# The Expressive Power of CSP Quantifiers 

Lauri Hella<br>Faculty of Information and Communication Sciences，<br>Tampere University，Finland

## Introduction

Cai, Fürer and Immerman 89 used a pebble game characterization for the infinitary $k$-variable logic with counting, $C_{\infty \omega}^{k}$ to prove that there are PTIME-computable properties that are not definable in $C_{\infty \omega}^{\omega}=\bigcup_{k \in \omega} C_{\infty \omega}^{k}$.

## Introduction

Cai, Fürer and Immerman 89 used a pebble game characterization for the infinitary $k$-variable logic with counting, $C_{\infty \omega}^{k}$ to prove that there are PTIME-computable properties that are not definable in $C_{\infty \omega}^{\omega}=\bigcup_{k \in \omega} C_{\infty \omega}^{k}$.

In the LICS 92 paper "Logical hierarchies in PTIME", we introduced $n$-bijective $k$-pebble games that characterize equivalence with respect to $L_{\infty \omega}^{k}\left(\mathbf{Q}_{n}\right)$, the extension of $k$-variable logic with all $n$-ary quantifiers.
Using this game and a modification of the CFI construction, we proved an arity hierarchy theorem for PTIME: For every $n$ there is a PTIME-computable quantifier of arity $n+1$ which is not definable in $L_{\infty \omega \omega}^{\omega}\left(\mathbf{Q}_{n}\right)$.

In this talk we go through a new size hierarchy theorem for CSP quantifiers． Here a generalized quantifier $Q_{\mathcal{K}}$ is a CSP quantifier if $\mathcal{K}=\operatorname{CSP}(\mathfrak{C})$ for some template $\mathfrak{C}$ ．The size of the quantifier $Q_{\operatorname{CSP}(\mathfrak{C})}$ is $|\operatorname{dom}(\mathfrak{C})|$ ．

In this talk we go through a new size hierarchy theorem for CSP quantifiers. Here a generalized quantifier $Q_{\mathcal{K}}$ is a CSP quantifier if $\mathcal{K}=\operatorname{CSP}(\mathfrak{C})$ for some template $\mathfrak{C}$. The size of the quantifier $Q_{\operatorname{CSP}(\mathfrak{C})}$ is $|\operatorname{dom}(\mathfrak{C})|$.

We introduce CSP games that characterize equivalence with respect $L_{\infty \omega}^{k}\left(\operatorname{CSP}_{n}^{+}\right)$, where $\operatorname{CSP}_{n}^{+}$is the union of $\mathbf{Q}_{1}$ and the class CSP $_{n}$ of all CSP quantifiers of size at most $n$.

Using these games we prove that for every $n \geq 2$ there is a CSP quantifier of size $n+1$ which is not definable in $L_{\infty \omega}^{\omega}\left(\operatorname{CSP}_{n}^{+}\right)$.

The proof is based on a new generalization of the CFI construction.

## Constraint satisfaction problems

A homomorphism between two $\tau$－structures $\mathfrak{A}$ and $\mathfrak{B}$ is a function $h: A \rightarrow B$ such that for every $R \in \tau$ ，and every $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ ，

$$
\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathfrak{A}} \Longrightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right) \in R^{\mathfrak{B}}
$$

## Constraint satisfaction problems

A homomorphism between two $\tau$-structures $\mathfrak{A}$ and $\mathfrak{B}$ is a function $h: A \rightarrow B$ such that for every $R \in \tau$, and every $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$,

$$
\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathfrak{A}} \Longrightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right) \in R^{\mathfrak{B}}
$$

Every $\tau$-structure $\mathfrak{C}$ gives rise to a constraint satisfaction problem:

- Given a $\tau$-structure $\mathfrak{A}$, does there exist a homomorphism $h: \mathfrak{A} \rightarrow \mathfrak{C}$ ?

We denote the class of all positive instances $\mathfrak{A}$ of this problem by $\operatorname{CSP}(\mathfrak{C})$.

We classify template structures $\mathfrak{C}$ of CSP's by two numerical parameters:

- The arity of $\mathfrak{C}$ is $\operatorname{ar}(\mathfrak{C}):=\max \{\operatorname{ar}(R) \mid R \in \tau\}$.
- The size of $\mathfrak{C}$ is $\mathrm{sz}(\mathfrak{C}):=|\operatorname{dom}(\mathfrak{C})|$.

