BAYESIAN MODELLING OF PROFITABLE LANDING PAGE

Yana Bondarenko
Oles Honchar Dnipro National University, Ukraine
e-mail: yana.bondarenko@pm.me

Abstract

Each company applies great efforts on finding ways to make a profit. An effective website is important for the company because a significant part of the target audience receives information about the products and services via the Internet. Company website must be constantly optimized to bring in a profit. A / B testing is an experiment of showing two versions of the landing page to website visitors at the same time and comparing which one performs better for a given conversion aim. Our goal is to compute likelihood that the average income in version B is greater than the average income in version A.

Keywords: Bayesian inference, landing page optimization, likelihood, probability density function.

Let us assume that Bernoulli trials with probabilities of success λ_{A}, λ_{B} are conducted in groups of visitors in two versions of landing page. Probabilities of success λ_{A}, λ_{B} are unknown random variables. Note that success is a purchase. Suppose $p\left(\lambda_{A}\right), p\left(\lambda_{B}\right)$ are the prior probability density functions for λ_{A}, λ_{B}, then $p\left(\lambda_{A} \mid x_{1}, \ldots, x_{n}\right), p\left(\lambda_{B} \mid y_{1}, \ldots, y_{m}\right)$ are the posterior probability density functions for λ_{A}, λ_{B}. Let us remark that sample vectors $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{m}\right)$ are observed in two versions of landing page during the experiment.

In addition, suppose $f\left(\theta_{A}\right), f\left(\theta_{B}\right)$ are the prior probability density functions for parameters θ_{A}, θ_{B}. Note also that these parameters θ_{A}, θ_{B} are some functions of the average size of purchase. Then $f\left(\theta_{A} \mid z_{1}, \ldots, z_{k}\right), f\left(\theta_{B} \mid w_{1}, \ldots, w_{l}\right)$ are the posterior probability density functions for θ_{A}, θ_{B}. We stress that sample vectors $z=\left(z_{1}, \ldots, z_{k}\right), w=\left(w_{1}, \ldots, w_{l}\right)$ are observed in two versions during the experiment. Posterior distribution of probability of purchase in version A. Bernoulli trials with two possible outcomes (success is purchase, failure is no purchase) are conducted in version A. The number of successes (that is the number of purchases) in one trial has Bernoulli distribution with parameter λ_{A} (probability of purchase):

$$
\begin{equation*}
P\left(x, \lambda_{A}\right)=\lambda_{A}^{x}\left(1-\lambda_{A}\right)^{1-x}, x=0,1 ; 0<\lambda_{A}<1 . \tag{1}
\end{equation*}
$$

The likelihood function is determined by:

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n} \mid \lambda_{A}\right)=\lambda_{A}^{x_{1}}\left(1-\lambda_{A}\right)^{1-x_{1}} \ldots \lambda_{A}^{x_{n}}\left(1-\lambda_{A}\right)^{1-x_{n}}=\lambda_{A}^{\sum_{i=1}^{x_{i}}}\left(1-\lambda_{A}\right)^{n-\sum_{i=1}^{n} x_{i}} \tag{2}
\end{equation*}
$$

where each x_{i} is equal to 1 or 0 . The prior information about probability of purchase λ_{A} is defined by Beta distribution with parameters $a=1, b=1$ (equivalently, Uniform prior distribution as is generally known):

$$
\begin{equation*}
p\left(\lambda_{A}\right)=\frac{\lambda_{A}^{a-1}\left(1-\lambda_{A}\right)^{b-1}}{B(a, b)}, 0 \leq \lambda_{A} \leq 1 . \tag{3}
\end{equation*}
$$

According to Bayes' theorem, the posterior distribution for probability of purchase λ_{A} is given by:

$$
\begin{equation*}
p\left(\lambda_{A} \mid x_{1}, \ldots, x_{n}\right)=\frac{p\left(\lambda_{A}\right) p\left(x_{1}, \ldots, x_{n} \mid \lambda_{A}\right)}{\int_{0}^{1} p\left(\lambda_{A}\right) p\left(x_{1}, \ldots, x_{n} \mid \lambda_{A}\right) d \lambda_{A}} \tag{4}
\end{equation*}
$$

Substituting $p\left(\lambda_{A}\right), p\left(x_{1}, \ldots, x_{n} \mid \lambda_{A}\right)$ in (4), we get:

$$
\begin{equation*}
p\left(\lambda_{A} \mid x_{1}, \ldots, x_{n}\right)=\frac{\lambda_{A}^{a-1}\left(1-\lambda_{A}\right)^{b-1} \lambda_{A}^{\sum_{i=1}^{n} x_{i}}\left(1-\lambda_{A}\right)^{n-\sum_{i=1}^{n} x_{i}}}{\int_{0}^{1} \lambda_{A}^{a-1}\left(1-\lambda_{A}\right)^{b-1} \lambda_{A}^{\sum_{i=1}^{x_{i}}}\left(1-\lambda_{A}\right)^{n-\sum_{i=1}^{n} x_{i}} d \lambda_{A}} \tag{5}
\end{equation*}
$$

