
The
Expressive

Power of CSP
Quantifiers

Lauri Hella

30 Years of Finite Model Theory in Finland

August 22, 2022

The Expressive Power of CSP Quantifiers

Lauri Hella

Faculty of Information and Communication Sciences,
Tampere University, Finland

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Introduction

Cai, Fürer and Immerman 89 used a pebble game characterization for the
infinitary k-variable logic with counting, Ck

∞ω to prove that there are
PTIME-computable properties that are not definable in Cω

∞ω =
⋃

k∈ω Ck
∞ω.

In the LICS 92 paper “Logical hierarchies in PTIME”, we introduced n-bijective
k-pebble games that characterize equivalence with respect to Lk

∞ω(Qn), the
extension of k-variable logic with all n-ary quantifiers.

Using this game and a modification of the CFI construction, we proved an arity
hierarchy theorem for PTIME: For every n there is a PTIME-computable
quantifier of arity n + 1 which is not definable in Lω∞ω(Qn).

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Introduction

Cai, Fürer and Immerman 89 used a pebble game characterization for the
infinitary k-variable logic with counting, Ck

∞ω to prove that there are
PTIME-computable properties that are not definable in Cω

∞ω =
⋃

k∈ω Ck
∞ω.

In the LICS 92 paper “Logical hierarchies in PTIME”, we introduced n-bijective
k-pebble games that characterize equivalence with respect to Lk

∞ω(Qn), the
extension of k-variable logic with all n-ary quantifiers.

Using this game and a modification of the CFI construction, we proved an arity
hierarchy theorem for PTIME: For every n there is a PTIME-computable
quantifier of arity n + 1 which is not definable in Lω∞ω(Qn).

The
Expressive

Power of CSP
Quantifiers

Lauri Hella
In this talk we go through a new size hierarchy theorem for CSP quantifiers.
Here a generalized quantifier QK is a CSP quantifier if K = CSP(C) for some
template C. The size of the quantifier QCSP(C) is |dom(C)|.

We introduce CSP games that characterize equivalence with respect
Lk

∞ω(CSP+
n), where CSP+

n is the union of Q1 and the class CSPn of all CSP
quantifiers of size at most n.

Using these games we prove that for every n ≥ 2 there is a CSP quantifier of
size n + 1 which is not definable in Lω∞ω(CSP+

n).

The proof is based on a new generalization of the CFI construction.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella
In this talk we go through a new size hierarchy theorem for CSP quantifiers.
Here a generalized quantifier QK is a CSP quantifier if K = CSP(C) for some
template C. The size of the quantifier QCSP(C) is |dom(C)|.

We introduce CSP games that characterize equivalence with respect
Lk

∞ω(CSP+
n), where CSP+

n is the union of Q1 and the class CSPn of all CSP
quantifiers of size at most n.

Using these games we prove that for every n ≥ 2 there is a CSP quantifier of
size n + 1 which is not definable in Lω∞ω(CSP+

n).

The proof is based on a new generalization of the CFI construction.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Constraint satisfaction problems

A homomorphism between two τ -structures A and B is a function h : A→ B
such that for every R ∈ τ , and every (a1, . . . , an) ∈ An,

(a1, . . . , an) ∈ RA =⇒ (h(a1), . . . , h(an)) ∈ RB.

Every τ -structure C gives rise to a constraint satisfaction problem:

• Given a τ -structure A, does there exist a homomorphism h : A→ C?

We denote the class of all positive instances A of this problem by CSP(C).

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Constraint satisfaction problems

A homomorphism between two τ -structures A and B is a function h : A→ B
such that for every R ∈ τ , and every (a1, . . . , an) ∈ An,

(a1, . . . , an) ∈ RA =⇒ (h(a1), . . . , h(an)) ∈ RB.

Every τ -structure C gives rise to a constraint satisfaction problem:

• Given a τ -structure A, does there exist a homomorphism h : A→ C?

We denote the class of all positive instances A of this problem by CSP(C).

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

We classify template structures C of CSP’s by two numerical parameters:

• The arity of C is ar(C) := max{ar(R) | R ∈ τ}.
• The size of C is sz(C) := |dom(C)|.

Example
(a) Clearly a graph G is n-colourable if and only if G ∈ CSP(Cn-COL), where
Cn-COL := ([n], {(i , j) ∈ [n]2 | i 6= j}).
The arity and size of Cn-COL are 2 and n, respectively.