We classify template structures $\mathfrak{C}$ of CSP's by two numerical parameters:

- The arity of $\mathfrak{C}$ is $\operatorname{ar}(\mathfrak{C}):=\max \{\operatorname{ar}(R) \mid R \in \tau\}$.
- The size of $\mathfrak{C}$ is $\mathrm{sz}(\mathfrak{C}):=|\operatorname{dom}(\mathfrak{C})|$.


## Example

(a) Clearly a graph $G$ is $n$-colourable if and only if $G \in \operatorname{CSP}\left(\mathfrak{C}_{n-C O L}\right)$, where $\mathfrak{C}_{n \text {-COL }}:=\left([n],\left\{(i, j) \in[n]^{2} \mid i \neq j\right\}\right)$.
The arity and size of $\mathfrak{C}_{n \text {-COL }}$ are 2 and $n$, respectively.

We classify template structures $\mathfrak{C}$ of CSP's by two numerical parameters:

- The arity of $\mathfrak{C}$ is $\operatorname{ar}(\mathfrak{C}):=\max \{\operatorname{ar}(R) \mid R \in \tau\}$.
- The size of $\mathfrak{C}$ is $\mathrm{sz}(\mathfrak{C}):=|\operatorname{dom}(\mathfrak{C})|$.


## Example

(a) Clearly a graph $G$ is $n$-colourable if and only if $G \in \operatorname{CSP}\left(\mathfrak{C}_{n-C O L}\right)$, where $\mathfrak{C}_{n \text {-COL }}:=\left([n],\left\{(i, j) \in[n]^{2} \mid i \neq j\right\}\right)$.
The arity and size of $\mathfrak{C}_{n \text {-COL }}$ are 2 and $n$, respectively.
(b) The CFI structures constructed for the arity hierarchy theorem in the LICS 92 paper can be separated by $\operatorname{CSP}\left(\mathfrak{C}_{n \text {-CFI }}\right)$, where $\mathfrak{C}_{n \text {-CFI }}=\left(\{0,1\}, R^{\text {ev }}\right)$ for

$$
R^{\mathrm{ev}}:=\left\{\left(b_{1}, \ldots, b_{n+1}\right) \mid b_{1}+\cdots+b_{n+1}=0 \bmod 2\right\}
$$

The arity and size of $\mathfrak{C}_{n \text {-CFI }}$ are $n$ and 2 , respectively.

## Generalized quantifiers

Let $\tau=\left\{R_{1}, \ldots, R_{m}\right\}$ be a relational vocabulary and let $\mathcal{K}$ be a class of finite $\tau$－structures that is closed under isomorphisms．

The extension $L\left(Q_{\mathcal{K}}\right)$ of a logic $L$ by the quantifier $Q_{\mathcal{K}}$ is obtained by adding the following rules in the syntax and semantics of $L$ ：

## Generalized quantifiers

Let $\tau=\left\{R_{1}, \ldots, R_{m}\right\}$ be a relational vocabulary and let $\mathcal{K}$ be a class of finite $\tau$－structures that is closed under isomorphisms．

The extension $L\left(Q_{\mathcal{K}}\right)$ of a logic $L$ by the quantifier $Q_{\mathcal{K}}$ is obtained by adding the following rules in the syntax and semantics of $L$ ：
－If $\psi_{1}, \ldots, \psi_{m}$ are formulas and $\vec{y}_{1}, \ldots, \vec{y}_{m}$ are tuples of variables with $\left|\vec{y}_{i}\right|=\operatorname{ar}\left(R_{i}\right)$ for $i \in[m]$ ，then $\varphi=Q_{\mathcal{K}} \vec{y}_{1}, \ldots, \vec{y}_{m}\left(\psi_{1}, \ldots, \psi_{m}\right)$ is a formula．

## Generalized quantifiers

Let $\tau=\left\{R_{1}, \ldots, R_{m}\right\}$ be a relational vocabulary and let $\mathcal{K}$ be a class of finite $\tau$－structures that is closed under isomorphisms．

