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Abstract

Estimating the means or totals in domains of a survey population with small sample
sizes, indirect model-based estimators are often more efficient than direct ones. In practice,
it is important to have mean square error (MSE) estimators for the former estimation
derived under a design-based approach, which is typical for direct estimation applied to
domains with large samples. We consider the design MSE estimation for empirical best
linear unbiased predictors based on the Fay–Herriot model. In this case, unbiased MSE
estimators are known as unstable in the literature. We combine them with some biased
but less variable estimators of the design MSEs and show the gain in the simulation study.
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1 Introduction and some results

We estimate the means of a survey variable in M sampled domains (areas) of a finite population.

Let θ̂di be a design-unbiased estimator of the mean θi in the ith area with E(θ̂di | θi) = θi and

the sampling variance var(θ̂di | θi) = ψi is assumed to be known. This variance can be large if
the domain sample size is small.

Suppose that, for each area, the auxiliary information is available as a vector zi of known
characteristics, which are linearly associated with unknown parameter θi. Then, to improve
the direct estimation, famous area-level Fay–Herriot model can be used to build the best linear
unbiased predictors (Rao and Molina, 2015, Section 6.1.1)
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where σ2
v is the variance of random area effects, which is asumed to be known. Predictors (1)

are the linear combinations of the direct estimators θ̂di and the regression-synthetic estimators

θ̃Si := z′iβ̃ with the weights γi.
Replacing σ2

v by an estimator σ̂2
v in (1), we obtain empirical best linear unbiased predictors

(EBLUPs) θ̂Hi of the means θi, i = 1, . . . ,M . In practice, the design variances ψi are also
unknown and therefore they are evaluated from external sources or by smoothing their direct
estimates. Let us denote the evaluated variances by ψ̂s

i .



Model MSE of EBLUPs θ̂Hi is often used to measure the variability of the predictors. On
the other hand, if the accuracy of the direct estimators is evaluated using the design MSE
in domains with sufficiently large sample sizes, then it makes sense to use the same measure
also for EBLUPs applied in the survey (Rao et al., 2018). However, estimation of the design
(conditional) MSE

MSE(θ̂Hi ) = E[(θ̂Hi − θi)2 | θi] (2)

is also a small area estimation problem because (approximately) design-unbiased estimators
of (2) can be very unstable and take negative values for small sample sizes. It happens for
the estimators of (2) proposed in Rivest and Belmonte (2000), Datta et al. (2011), and for
elementary estimators considered in Pfeffermann and Ben-Hur (2019).

As an alternative to the unbiased estimators, one can use, according to Pfeffermann and
Ben-Hur (2019), the näıve estimators

msen(θ̂Hi ) = γ̂2i ψ̂
s
i + (1− γ̂i)2(θ̂Hi − z′iβ̃(ψ̂s

i , σ̂
2
v))2, i = 1, . . . ,M, (3)

of (2), where γ̂i = σ̂2
v/(ψ̂

s
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v). These estimators are biased but more stable and positive.
We propose another estimation of (2). We apply the results of Čiginas (2021) to design-based

compositions (1) and then replace the unknown parameters by their empirical versions. First,

we derive the estimator γ̂i(1−γ̂i)ψ̂s
i of the part of the squared bias of (2). Second, in line with the

assumptions used in Čiginas (2021), we approximate var(θ̃Hi | θi) ≈ γ2i ψi + (1− γi)2 var(θ̃Si | θi).
Estimating this approximation and adding it to the estimated bias part, we arrive to

mseb(θ̂Hi ) = γ̂iψ̂
s
i + (1− γ̂i)2σ̂2(θ̂Si ), i = 1, . . . ,M, (4)

where σ̂2(θ̂Si ) denotes an estimator of the design variance var(θ̃Si | θi).
The reference Rao et al. (2018) suggests linearly combine unbiased MSE estimators with

biased ones like (3) using the estimated γ̂i in the weighting. We compare some of that combi-
nations numerically and present these results at the conference.
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