(b) The CFI structures constructed for the arity hierarchy theorem in the LICS 92
paper can be separated by CSP(Cn-CFI), where Cn-CFI = ({0, 1},Rev) for

Rev := {(b1, . . . , bn+1) | b1 + · · ·+ bn+1 = 0 mod 2}.

The arity and size of Cn-CFI are n and 2, respectively.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

We classify template structures C of CSP’s by two numerical parameters:

• The arity of C is ar(C) := max{ar(R) | R ∈ τ}.
• The size of C is sz(C) := |dom(C)|.

Example
(a) Clearly a graph G is n-colourable if and only if G ∈ CSP(Cn-COL), where
Cn-COL := ([n], {(i , j) ∈ [n]2 | i 6= j}).
The arity and size of Cn-COL are 2 and n, respectively.

(b) The CFI structures constructed for the arity hierarchy theorem in the LICS 92
paper can be separated by CSP(Cn-CFI), where Cn-CFI = ({0, 1},Rev) for

Rev := {(b1, . . . , bn+1) | b1 + · · ·+ bn+1 = 0 mod 2}.

The arity and size of Cn-CFI are n and 2, respectively.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

We classify template structures C of CSP’s by two numerical parameters:

• The arity of C is ar(C) := max{ar(R) | R ∈ τ}.
• The size of C is sz(C) := |dom(C)|.

Example
(a) Clearly a graph G is n-colourable if and only if G ∈ CSP(Cn-COL), where
Cn-COL := ([n], {(i , j) ∈ [n]2 | i 6= j}).
The arity and size of Cn-COL are 2 and n, respectively.

(b) The CFI structures constructed for the arity hierarchy theorem in the LICS 92
paper can be separated by CSP(Cn-CFI), where Cn-CFI = ({0, 1},Rev) for

Rev := {(b1, . . . , bn+1) | b1 + · · ·+ bn+1 = 0 mod 2}.

The arity and size of Cn-CFI are n and 2, respectively.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Generalized quantifiers

Let τ = {R1, . . . ,Rm} be a relational vocabulary and let K be a class of finite
τ -structures that is closed under isomorphisms.

The extension L(QK) of a logic L by the quantifier QK is obtained by adding the
following rules in the syntax and semantics of L:

• If ψ1, . . . , ψm are formulas and ~y1, . . . , ~ym are tuples of variables with
|~yi | = ar(Ri) for i ∈ [m], then ϕ = QK~y1, . . . , ~ym (ψ1, . . . , ψm) is a formula.
• (A, α) |= QK~y1, . . . , ~ym (ψ1, . . . , ψm) ⇔ (A, ψA,α,~y1

1 , . . . , ψA,α,~ym
m) ∈ K.

Here θA,α,~y := {~a ∈ Ar | (A, α[~a/~y]) |= θ} for a formula θ.

The arity of QK is max{ar(R) | R ∈ τ}. We denote the class of all quantifiers
with arity at most m by Qm.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Generalized quantifiers

Let τ = {R1, . . . ,Rm} be a relational vocabulary and let K be a class of finite
τ -structures that is closed under isomorphisms.

The extension L(QK) of a logic L by the quantifier QK is obtained by adding the
following rules in the syntax and semantics of L:

• If ψ1, . . . , ψm are formulas and ~y1, . . . , ~ym are tuples of variables with
|~yi | = ar(Ri) for i ∈ [m], then ϕ = QK~y1, . . . , ~ym (ψ1, . . . , ψm) is a formula.

• (A, α) |= QK~y1, . . . , ~ym (ψ1, . . . , ψm) ⇔ (A, ψA,α,~y1
1 , . . . , ψA,α,~ym

m) ∈ K.

Here θA,α,~y := {~a ∈ Ar | (A, α[~a/~y]) |= θ} for a formula θ.

The arity of QK is max{ar(R) | R ∈ τ}. We denote the class of all quantifiers
with arity at most m by Qm.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Generalized quantifiers

Let τ = {R1, . . . ,Rm} be a relational vocabulary and let K be a class of finite
τ -structures that is closed under isomorphisms.

The extension L(QK) of a logic L by the quantifier QK is obtained by adding the
following rules in the syntax and semantics of L:

• If ψ1, . . . , ψm are formulas and ~y1, . . . , ~ym are tuples of variables with
|~yi | = ar(Ri) for i ∈ [m], then ϕ = QK~y1, . . . , ~ym (ψ1, . . . , ψm) is a formula.
• (A, α) |= QK~y1, . . . , ~ym (ψ1, . . . , ψm) ⇔ (A, ψA,α,~y1

1 , . . . , ψA,α,~ym
m) ∈ K.