The extension $L\left(Q_{\mathcal{K}}\right)$ of a logic $L$ by the quantifier $Q_{\mathcal{K}}$ is obtained by adding the following rules in the syntax and semantics of $L$ ：
－If $\psi_{1}, \ldots, \psi_{m}$ are formulas and $\vec{y}_{1}, \ldots, \vec{y}_{m}$ are tuples of variables with $\left|\vec{y}_{i}\right|=\operatorname{ar}\left(R_{i}\right)$ for $i \in[m]$ ，then $\varphi=Q_{\mathcal{K}} \vec{y}_{1}, \ldots, \vec{y}_{m}\left(\psi_{1}, \ldots, \psi_{m}\right)$ is a formula．
－$(\mathfrak{A}, \alpha) \models Q_{\mathcal{K}} \overrightarrow{y_{1}}, \ldots, \vec{y}_{m}\left(\psi_{1}, \ldots, \psi_{m}\right) \Leftrightarrow\left(A, \psi_{1}^{\mathfrak{A}, \alpha, \vec{y}_{1}}, \ldots, \psi_{m}^{\mathfrak{A}, \alpha, \overrightarrow{y_{m}}}\right) \in \mathcal{K}$ ．
Here $\theta^{\mathfrak{A}, \alpha, \vec{y}}:=\left\{\vec{a} \in A^{r}|(\mathfrak{A}, \alpha[\vec{a} / \vec{y}])|=\theta\right\}$ for a formula $\theta$ ．

## Generalized quantifiers

Let $\tau=\left\{R_{1}, \ldots, R_{m}\right\}$ be a relational vocabulary and let $\mathcal{K}$ be a class of finite $\tau$－structures that is closed under isomorphisms．
The extension $L\left(Q_{\mathcal{K}}\right)$ of a logic $L$ by the quantifier $Q_{\mathcal{K}}$ is obtained by adding the following rules in the syntax and semantics of $L$ ：
－If $\psi_{1}, \ldots, \psi_{m}$ are formulas and $\vec{y}_{1}, \ldots, \vec{y}_{m}$ are tuples of variables with $\left|\vec{y}_{i}\right|=\operatorname{ar}\left(R_{i}\right)$ for $i \in[m]$ ，then $\varphi=Q_{\mathcal{K}} \vec{y}_{1}, \ldots, \vec{y}_{m}\left(\psi_{1}, \ldots, \psi_{m}\right)$ is a formula．
－$(\mathfrak{A}, \alpha) \models Q_{\mathcal{K}} \overrightarrow{y_{1}}, \ldots, \vec{y}_{m}\left(\psi_{1}, \ldots, \psi_{m}\right) \Leftrightarrow\left(A, \psi_{1}^{\mathfrak{A}, \alpha, \vec{y}_{1}}, \ldots, \psi_{m}^{\mathfrak{A}, \alpha, \vec{y}_{m}}\right) \in \mathcal{K}$ ．
Here $\theta^{\mathfrak{R}, \alpha, \vec{y}}:=\left\{\vec{a} \in A^{r}|(\mathfrak{A}, \alpha[\vec{a} / \vec{y}])|=\theta\right\}$ for a formula $\theta$ ．
The arity of $Q_{\mathcal{K}}$ is $\max \{\operatorname{ar}(R) \mid R \in \tau\}$ ．We denote the class of all quantifiers with arity at most $m$ by $\mathbf{Q}_{m}$ ． Lauri Hella

A quantifer $Q_{\mathcal{K}}$ is a CSP quantifier if $\mathcal{K}=\operatorname{CSP}(\mathfrak{C})$ for some template $\mathfrak{C}$ ．We denote the class of all CSP quantifiers $Q_{\operatorname{CSP}(\mathfrak{C})}$ such that $\mathrm{sz}(\mathfrak{C}) \leq n$ by $\operatorname{CSP}_{n}$ ． Furthermore，we write $\mathbf{C S P}_{n}^{+}:=\mathbf{C S P}_{n} \cup \mathbf{Q}_{1}$ ．

A quantifer $Q_{\mathcal{K}}$ is a CSP quantifier if $\mathcal{K}=\operatorname{CSP}(\mathfrak{C})$ for some template $\mathfrak{C}$. We denote the class of all CSP quantifiers $Q_{\mathrm{CSP}(\mathfrak{C})}$ such that $\mathrm{sz}(\mathfrak{C}) \leq n$ by $\mathrm{CSP}_{n}$. Furthermore, we write $\mathbf{C S P}_{n}^{+}:=\mathbf{C S P}_{n} \cup \mathbf{Q}_{1}$.

