan-in 1)
 - < (fan-in 2)
 - output (fan-in 1)
- size: number of gates
- *depth*: longest path from input to output

non-uniform!

Circuit families

Circuit families

- Sequences $C = (C_1, C_2, ...)$ of circuits where C_i has *i* input gates
- ▶ If C_i computes f_{C_i} for all $i \in \mathbb{N}$, then C computes $f_{C(w)} = f_{C_{|w|}}(w)$.

Circuit families

Circuit families deciding sets

A circuit family C decides a set $S \subseteq \bigcup_{n \in \mathbb{N}} R^n$ iff C computes the

characteristic function of S.

Circuit classes

- ► NCⁱ_R: sets decided by bounded fan-in circuits families of size O(n^{O(1)}) and depth in O(log(n)ⁱ)
- ► ACⁱ_R: sets decided by unbounded fan-in circuit families of size O(n^{O(1)}) and depth in O(log(n)ⁱ)

Uniformity

Uniform circuit families

- There is an R-machine M producing the circuit family.
 - i.e. *M* computes the function $n \mapsto C_n$
- *M* works in polynomial time \rightarrow *P*-uniform
 - U_P-C is the subclass of C decided by P-uniform families
- ▶ *M* works in logarithmic time \rightarrow *L*-uniform
 - U_{LT}-*C* is the subclass of *C* decided by *L*-uniform families

$$\varphi := \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

$$\varphi := \exists x_1 \exists x_2 \ \textit{val}(x_1) = \textit{val}(x_2) + \pi \land x_1 = \textit{succ}(x_2)$$

Definition: metafinite R-structures

• *R*-structure
$$\mathcal{D} = (\mathcal{A}, \mathcal{F})$$
 of signature $\sigma = (L_s, L_f)$

- \mathcal{A} : finite structure of L_s with universe \mathcal{A}
 - $\bullet\,$ the skeleton of ${\cal D}$
- \mathcal{F} : finite set of functions $X : A^k \to R$ interpreting symbols in L_f
 - the arithmetic part of \mathcal{D}

$$\sigma = (\{ succ \}, \{ val \})$$
$$\varphi := \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

Definition: metafinite R-structures

• *R*-structure
$$\mathcal{D} = (\mathcal{A}, \mathcal{F})$$
 of signature $\sigma = (L_s, L_f)$

- \mathcal{A} : finite structure of L_s with universe \mathcal{A}
 - $\bullet\,$ the skeleton of ${\cal D}$
- \mathcal{F} : finite set of functions $X : A^k \to R$ interpreting symbols in L_f
 - the arithmetic part of \mathcal{D}

$$\sigma = (\{\textit{succ}\}, \{\textit{val}\})$$
$$\varphi \coloneqq \exists x_1 \exists x_2 \ \textit{val}(x_1) = \textit{val}(x_2) + \pi \land x_1 = \textit{succ}(x_2)$$

Definition: FO_R

- ▶ formulas and terms over signature $\sigma = (L_s, L_f)$ for variables $x_1, x_2, ...$
 - index terms: variables, functions $f \in L_s$
 - **umber terms**: ring elements, functions $g \in L_f$, $t_1 + t_2$, $t_1 \times t_2$, $sign(t_1)$

formulas

- atomic: $t_1 = t_2$, $t_1 \le t_2$, predicates $P \in L_s$
- non-atomic: closure of atomic formulas under Boolean connectives and quantification (\exists,\forall)

First-order Logic over R - Example

$$\sigma = (\{ succ \}, \{ val \})$$
$$\varphi \coloneqq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

First-order Logic over R - Example

$$\sigma = (\{ succ \}, \{ val \})$$
$$\varphi \coloneqq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

Structure \mathcal{D} :

$$A = \{ v \mid v \in C \},\$$

$$val(v) =$$
 the value of v on inputs e and $\frac{1}{2}$
 $succ(v) =$ the successor gate of v

-1

First-order Logic over R - Example

$$\sigma = (\{ succ \}, \{ val \})$$
$$\varphi \coloneqq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

Structure \mathcal{D} :

$$A=\{v\mid v\in C\},$$

$$val(v) =$$
 the value of v on inputs e and $\frac{1}{2}$
 $succ(v) =$ the successor gate of v