Here θA,α,~y := {~a ∈ Ar | (A, α[~a/~y]) |= θ} for a formula θ.

The arity of QK is max{ar(R) | R ∈ τ}. We denote the class of all quantifiers
with arity at most m by Qm.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Generalized quantifiers

Let τ = {R1, . . . ,Rm} be a relational vocabulary and let K be a class of finite
τ -structures that is closed under isomorphisms.

The extension L(QK) of a logic L by the quantifier QK is obtained by adding the
following rules in the syntax and semantics of L:

• If ψ1, . . . , ψm are formulas and ~y1, . . . , ~ym are tuples of variables with
|~yi | = ar(Ri) for i ∈ [m], then ϕ = QK~y1, . . . , ~ym (ψ1, . . . , ψm) is a formula.
• (A, α) |= QK~y1, . . . , ~ym (ψ1, . . . , ψm) ⇔ (A, ψA,α,~y1

1 , . . . , ψA,α,~ym
m) ∈ K.

Here θA,α,~y := {~a ∈ Ar | (A, α[~a/~y]) |= θ} for a formula θ.

The arity of QK is max{ar(R) | R ∈ τ}. We denote the class of all quantifiers
with arity at most m by Qm.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella A quantifer QK is a CSP quantifier if K = CSP(C) for some template C. We
denote the class of all CSP quantifiers QCSP(C) such that sz(C) ≤ n by CSPn.
Furthermore, we write CSP+

n := CSPn ∪Q1.

Example
(a) ∃ = QK∃ , where K∃ := {(A,R) | R ⊆ A,R 6= ∅} and ∀ = QK∀ , where
K∀ := {(A,R) | R = A}.

(b) Härtig quantifier: I = QKI , where KI := {(A,P,R) | |P| = |R|}.
If G is a graph, then G |= ∀x∀y I x , y(E (x , y),E (y , x)) iff G is regular.

(c) QCn-COL ∈ Q2 ∩ CSPn and QCn-CFI ∈ Qn+1 ∩ CSP2 for all n ≥ 2.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella A quantifer QK is a CSP quantifier if K = CSP(C) for some template C. We
denote the class of all CSP quantifiers QCSP(C) such that sz(C) ≤ n by CSPn.
Furthermore, we write CSP+

n := CSPn ∪Q1.

Example
(a) ∃ = QK∃ , where K∃ := {(A,R) | R ⊆ A,R 6= ∅} and ∀ = QK∀ , where
K∀ := {(A,R) | R = A}.

(b) Härtig quantifier: I = QKI , where KI := {(A,P,R) | |P| = |R|}.
If G is a graph, then G |= ∀x∀y I x , y(E (x , y),E (y , x)) iff G is regular.

(c) QCn-COL ∈ Q2 ∩ CSPn and QCn-CFI ∈ Qn+1 ∩ CSP2 for all n ≥ 2.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella A quantifer QK is a CSP quantifier if K = CSP(C) for some template C. We
denote the class of all CSP quantifiers QCSP(C) such that sz(C) ≤ n by CSPn.
Furthermore, we write CSP+

n := CSPn ∪Q1.

Example
(a) ∃ = QK∃ , where K∃ := {(A,R) | R ⊆ A,R 6= ∅} and ∀ = QK∀ , where
K∀ := {(A,R) | R = A}.

(b) Härtig quantifier: I = QKI , where KI := {(A,P,R) | |P| = |R|}.
If G is a graph, then G |= ∀x∀y I x , y(E (x , y),E (y , x)) iff G is regular.

(c) QCn-COL ∈ Q2 ∩ CSPn and QCn-CFI ∈ Qn+1 ∩ CSP2 for all n ≥ 2.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Let A and B be structures of the same vocabulary, and α and β assignments on
A and B such that dom(α) = dom(β).

We write (A, α) ≡k
∞ω,n (B, β) if the equivalence

(A, α) |= ϕ⇔ (B, β) |= ϕ

holds for all formulas ϕ ∈ Lk
∞ω(CSP+

n) with free variables in dom(α).