## Example

(a) $\exists=Q_{\mathcal{K}_{\exists}}$, where $\mathcal{K}_{\exists}:=\{(A, R) \mid R \subseteq A, R \neq \emptyset\}$ and $\forall=Q_{\mathcal{K}_{\forall}}$, where
$\mathcal{K}_{\forall}:=\{(A, R) \mid R=A\}$.
(b) Härtig quantifier: $I=Q_{\mathcal{K}_{1}}$, where $\mathcal{K}_{I}:=\{(A, P, R)| | P|=|R|\}$.

If $G$ is a graph, then $G \models \forall x \forall y I x, y(E(x, y), E(y, x))$ iff $G$ is regular.

A quantifer $Q_{\mathcal{K}}$ is a CSP quantifier if $\mathcal{K}=\operatorname{CSP}(\mathfrak{C})$ for some template $\mathfrak{C}$. We denote the class of all CSP quantifiers $Q_{\operatorname{CSP}(\mathfrak{C})}$ such that $\mathrm{sz}(\mathfrak{C}) \leq n$ by $\operatorname{CSP}_{n}$. Furthermore, we write $\mathbf{C S P}_{n}^{+}:=\mathbf{C S P}_{n} \cup \mathbf{Q}_{1}$.

## Example

(a) $\exists=Q_{\mathcal{K}_{\exists}}$, where $\mathcal{K}_{\exists}:=\{(A, R) \mid R \subseteq A, R \neq \emptyset\}$ and $\forall=Q_{\mathcal{K}_{\forall}}$, where
$\mathcal{K}_{\forall}:=\{(A, R) \mid R=A\}$.
(b) Härtig quantifier: $I=Q_{\mathcal{K}_{1}}$, where $\mathcal{K}_{I}:=\{(A, P, R)| | P|=|R|\}$. If $G$ is a graph, then $G \models \forall x \forall y I x, y(E(x, y), E(y, x))$ iff $G$ is regular.
(c) $Q_{\mathfrak{C}_{n-\text { COL }}} \in \mathbf{Q}_{2} \cap \mathbf{C S P}_{n}$ and $Q_{\mathfrak{C}_{n-\text { CFI }}} \in \mathbf{Q}_{n+1} \cap \mathbf{C S P}_{2}$ for all $n \geq 2$.

Let $\mathfrak{A}$ and $\mathfrak{B}$ be structures of the same vocabulary，and $\alpha$ and $\beta$ assignments on $\mathfrak{A}$ and $\mathfrak{B}$ such that $\operatorname{dom}(\alpha)=\operatorname{dom}(\beta)$ ．
We write $(\mathfrak{A}, \alpha) \equiv_{\infty \omega, n}^{k}(\mathfrak{B}, \beta)$ if the equivalence

$$
(\mathfrak{A}, \alpha) \models \varphi \Leftrightarrow(\mathfrak{B}, \beta) \models \varphi
$$

holds for all formulas $\varphi \in L_{\infty \omega}^{k}\left(\mathbf{C S P}_{n}^{+}\right)$with free variables in $\operatorname{dom}(\alpha)$ ．

