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Introduction

Cai, Fürer and Immerman 89 used a pebble game characterization for the
infinitary k-variable logic with counting, Ck

∞ω to prove that there are
PTIME-computable properties that are not definable in Cω

∞ω =
⋃

k∈ω Ck
∞ω.

In the LICS 92 paper “Logical hierarchies in PTIME”, we introduced n-bijective
k-pebble games that characterize equivalence with respect to Lk

∞ω(Qn), the
extension of k-variable logic with all n-ary quantifiers.

Using this game and a modification of the CFI construction, we proved an arity
hierarchy theorem for PTIME: For every n there is a PTIME-computable
quantifier of arity n + 1 which is not definable in Lω∞ω(Qn).
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In this talk we go through a new size hierarchy theorem for CSP quantifiers.
Here a generalized quantifier QK is a CSP quantifier if K = CSP(C) for some
template C. The size of the quantifier QCSP(C) is |dom(C)|.

We introduce CSP games that characterize equivalence with respect
Lk

∞ω(CSP+
n ), where CSP+

n is the union of Q1 and the class CSPn of all CSP
quantifiers of size at most n.

Using these games we prove that for every n ≥ 2 there is a CSP quantifier of
size n + 1 which is not definable in Lω∞ω(CSP+

n ).

The proof is based on a new generalization of the CFI construction.
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Constraint satisfaction problems

A homomorphism between two τ -structures A and B is a function h : A→ B
such that for every R ∈ τ , and every (a1, . . . , an) ∈ An,

(a1, . . . , an) ∈ RA =⇒ (h(a1), . . . , h(an)) ∈ RB.

Every τ -structure C gives rise to a constraint satisfaction problem:

• Given a τ -structure A, does there exist a homomorphism h : A→ C?

We denote the class of all positive instances A of this problem by CSP(C).
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We classify template structures C of CSP’s by two numerical parameters:

• The arity of C is ar(C) := max{ar(R) | R ∈ τ}.
• The size of C is sz(C) := |dom(C)|.

Example
(a) Clearly a graph G is n-colourable if and only if G ∈ CSP(Cn-COL), where
Cn-COL := ([n], {(i , j) ∈ [n]2 | i 6= j}).
The arity and size of Cn-COL are 2 and n, respectively.

(b) The CFI structures constructed for the arity hierarchy theorem in the LICS 92
paper can be separated by CSP(Cn-CFI), where Cn-CFI = ({0, 1},Rev) for

Rev := {(b1, . . . , bn+1) | b1 + · · ·+ bn+1 = 0 mod 2}.

The arity and size of Cn-CFI are n and 2, respectively.
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Generalized quantifiers

Let τ = {R1, . . . ,Rm} be a relational vocabulary and let K be a class of finite
τ -structures that is closed under isomorphisms.

The extension L(QK) of a logic L by the quantifier QK is obtained by adding the
following rules in the syntax and semantics of L:

• If ψ1, . . . , ψm are formulas and ~y1, . . . , ~ym are tuples of variables with
|~yi | = ar(Ri ) for i ∈ [m], then ϕ = QK~y1, . . . , ~ym (ψ1, . . . , ψm) is a formula.
• (A, α) |= QK~y1, . . . , ~ym (ψ1, . . . , ψm) ⇔ (A, ψA,α,~y1

1 , . . . , ψA,α,~ym
m ) ∈ K.

Here θA,α,~y := {~a ∈ Ar | (A, α[~a/~y ]) |= θ} for a formula θ.

The arity of QK is max{ar(R) | R ∈ τ}. We denote the class of all quantifiers
with arity at most m by Qm.
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denote the class of all CSP quantifiers QCSP(C) such that sz(C) ≤ n by CSPn.
Furthermore, we write CSP+

n := CSPn ∪Q1.

Example
(a) ∃ = QK∃ , where K∃ := {(A,R) | R ⊆ A,R 6= ∅} and ∀ = QK∀ , where
K∀ := {(A,R) | R = A}.

(b) Härtig quantifier: I = QKI , where KI := {(A,P,R) | |P| = |R|}.
If G is a graph, then G |= ∀x∀y I x , y(E (x , y),E (y , x)) iff G is regular.

(c) QCn-COL ∈ Q2 ∩ CSPn and QCn-CFI ∈ Qn+1 ∩ CSP2 for all n ≥ 2.
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Let A and B be structures of the same vocabulary, and α and β assignments on
A and B such that dom(α) = dom(β).

We write (A, α) ≡k
∞ω,n (B, β) if the equivalence

(A, α) |= ϕ⇔ (B, β) |= ϕ

holds for all formulas ϕ ∈ Lk
∞ω(CSP+

n ) with free variables in dom(α).

Similarly we write (A, α) ≡k
n (B, β) if the equivalence above holds for all

FOk(CSP+
n )-formulas ϕ. If α = β = ∅, we write simply A ≡k

∞ω,n B instead of
(A, ∅) ≡k

∞ω,n (B, ∅), and similarly for ≡k
n.



The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Let A and B be structures of the same vocabulary, and α and β assignments on
A and B such that dom(α) = dom(β).

We write (A, α) ≡k
∞ω,n (B, β) if the equivalence

(A, α) |= ϕ⇔ (B, β) |= ϕ

holds for all formulas ϕ ∈ Lk
∞ω(CSP+

n ) with free variables in dom(α).

Similarly we write (A, α) ≡k
n (B, β) if the equivalence above holds for all

FOk(CSP+
n )-formulas ϕ. If α = β = ∅, we write simply A ≡k

∞ω,n B instead of
(A, ∅) ≡k

∞ω,n (B, ∅), and similarly for ≡k
n.