Similarly we write (A, α) ≡k
n (B, β) if the equivalence above holds for all

FOk(CSP+
n)-formulas ϕ. If α = β = ∅, we write simply A ≡k

∞ω,n B instead of
(A, ∅) ≡k

∞ω,n (B, ∅), and similarly for ≡k
n.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Let A and B be structures of the same vocabulary, and α and β assignments on
A and B such that dom(α) = dom(β).

We write (A, α) ≡k
∞ω,n (B, β) if the equivalence

(A, α) |= ϕ⇔ (B, β) |= ϕ

holds for all formulas ϕ ∈ Lk
∞ω(CSP+

n) with free variables in dom(α).

Similarly we write (A, α) ≡k
n (B, β) if the equivalence above holds for all

FOk(CSP+
n)-formulas ϕ. If α = β = ∅, we write simply A ≡k

∞ω,n B instead of
(A, ∅) ≡k

∞ω,n (B, ∅), and similarly for ≡k
n.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Pebble game for CSP quantifiers

Let A and B be τ -structures, and let α and β are assignments on A and B such
that dom(α) = dom(β) ⊆ Xk := {x1, . . . , xk}. Furthermore, let n, k ≥ 1 (n is a
parameter for the size of templates and k for the number of pebbles).

Definition
The game CSPG[A,B, n, k](α, β) is played between S and D, and it has the
following rules:

(1) If α 7→ β /∈ PI(A,B), then the game ends, and S wins.
(2) If (1) does not hold, there are three types of moves that S can choose to

play: bijection move, left/right CSP-quantifier move.
(3) D wins the game if S does not win it in a finite number of rounds.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Pebble game for CSP quantifiers

Let A and B be τ -structures, and let α and β are assignments on A and B such
that dom(α) = dom(β) ⊆ Xk := {x1, . . . , xk}. Furthermore, let n, k ≥ 1 (n is a
parameter for the size of templates and k for the number of pebbles).

Definition
The game CSPG[A,B, n, k](α, β) is played between S and D, and it has the
following rules:

(1) If α 7→ β /∈ PI(A,B), then the game ends, and S wins.
(2) If (1) does not hold, there are three types of moves that S can choose to

play: bijection move, left/right CSP-quantifier move.
(3) D wins the game if S does not win it in a finite number of rounds.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella
• Bijection move: - S starts by choosing a variable y ∈ Xk .

- D answers by choosing a bijection f : A→ B.
- S completes the round by choosing an element a ∈ A.
- The players continue by playing CSPG(α[a/y], β[f (a)/y]).

• Left CSP-quantifier move: - S starts by choosing r ∈ [k] and an r -tuple
~y ∈ X r

k of distinct variables and a colouring g : A→ [n].
- D chooses next a colouring h : B → [n].
- S answers by choosing an r -tuple ~b ∈ Br .
- D completes the round by choosing an r -tuple ~a ∈ Ar such that
g(aj) = h(bj) for all j ∈ [r].
- The players continue by playing CSPG(α[~a/~y], β[~b/~y]).

• Right CSP-quantifier move: Switch the roles of A and B.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella
• Bijection move: - S starts by choosing a variable y ∈ Xk .

- D answers by choosing a bijection f : A→ B.
- S completes the round by choosing an element a ∈ A.
- The players continue by playing CSPG(α[a/y], β[f (a)/y]).

• Left CSP-quantifier move: - S starts by choosing r ∈ [k] and an r -tuple
~y ∈ X r

k of distinct variables and a colouring g : A→ [n].
- D chooses next a colouring h : B → [n].
- S answers by choosing an r -tuple ~b ∈ Br .
- D completes the round by choosing an r -tuple ~a ∈ Ar such that
g(aj) = h(bj) for all j ∈ [r].
- The players continue by playing CSPG(α[~a/~y], β[~b/~y]).

• Right CSP-quantifier move: Switch the roles of A and B.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella
• Bijection move: - S starts by choosing a variable y ∈ Xk .

- D answers by choosing a bijection f : A→ B.
- S completes the round by choosing an element a ∈ A.
- The players continue by playing CSPG(α[a/y], β[f (a)/y]).

• Left CSP-quantifier move: - S starts by choosing r ∈ [k] and an r -tuple
~y ∈ X r

k of distinct variables and a colouring g : A→ [n].
- D chooses next a colouring h : B → [n].
- S answers by choosing an r -tuple ~b ∈ Br .
- D completes the round by choosing an r -tuple ~a ∈ Ar such that
g(aj) = h(bj) for all j ∈ [r].
- The players continue by playing CSPG(α[~a/~y], β[~b/~y]).