Let $\mathfrak{A}$ and $\mathfrak{B}$ be structures of the same vocabulary，and $\alpha$ and $\beta$ assignments on $\mathfrak{A}$ and $\mathfrak{B}$ such that $\operatorname{dom}(\alpha)=\operatorname{dom}(\beta)$ ．
We write $(\mathfrak{A}, \alpha) \equiv_{\infty \omega, n}^{k}(\mathfrak{B}, \beta)$ if the equivalence

$$
(\mathfrak{A}, \alpha) \models \varphi \Leftrightarrow(\mathfrak{B}, \beta) \models \varphi
$$

holds for all formulas $\varphi \in L_{\infty \omega}^{k}\left(\mathbf{C S P}_{n}^{+}\right)$with free variables in $\operatorname{dom}(\alpha)$ ．
Similarly we write $(\mathfrak{A}, \alpha) \equiv{ }_{n}^{k}(\mathfrak{B}, \beta)$ if the equivalence above holds for all $\mathrm{FO}^{k}\left(\mathbf{C S P}_{n}^{+}\right)$－formulas $\varphi$ ．If $\alpha=\beta=\emptyset$ ，we write simply $\mathfrak{A} \equiv{ }_{\infty \omega, n}^{k} \mathfrak{B}$ instead of $(\mathfrak{A}, \emptyset) \equiv_{\infty \omega, n}^{k}(\mathfrak{B}, \emptyset)$ ，and similarly for $\equiv_{n}^{k}$ ．

## Pebble game for CSP quantifiers

Let $\mathfrak{A}$ and $\mathfrak{B}$ be $\tau$-structures, and let $\alpha$ and $\beta$ are assignments on $\mathfrak{A}$ and $\mathfrak{B}$ such that $\operatorname{dom}(\alpha)=\operatorname{dom}(\beta) \subseteq X_{k}:=\left\{x_{1}, \ldots, x_{k}\right\}$. Furthermore, let $n, k \geq 1$ ( $n$ is a parameter for the size of templates and $k$ for the number of pebbles).

## Pebble game for CSP quantifiers

Let $\mathfrak{A}$ and $\mathfrak{B}$ be $\tau$－structures，and let $\alpha$ and $\beta$ are assignments on $\mathfrak{A}$ and $\mathfrak{B}$ such that $\operatorname{dom}(\alpha)=\operatorname{dom}(\beta) \subseteq X_{k}:=\left\{x_{1}, \ldots, x_{k}\right\}$ ．Furthermore，let $n, k \geq 1$（ $n$ is a parameter for the size of templates and $k$ for the number of pebbles）．

## Definition

The game $\operatorname{CSPG}[\mathfrak{A}, \mathfrak{B}, n, k](\alpha, \beta)$ is played between $S$ and $D$ ，and it has the following rules：
（1）If $\alpha \mapsto \beta \notin \operatorname{PI}(\mathfrak{A}, \mathfrak{B})$ ，then the game ends，and S wins．
（2）If（1）does not hold，there are three types of moves that $S$ can choose to play：bijection move，left／right CSP－quantifier move．
（3）$D$ wins the game if $S$ does not win it in a finite number of rounds．

- Bijection move: - S starts by choosing a variable $y \in X_{k}$.
- D answers by choosing a bijection $f: A \rightarrow B$.
- S completes the round by choosing an element $a \in A$.
- The players continue by playing $\operatorname{CSPG}(\alpha[a / y], \beta[f(a) / y])$.
- Bijection move: - S starts by choosing a variable $y \in X_{k}$.
- D answers by choosing a bijection $f: A \rightarrow B$.
- S completes the round by choosing an element $a \in A$.
- The players continue by playing $\operatorname{CSPG}(\alpha[a / y], \beta[f(a) / y])$.
- Left CSP-quantifier move: - S starts by choosing $r \in[k]$ and an $r$-tuple $\vec{y} \in X_{k}^{r}$ of distinct variables and a colouring $g: A \rightarrow[n]$.
- D chooses next a colouring $h: B \rightarrow[n]$.
- S answers by choosing an $r$-tuple $\vec{b} \in B^{r}$.
- D completes the round by choosing an $r$-tuple $\vec{a} \in A^{r}$ such that $g\left(a_{j}\right)=h\left(b_{j}\right)$ for all $j \in[r]$.
- The players continue by playing $\operatorname{CSPG}(\alpha[\vec{a} / \vec{y}], \beta[\vec{b} / \vec{y}])$.
- Bijection move: - S starts by choosing a variable $y \in X_{k}$.
- D answers by choosing a bijection $f: A \rightarrow B$.
- S completes the round by choosing an element $a \in A$.
- The players continue by playing $\operatorname{CSPG}(\alpha[a / y], \beta[f(a) / y])$.
- Left CSP-quantifier move: - S starts by choosing $r \in[k]$ and an $r$-tuple $\vec{y} \in X_{k}^{r}$ of distinct variables and a colouring $g: A \rightarrow[n]$.
- D chooses next a colouring $h: B \rightarrow[n]$.
- S answers by choosing an $r$-tuple $\vec{b} \in B^{r}$.
- D completes the round by choosing an $r$-tuple $\vec{a} \in A^{r}$ such that $g\left(a_{j}\right)=h\left(b_{j}\right)$ for all $j \in[r]$.
- The players continue by playing $\operatorname{CSPG}(\alpha[\vec{a} / \vec{y}], \beta[\vec{b} / \vec{y}])$.
- Right CSP-quantifier move: Switch the roles of $\mathfrak{A}$ and $\mathfrak{B}$.