The
Expressive

Power of CSP
Quantifiers

Lauri Hella

Pebble game for CSP quantifiers

Let A and B be τ -structures, and let α and β are assignments on A and B such
that dom(α) = dom(β) ⊆ Xk := {x1, . . . , xk}. Furthermore, let n, k ≥ 1 (n is a
parameter for the size of templates and k for the number of pebbles).

Definition
The game CSPG[A,B, n, k](α, β) is played between S and D, and it has the
following rules:

(1) If α 7→ β /∈ PI(A,B), then the game ends, and S wins.
(2) If (1) does not hold, there are three types of moves that S can choose to

play: bijection move, left/right CSP-quantifier move.
(3) D wins the game if S does not win it in a finite number of rounds.
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• Bijection move: - S starts by choosing a variable y ∈ Xk .

- D answers by choosing a bijection f : A→ B.
- S completes the round by choosing an element a ∈ A.
- The players continue by playing CSPG(α[a/y ], β[f (a)/y ]).

• Left CSP-quantifier move: - S starts by choosing r ∈ [k] and an r -tuple
~y ∈ X r

k of distinct variables and a colouring g : A→ [n].
- D chooses next a colouring h : B → [n].
- S answers by choosing an r -tuple ~b ∈ Br .
- D completes the round by choosing an r -tuple ~a ∈ Ar such that
g(aj) = h(bj) for all j ∈ [r ].
- The players continue by playing CSPG(α[~a/~y ], β[~b/~y ]).

• Right CSP-quantifier move: Switch the roles of A and B.
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Characterization theorem

The CSP game characterizes equivalence with respect to both of the logics
FOk(CSP+

n ) and Lk
∞ω(CSP+

n ):

Theorem
The following conditions are equivalent:
• D has a winning strategy in the game CSPG[A,B, n, k](α, β),
• (A, α) ≡k

∞ω,n (B, β),
• (A, α) ≡k

n (B, β).
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Generalized CFI structures

Let τn = {Rn}, where ar(Rn) = 3n, and let An = {ai
j | i ∈ [3], j ∈ [n + 1]}.

We define gadget structures An = (An,Rn) and Ãn = (An, R̃n) such that
switching a pair ai

j and ai
` for any i ∈ [3] and any j 6= ` ∈ [n + 1] gives an

isomorphism between An and Ãn.
(Thus, switching two such pairs gives an automorphism of An and Ãn.)

Given an ordered 3-regular connected graph G , we define a τn-structure Aev
n (G)

by replacing the vertices of G by copies of An. The other CFI-structure Aod
n (G)

is defined in the same way, except that for one vertex we use Ãn.
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Separating the CFI structures

Let Cn = {cj | j ∈ [n + 1]} and let hn : An → Cn be the projection hn(ai
j ) = cj .

Defining Rn := {hn(~a) | ~a ∈ Rn} and Cn := (Cn,Rn), we see that hn is a
homomorphism An → Cn.

Furthermore, the union of the copies of hn on the copies of An in Aev
n (G) is a

homomorphism Aev
n (G)→ Cn. Thus, Aev

n (G) ∈ CSP(Cn).

On the other hand, using a parity argument, we see that Aod
n (G) /∈ CSP(Cn).

Remark. CSP(Cn) is NP-complete, but Aev
n (G) and Aod

n (G) can also be
separated by PTIME properties.
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Winning the CSP game on the CFI structures

Making use of the switching isomorphisms of the gadgets An and Ãn, we prove
that D has a winning strategy in CSPG[Aev

n (G),Aod
n (G), n, k](α, β) whenever

she has one in BPGk
1 on the original CFI structures obtained from G .

Theorem
CSP(Cn) is not definable in Lω∞ω(CSP+

n ).

As a corollary, we get size hierarchy result for CSP quantifiers:

Corollary
For every n ≥ 2 there is a CSP quantifer of size n + 1 which is not definable in
Lω∞ω(CSP+

n ).
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Open problems

(1) The CSP-quantifiers QCn are NP-complete. Can they be replaced by some
PTIME-computable CSP-quantifiers?

(2) The arity of the CSP-quantifier QCn is 3n. Are there templates Dn such
that CSP(Dn) is not definable in Lω∞ω(CSP+

n ) and ar(Dn) = r for some
constant r?

(3) It seems quite plausible that for any `, n ≥ 2, equivalence with respect to
the extension of Lk

∞ω by all `th vectorizations of the quantifiers in CSP+
n is

just isomorphism for large enough k. Prove or disprove this!

(4) What is the relationship between Lω∞ω(CSP+
n ) and the extension LAω(Q)

of Lω∞ω with all linear algebraic operators (Dawar, Grädel and Pakusa 19)?
Does equivalence with respect to one of these logics imply equivalence with
respect to the other?
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(2) The arity of the CSP-quantifier QCn is 3n. Are there templates Dn such
that CSP(Dn) is not definable in Lω∞ω(CSP+

n ) and ar(Dn) = r for some
constant r?

(3) It seems quite plausible that for any `, n ≥ 2, equivalence with respect to
the extension of Lk

∞ω by all `th vectorizations of the quantifiers in CSP+
n is

just isomorphism for large enough k. Prove or disprove this!

(4) What is the relationship between Lω∞ω(CSP+
n ) and the extension LAω(Q)
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Happy 72nd birthday
Phokion and Jouko!

N.B: 72 is the smallest integer of the form pq · qp

for distinct primes p, q.
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