• Right CSP-quantifier move: Switch the roles of A and B.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Characterization theorem

The CSP game characterizes equivalence with respect to both of the logics
FOk(CSP+

n) and Lk
∞ω(CSP+

n):

Theorem
The following conditions are equivalent:
• D has a winning strategy in the game CSPG[A,B, n, k](α, β),
• (A, α) ≡k

∞ω,n (B, β),
• (A, α) ≡k

n (B, β).

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Generalized CFI structures

Let τn = {Rn}, where ar(Rn) = 3n, and let An = {ai
j | i ∈ [3], j ∈ [n + 1]}.

We define gadget structures An = (An,Rn) and Ãn = (An, R̃n) such that
switching a pair ai

j and ai
` for any i ∈ [3] and any j 6= ` ∈ [n + 1] gives an

isomorphism between An and Ãn.
(Thus, switching two such pairs gives an automorphism of An and Ãn.)

Given an ordered 3-regular connected graph G , we define a τn-structure Aev
n (G)

by replacing the vertices of G by copies of An. The other CFI-structure Aod
n (G)

is defined in the same way, except that for one vertex we use Ãn.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Generalized CFI structures

Let τn = {Rn}, where ar(Rn) = 3n, and let An = {ai
j | i ∈ [3], j ∈ [n + 1]}.

We define gadget structures An = (An,Rn) and Ãn = (An, R̃n) such that
switching a pair ai

j and ai
` for any i ∈ [3] and any j 6= ` ∈ [n + 1] gives an

isomorphism between An and Ãn.
(Thus, switching two such pairs gives an automorphism of An and Ãn.)

Given an ordered 3-regular connected graph G , we define a τn-structure Aev
n (G)

by replacing the vertices of G by copies of An. The other CFI-structure Aod
n (G)

is defined in the same way, except that for one vertex we use Ãn.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Separating the CFI structures

Let Cn = {cj | j ∈ [n + 1]} and let hn : An → Cn be the projection hn(ai
j) = cj .

Defining Rn := {hn(~a) | ~a ∈ Rn} and Cn := (Cn,Rn), we see that hn is a
homomorphism An → Cn.

Furthermore, the union of the copies of hn on the copies of An in Aev
n (G) is a

homomorphism Aev
n (G)→ Cn. Thus, Aev

n (G) ∈ CSP(Cn).

On the other hand, using a parity argument, we see that Aod
n (G) /∈ CSP(Cn).

Remark. CSP(Cn) is NP-complete, but Aev
n (G) and Aod

n (G) can also be
separated by PTIME properties.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Separating the CFI structures

Let Cn = {cj | j ∈ [n + 1]} and let hn : An → Cn be the projection hn(ai
j) = cj .

Defining Rn := {hn(~a) | ~a ∈ Rn} and Cn := (Cn,Rn), we see that hn is a
homomorphism An → Cn.
Furthermore, the union of the copies of hn on the copies of An in Aev

n (G) is a
homomorphism Aev

n (G)→ Cn. Thus, Aev
n (G) ∈ CSP(Cn).

On the other hand, using a parity argument, we see that Aod
n (G) /∈ CSP(Cn).

Remark. CSP(Cn) is NP-complete, but Aev
n (G) and Aod

n (G) can also be
separated by PTIME properties.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Separating the CFI structures

Let Cn = {cj | j ∈ [n + 1]} and let hn : An → Cn be the projection hn(ai
j) = cj .

Defining Rn := {hn(~a) | ~a ∈ Rn} and Cn := (Cn,Rn), we see that hn is a
homomorphism An → Cn.
Furthermore, the union of the copies of hn on the copies of An in Aev

n (G) is a
homomorphism Aev

n (G)→ Cn. Thus, Aev
n (G) ∈ CSP(Cn).

On the other hand, using a parity argument, we see that Aod
n (G) /∈ CSP(Cn).

Remark. CSP(Cn) is NP-complete, but Aev
n (G) and Aod

n (G) can also be
separated by PTIME properties.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Winning the CSP game on the CFI structures

Making use of the switching isomorphisms of the gadgets An and Ãn, we prove
that D has a winning strategy in CSPG[Aev

n (G),Aod
n (G), n, k](α, β) whenever

she has one in BPGk
1 on the original CFI structures obtained from G .

Theorem
CSP(Cn) is not definable in Lω∞ω(CSP+

n).