## Characterization theorem

The CSP game characterizes equivalence with respect to both of the logics $\mathrm{FO}^{k}\left(\mathbf{C S P}_{n}^{+}\right)$and $L_{\infty \omega}^{k}\left(\mathbf{C S P}_{n}^{+}\right)$:

Theorem
The following conditions are equivalent:

- $D$ has a winning strategy in the game $\operatorname{CSPG}[\mathfrak{A}, \mathfrak{B}, n, k](\alpha, \beta)$,
- $(\mathfrak{A}, \alpha) \equiv_{\infty \omega, n}^{k}(\mathfrak{B}, \beta)$,
- $(\mathfrak{A}, \alpha) \equiv_{n}^{k}(\mathfrak{B}, \beta)$.


## Generalized CFI structures

Let $\tau_{n}=\left\{R_{n}\right\}$, where $\operatorname{ar}\left(R_{n}\right)=3 n$, and let $A_{n}=\left\{a_{j}^{i} \mid i \in[3], j \in[n+1]\right\}$. We define gadget structures $\mathfrak{A}_{n}=\left(A_{n}, R_{n}\right)$ and $\tilde{\mathfrak{A}}_{n}=\left(A_{n}, \tilde{R}_{n}\right)$ such that switching a pair $a_{j}^{i}$ and $a_{\ell}^{i}$ for any $i \in[3]$ and any $j \neq \ell \in[n+1]$ gives an isomorphism between $\mathfrak{A}_{n}$ and $\tilde{\mathfrak{A}}_{n}$.
(Thus, switching two such pairs gives an automorphism of $\mathfrak{A}_{n}$ and $\tilde{\mathfrak{A}}_{n}$.)

## Generalized CFI structures

Let $\tau_{n}=\left\{R_{n}\right\}$, where $\operatorname{ar}\left(R_{n}\right)=3 n$, and let $A_{n}=\left\{a_{j}^{i} \mid i \in[3], j \in[n+1]\right\}$. We define gadget structures $\mathfrak{A}_{n}=\left(A_{n}, R_{n}\right)$ and $\tilde{\mathfrak{A}}_{n}=\left(A_{n}, \tilde{R}_{n}\right)$ such that switching a pair $a_{j}^{i}$ and $a_{\ell}^{i}$ for any $i \in[3]$ and any $j \neq \ell \in[n+1]$ gives an isomorphism between $\mathfrak{A}_{n}$ and $\tilde{\mathfrak{A}}_{n}$.
(Thus, switching two such pairs gives an automorphism of $\mathfrak{A}_{n}$ and $\tilde{\mathfrak{A}}_{n}$.)
Given an ordered 3-regular connected graph $G$, we define a $\tau_{n}$-structure $\mathfrak{A}_{n}^{e v}(G)$ by replacing the vertices of $G$ by copies of $\mathfrak{A}_{n}$. The other CFI-structure $\mathfrak{A}_{n}^{\text {od }}(G)$ is defined in the same way, except that for one vertex we use $\tilde{\mathfrak{A}}_{n}$.

## Separating the CFI structures

Let $C_{n}=\left\{c_{j} \mid j \in[n+1]\right\}$ and let $h_{n}: A_{n} \rightarrow C_{n}$ be the projection $h_{n}\left(a_{j}^{j}\right)=c_{j}$ ． Defining $\mathcal{R}_{n}:=\left\{h_{n}(\vec{a}) \mid \vec{a} \in R_{n}\right\}$ and $\mathfrak{C}_{n}:=\left(C_{n}, \mathcal{R}_{n}\right)$ ，we see that $h_{n}$ is a homomorphism $\mathfrak{A}_{n} \rightarrow \mathfrak{C}_{n}$.