-1

Extensions to FO_R

Additional functions / relations

▶ *FO_R*[*S*] for a set *S* of functions and relations

Additional constructions

▶ the sum, product and maximization rules for creating number terms
 ■ to use ∑_{i∈A} t(i), ∏_{i∈A} t(i) and max_{i∈A}(t(i)) in formulas

$$\varphi = \exists v_1 \ \sup_{v_2} (g(v_2)) > g(v_1) \times 2$$
$$A = \{\diamondsuit, \clubsuit\}, \ g = \{\diamondsuit \mapsto \pi, \clubsuit \mapsto 42\}$$

Extensions to FO_R

Additional functions / relations

▶ *FO_R*[*S*] for a set *S* of functions and relations

Additional constructions

▶ the sum, product and maximization rules for creating number terms
 ■ to use ∑_{i∈A} t(i), ∏_{i∈A} t(i) and max_{i∈A}(t(i)) in formulas

$$\varphi = \exists v_1 \quad \overbrace{sum(g(v_2))}^{42+\pi} > g(v_1) \times 2$$
$$A = \{\diamondsuit, \clubsuit\}, \ g = \{\diamondsuit \mapsto \pi, \clubsuit \mapsto 42\}$$

Logical Characterizations

Non-uniform AC_R^0

$$AC_R^0 = FO_R[Arb_R]$$

Polynomial-time uniform AC_R^0

$$\mathrm{U}_{\mathrm{P}} ext{-}\mathrm{AC}^{\mathsf{0}}_{R} = \mathsf{FO}_{R}[\mathsf{FTIME}_{R}(n^{\mathcal{O}(1)})]$$

Logarithmic-time uniform AC_R^0

 $U_{LT}-AC_R^0 = FO_R[FTIME_R(log(n))] + SUM_R + PROD_R$

Guarded predicative/functional recursion

Definition: [Durand, Haak, Vollmer, 2018]

A formula φ is in FO + GPR¹ if it has the form

$$\varphi ::= [P(\overline{x}, \overline{y}) \equiv \theta(\overline{x}, \overline{y}, P)] \varphi(P) | \psi,$$

where ψ and θ are FO formulae with free variables $\overline{x}, \overline{y}$ such that each atomic sub-formula involving the symbol *P*

- is of the form $P(\overline{x}, \overline{z})$, where \overline{z} is in the scope of a guarded quantification $Q\overline{z}.((\overline{z} \leq \overline{y}/2) \wedge \xi(\overline{y}, \overline{z}))$ with $Q \in \{\forall, \exists\}, \xi \in FO$ and
- 2 never occur in the scope of any quantification not guarded this way.

Results

Former results [DHV, 2018]

- $NC^1 = FO[BIT] + GPR^1_{bound}$

- $#AC^0 = #Win-FO[BIT]$
- $\#NC^1 = \#Win-FO[BIT] + GPR^1_{bound}$
- #SAC¹ = #Win-FO[BIT] + GPR¹_{semi}
- $#AC^1 = #Win-FO[BIT] + GPR^1$

Guarded predicative logic - ideas of adaptations

ideas

- Extend GPR in order to characterize the whole AC, NC and SAC -hierachies
 - Substitute the factor $\frac{1}{2}$ by $2^{\log_2(n)/\log_{2^i}(n)}$ for AC^i etc.
 - But exponantiation is not part of the logic
 - $\Rightarrow \operatorname{GPR}^{i}_{R}$ by tuples
- Add a similar construction to logics over metafinite structures
 - probably functional instead of predicative recursion

Further results

Goal

- $NC^i = FO[BIT] + GPR^i_{bound}$
- **2**SAC^{*i*} = FO[BIT] + GPR^{*i*}_{semi}
- $\#NC^{i} = \#Win-FO[BIT] + GPR^{i}_{bound}$
- #SAC^{*i*} = #Win-FO[BIT] + GPR^{*i*}_{semi}
- $#AC^{i} = #Win-FO[BIT] + GPR^{i}$
- $\operatorname{NC}_{R}^{i} = \operatorname{FO}_{R}[\operatorname{Arb}_{R}] + \operatorname{GPR}_{R, \text{bound}}^{i}$

Some Characterizations

Relationship between versions of AC_R^0 over different rings – canonical maps

Definition:

A canonical ring map from a ring R_1 to a ring R_2 is a fixed injective function f_{R_1,R_2} : $R_1 \rightarrow R_2^k$ for some $k \in \mathbb{N}$. f_{R_1,R_1} is the identity function.