As a corollary, we get size hierarchy result for CSP quantifiers:

Corollary
For every n ≥ 2 there is a CSP quantifer of size n + 1 which is not definable in
Lω∞ω(CSP+

n).

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Winning the CSP game on the CFI structures

Making use of the switching isomorphisms of the gadgets An and Ãn, we prove
that D has a winning strategy in CSPG[Aev

n (G),Aod
n (G), n, k](α, β) whenever

she has one in BPGk
1 on the original CFI structures obtained from G .

Theorem
CSP(Cn) is not definable in Lω∞ω(CSP+

n).

As a corollary, we get size hierarchy result for CSP quantifiers:

Corollary
For every n ≥ 2 there is a CSP quantifer of size n + 1 which is not definable in
Lω∞ω(CSP+

n).

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Open problems

(1) The CSP-quantifiers QCn are NP-complete. Can they be replaced by some
PTIME-computable CSP-quantifiers?

(2) The arity of the CSP-quantifier QCn is 3n. Are there templates Dn such
that CSP(Dn) is not definable in Lω∞ω(CSP+

n) and ar(Dn) = r for some
constant r?

(3) It seems quite plausible that for any `, n ≥ 2, equivalence with respect to
the extension of Lk

∞ω by all `th vectorizations of the quantifiers in CSP+
n is

just isomorphism for large enough k. Prove or disprove this!

(4) What is the relationship between Lω∞ω(CSP+
n) and the extension LAω(Q)

of Lω∞ω with all linear algebraic operators (Dawar, Grädel and Pakusa 19)?
Does equivalence with respect to one of these logics imply equivalence with
respect to the other?

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Open problems

(1) The CSP-quantifiers QCn are NP-complete. Can they be replaced by some
PTIME-computable CSP-quantifiers?

(2) The arity of the CSP-quantifier QCn is 3n. Are there templates Dn such
that CSP(Dn) is not definable in Lω∞ω(CSP+

n) and ar(Dn) = r for some
constant r?

(3) It seems quite plausible that for any `, n ≥ 2, equivalence with respect to
the extension of Lk

∞ω by all `th vectorizations of the quantifiers in CSP+
n is

just isomorphism for large enough k. Prove or disprove this!

(4) What is the relationship between Lω∞ω(CSP+
n) and the extension LAω(Q)

of Lω∞ω with all linear algebraic operators (Dawar, Grädel and Pakusa 19)?
Does equivalence with respect to one of these logics imply equivalence with
respect to the other?

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Open problems

(1) The CSP-quantifiers QCn are NP-complete. Can they be replaced by some
PTIME-computable CSP-quantifiers?

(2) The arity of the CSP-quantifier QCn is 3n. Are there templates Dn such
that CSP(Dn) is not definable in Lω∞ω(CSP+

n) and ar(Dn) = r for some
constant r?

(3) It seems quite plausible that for any `, n ≥ 2, equivalence with respect to
the extension of Lk

∞ω by all `th vectorizations of the quantifiers in CSP+
n is

just isomorphism for large enough k. Prove or disprove this!

(4) What is the relationship between Lω∞ω(CSP+
n) and the extension LAω(Q)

of Lω∞ω with all linear algebraic operators (Dawar, Grädel and Pakusa 19)?
Does equivalence with respect to one of these logics imply equivalence with
respect to the other?

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Open problems

(1) The CSP-quantifiers QCn are NP-complete. Can they be replaced by some
PTIME-computable CSP-quantifiers?

(2) The arity of the CSP-quantifier QCn is 3n. Are there templates Dn such
that CSP(Dn) is not definable in Lω∞ω(CSP+

n) and ar(Dn) = r for some
constant r?

(3) It seems quite plausible that for any `, n ≥ 2, equivalence with respect to
the extension of Lk

∞ω by all `th vectorizations of the quantifiers in CSP+
n is

just isomorphism for large enough k. Prove or disprove this!

(4) What is the relationship between Lω∞ω(CSP+
n) and the extension LAω(Q)

of Lω∞ω with all linear algebraic operators (Dawar, Grädel and Pakusa 19)?
Does equivalence with respect to one of these logics imply equivalence with
respect to the other?

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Happy 72nd birthday
Phokion and Jouko!

N.B: 72 is the smallest integer of the form pq · qp

for distinct primes p, q.

The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Happy 72nd birthday
Phokion and Jouko!

N.B: 72 is the smallest integer of the form pq · qp

for distinct primes p, q.