## Separating the CFI structures

Let $C_{n}=\left\{c_{j} \mid j \in[n+1]\right\}$ and let $h_{n}: A_{n} \rightarrow C_{n}$ be the projection $h_{n}\left(a_{j}^{i}\right)=c_{j}$ ． Defining $\mathcal{R}_{n}:=\left\{h_{n}(\vec{a}) \mid \vec{a} \in R_{n}\right\}$ and $\mathfrak{C}_{n}:=\left(C_{n}, \mathcal{R}_{n}\right)$ ，we see that $h_{n}$ is a homomorphism $\mathfrak{A}_{n} \rightarrow \mathfrak{C}_{n}$ ．
Furthermore，the union of the copies of $h_{n}$ on the copies of $\mathfrak{A}_{n}$ in $\mathfrak{A}_{n}^{\text {ev }}(G)$ is a homomorphism $\mathfrak{A}_{n}^{e v}(G) \rightarrow \mathfrak{C}_{n}$ ．Thus， $\mathfrak{A}_{n}^{\text {ev }}(G) \in \operatorname{CSP}\left(\mathfrak{C}_{n}\right)$ ．
On the other hand，using a parity argument，we see that $\mathfrak{A}_{n}^{\text {od }}(G) \notin \operatorname{CSP}\left(\mathfrak{C}_{n}\right)$ ．

## Separating the CFI structures

Let $C_{n}=\left\{c_{j} \mid j \in[n+1]\right\}$ and let $h_{n}: A_{n} \rightarrow C_{n}$ be the projection $h_{n}\left(a_{j}^{j}\right)=c_{j}$. Defining $\mathcal{R}_{n}:=\left\{h_{n}(\vec{a}) \mid \vec{a} \in R_{n}\right\}$ and $\mathfrak{C}_{n}:=\left(C_{n}, \mathcal{R}_{n}\right)$, we see that $h_{n}$ is a homomorphism $\mathfrak{A}_{n} \rightarrow \mathfrak{C}_{n}$.
Furthermore, the union of the copies of $h_{n}$ on the copies of $\mathfrak{A}_{n}$ in $\mathfrak{A}_{n}^{\text {ev }}(G)$ is a homomorphism $\mathfrak{A}_{n}^{e v}(G) \rightarrow \mathfrak{C}_{n}$. Thus, $\mathfrak{A}_{n}^{\text {ev }}(G) \in \operatorname{CSP}\left(\mathfrak{C}_{n}\right)$.
On the other hand, using a parity argument, we see that $\mathfrak{A}_{n}^{\text {od }}(G) \notin \operatorname{CSP}\left(\mathfrak{C}_{n}\right)$.
Remark. CSP $\left(\mathfrak{C}_{n}\right)$ is NP-complete, but $\mathfrak{A}_{n}^{\text {ev }}(G)$ and $\mathfrak{A}_{n}^{\text {od }}(G)$ can also be separated by PTIME properties.

## Winning the CSP game on the CFI structures

Making use of the switching isomorphisms of the gadgets $\mathfrak{A}_{n}$ and $\tilde{\mathfrak{A}}_{n}$ ，we prove that D has a winning strategy in $\operatorname{CSPG}\left[\mathfrak{A}_{n}^{\text {ev }}(G), \mathfrak{A}_{n}^{\text {od }}(G), n, k\right](\alpha, \beta)$ whenever she has one in $\mathrm{BPG}_{1}^{k}$ on the original CFI structures obtained from $G$ ．

## Winning the CSP game on the CFI structures

Making use of the switching isomorphisms of the gadgets $\mathfrak{A}_{n}$ and $\tilde{\mathfrak{A}}_{n}$, we prove that D has a winning strategy in $\operatorname{CSPG}\left[\mathfrak{A}_{n}^{\text {ev }}(G), \mathfrak{A}_{n}^{\text {od }}(G), n, k\right](\alpha, \beta)$ whenever she has one in $\mathrm{BPG}_{1}^{k}$ on the original CFI structures obtained from $G$.