Definition:

For two complexity classes C_{R_1}, C_{R_2} over the respective rings R_1, R_2 , we write

 $\mathcal{C}_{R_1} \subseteq_{c} \mathcal{C}_{R_2},$

if for all languages $A \in C_{R_1}$ the following holds:

```
{f_{R_1,R_2}(x) \mid x \in A} \in \mathcal{C}_{R_2^*}.
```

The relations $=_c$ and \subset_c are defined analogously.

special cases of AC_R^0

Theorem

$$AC^{0}_{\mathbb{Q}} =_{c} AC^{0}_{\mathbb{Z}} =_{c} AC^{0}_{\mathbb{Z}[i]} =_{c} AC^{0}_{\mathbb{Z}[x]} =_{c} AC^{0}_{\mathbb{Z}[x,y]}$$

$$AC^{0}_{\mathbb{C}} =_{c} AC^{0}_{\mathbb{R}[i]} =_{c} AC^{0}_{\mathbb{R}} =_{c} AC^{0}_{\mathbb{R}[x]} =_{c} AC^{0}_{\mathbb{R}[x,y]}$$

$$AC^{0}_{\mathbb{Z}} \subset_{c} AC^{0}_{\mathbb{R}}$$

idea:

Write a number $z = \frac{a}{b} \in \mathbb{Q}$ (resp. $z = a + bi \in \mathbb{C}$) as tuple (a, b) and use a node per tuple.

Future/Current Research

- How can these classes be contextualized?
 - separate AC_R^0 and NC_R^1 ?
- Can we find a meaningful analogue of TC_R ?
 - investigate then in particular the question, whether $TC_R^0 = NC_R^1$?
- ▶ How are $AC^0_{\mathbb{F}_p}$ and $AC^0_{\mathbb{F}_q}$ for $p \neq q$ (prime?) related?
- ▶ Define SAC_R^i classes
 - Is it important which gate type we bound?
- Is there a connection between GPR-variations and fixed point logics like FO(LFP)?

Outlook

Sources

- [Im89] Neil Immerman. Expressibility and Parallel Complexity. SIAM J. Comput. 18(3), 625-638 (1989)
- [CM99] Felipe Cucker and Klaus Meer. Logics which capture complexity classes over the reals. J. Symb. Log., 64(1):363-390, 1999.
- [BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation. Springer-Verlag, New York, 1998.
- [DHV18] Arnaud Durand, Anselm Haak, and Heribert Vollmer. Model-Theoretic Characterization of Boolean and Arithmetic Circuit Classes of Small Depth. LICS 2018: 354-363.
- [BV21] Timon Barlag and Heribert Vollmer. A Logical Characterization of Constant-Depth Circuits over the Reals. WoLLIC 2021: 16-30

Definition (GPR_R^i)

For $i \ge 0$, a formula φ is in $FO_R(GPR_R^i)$ if it has the form

$$\varphi ::= [P(\overline{x}, \overline{y_1}, \dots, \overline{y_i}) \equiv \theta(\overline{x}, \overline{y_1}, \dots, \overline{y_i}, P)]\varphi(P)]|\psi,$$

where ψ and θ are FO_R formulae with free variables $\overline{x}, \overline{y_1}, \ldots, \overline{y_i}$ such that each atomic sub-formula involving the symbol P

• is of the form $P(\overline{x}, \overline{y_1}, \dots, \overline{y_i})$, the $\overline{y_1}, \dots, \overline{y_i}$ are in the scope of a guarded aggregation

$$A_{\overline{y_1},\ldots,\overline{y_i}}.(\bigvee_{j=i}^1 \overline{z_j} \leq \overline{y_j}/2 \land \bigwedge_{k=j-1}^1 \overline{z_k} \leq \overline{y_k} \land \xi(\overline{y_1},\ldots,\overline{y_i},\overline{z_1},\ldots,\overline{z_i}))$$

with $A \in \{max, sum, prod\}$ and

ever occur in the scope of any aggregation (or quantification) not guarded this way.