Theorem
$\operatorname{CSP}\left(\mathfrak{C}_{n}\right)$ is not definable in $L_{\infty \omega}^{\omega}\left(\operatorname{CSP}_{n}^{+}\right)$.
As a corollary, we get size hierarchy result for CSP quantifiers:

## Corollary

For every $n \geq 2$ there is a CSP quantifer of size $n+1$ which is not definable in $L_{\infty}^{\omega}\left(\mathbf{C S P}_{n}^{+}\right)$.

## Open problems

（1）The CSP－quantifiers $Q_{\mathfrak{C}_{n}}$ are NP－complete．Can they be replaced by some PTIME－computable CSP－quantifiers？

## Open problems

(1) The CSP-quantifiers $Q_{\mathfrak{C}_{n}}$ are NP-complete. Can they be replaced by some PTIME-computable CSP-quantifiers?
(2) The arity of the CSP-quantifier $Q_{\mathfrak{C}_{n}}$ is $3 n$. Are there templates $\mathfrak{D}_{n}$ such that $\operatorname{CSP}\left(\mathfrak{D}_{n}\right)$ is not definable in $L_{\infty \omega}^{\omega}\left(\mathbf{C S P}_{n}^{+}\right)$and $\operatorname{ar}\left(\mathfrak{D}_{n}\right)=r$ for some constant $r$ ?

## Open problems

（1）The CSP－quantifiers $Q_{\mathfrak{C}_{n}}$ are NP－complete．Can they be replaced by some PTIME－computable CSP－quantifiers？
（2）The arity of the CSP－quantifier $Q_{\mathfrak{C}_{n}}$ is $3 n$ ．Are there templates $\mathfrak{D}_{n}$ such that $\operatorname{CSP}\left(\mathfrak{D}_{n}\right)$ is not definable in $L_{\infty \omega}^{\omega}\left(\mathbf{C S P}_{n}^{+}\right)$and $\operatorname{ar}\left(\mathfrak{D}_{n}\right)=r$ for some constant $r$ ？
（3）It seems quite plausible that for any $\ell, n \geq 2$ ，equivalence with respect to the extension of $L_{\infty \omega}^{k}$ by all $\ell$ th vectorizations of the quantifiers in $\mathbf{C S P}_{n}^{+}$is just isomorphism for large enough $k$ ．Prove or disprove this！

## Open problems

（1）The CSP－quantifiers $Q_{\mathfrak{C}_{n}}$ are NP－complete．Can they be replaced by some PTIME－computable CSP－quantifiers？
（2）The arity of the CSP－quantifier $Q_{\mathfrak{C}_{n}}$ is $3 n$ ．Are there templates $\mathfrak{D}_{n}$ such that $\operatorname{CSP}\left(\mathfrak{D}_{n}\right)$ is not definable in $L_{\infty \omega}^{\omega}\left(\mathbf{C S P}_{n}^{+}\right)$and $\operatorname{ar}\left(\mathfrak{D}_{n}\right)=r$ for some constant $r$ ？
（3）It seems quite plausible that for any $\ell, n \geq 2$ ，equivalence with respect to the extension of $L_{\infty \omega}^{k}$ by all $\ell$ th vectorizations of the quantifiers in $\mathbf{C S P}_{n}^{+}$is just isomorphism for large enough $k$ ．Prove or disprove this！
（4）What is the relationship between $L_{\infty \omega}^{\omega}\left(\operatorname{CSP}_{n}^{+}\right)$and the extension $\mathrm{LA}^{\omega}(Q)$ of $L_{\infty \omega}^{\omega}$ with all linear algebraic operators（Dawar，Grädel and Pakusa 19）？ Does equivalence with respect to one of these logics imply equivalence with respect to the other？ Power of CSP Quantifiers Lauri Hella

## Happy 72nd birthday Phokion and Jouko！

# Happy 72nd birthday Phokion and Jouko！ 

N．B：$\quad 72$ is the smallest integer of the form $p^{q} \cdot q^{p}$ for distinct primes $p, q$ ．