Integrating (5) in λ_{A}, we obtain:

$$
\begin{equation*}
p\left(\lambda_{A} \mid x_{1}, \ldots, x_{n}\right)=\frac{\lambda_{A}^{a+\sum_{i=1}^{n} x_{i}-1}\left(1-\lambda_{A}\right)^{b+n-\sum_{i=1}^{n} x_{i}-1}}{B\left(a+\sum_{i=1}^{n} x_{i}, b+n-\sum_{i=1}^{n} x_{i}\right)} \tag{6}
\end{equation*}
$$

Thus, we have that the posterior distribution for probability of purchase λ_{A} is Beta distribution with parameters (\tilde{a}, \tilde{b}) :

$$
\begin{equation*}
p\left(\lambda_{A} \mid x_{1}, \ldots, x_{n}\right)=\frac{\lambda_{A}^{\tilde{a}-1}\left(1-\lambda_{A}\right)^{\tilde{b}-1}}{B(\tilde{a}, \tilde{b})}, \quad \tilde{a}=a+\sum_{i=1}^{n} x_{i}, \quad \tilde{b}=b+n-\sum_{i=1}^{n} x_{i} \tag{7}
\end{equation*}
$$

where n is the number of visitors and $\sum_{i=1}^{n} x_{i}$ is the number of complete purchases in version A.
Posterior distribution of probability of purchase in version B. Bernoulli trials with two possible outcomes (success, failure) are conducted in version B. The number of successes (number of purchases) in one trial has Bernoulli distribution with parameter λ_{B} (probability of purchase):

$$
\begin{equation*}
P\left(x, \lambda_{B}\right)=\lambda_{B}^{y}\left(1-\lambda_{B}\right)^{1-y}, y=0,1 ; 0<\lambda_{B}<1 . \tag{8}
\end{equation*}
$$

The likelihood function is determined by:

$$
\begin{equation*}
p\left(y_{1}, \ldots, y_{m} \mid \lambda_{B}\right)=\lambda_{B}^{y_{1}}\left(1-\lambda_{B}\right)^{1-y_{1}} \ldots \lambda_{B}^{y_{m}}\left(1-\lambda_{B}\right)^{1-y_{m}}=\lambda_{B}^{\sum_{i=1}^{m} y_{i}}\left(1-\lambda_{B}\right)^{m-\sum_{i=1}^{m} y_{i}}, \tag{9}
\end{equation*}
$$

where each y_{i} is equal to 1 or 0 . The prior information about probability of purchase λ_{B} is defined by Beta distribution with parameters $c=1, d=1$ (Uniform prior distribution):

$$
\begin{equation*}
p\left(\lambda_{B}\right)=\frac{\lambda_{B}^{c-1}\left(1-\lambda_{B}\right)^{d-1}}{B(c, d)}, 0 \leq \lambda_{B} \leq 1 . \tag{10}
\end{equation*}
$$

According to Bayes' theorem, the posterior distribution for probability of purchase λ_{B} is given by:

$$
\begin{equation*}
p\left(\lambda_{B} \mid y_{1}, \ldots, y_{m}\right)=\frac{p\left(\lambda_{B}\right) p\left(y_{1}, \ldots, y_{m} \mid \lambda_{B}\right)}{\int_{0}^{1} p\left(\lambda_{B}\right) p\left(y_{1}, \ldots, y_{m} \mid \lambda_{B}\right) d \lambda_{B}} \tag{11}
\end{equation*}
$$

Using (9), (10), we get:

$$
\begin{equation*}
\left.p\left(\lambda_{B} \mid y_{1}, \ldots, y_{m}\right)=\frac{\lambda_{B}^{c-1}\left(1-\lambda_{B}\right)^{d-1} \lambda_{B}^{m} y_{i}^{m}}{y_{i}}\left(1-\lambda_{B}\right)^{m-\sum_{i=1}^{m} y_{i}}\right) . \tag{12}
\end{equation*}
$$

Finally, we obtain:

$$
\begin{equation*}
p\left(\lambda_{B} \mid y_{1}, \ldots, y_{m}\right)=\frac{\lambda_{B}^{c+\sum_{i=1}^{m} y_{i}-1}\left(1-\lambda_{B}\right)^{d+m-\sum_{i=1}^{m} y_{i}-1}}{B\left(c+\sum_{i=1}^{m} y_{i}, d+m-\sum_{i=1}^{m} y_{i}\right)} \tag{13}
\end{equation*}
$$

This yields that the posterior distribution for probability of purchase λ_{B} is Beta distribution with parameters (\tilde{c}, \tilde{d})

$$
\begin{equation*}
p\left(\lambda_{B} \mid y_{1}, \ldots, y_{m}\right)=\frac{\lambda_{B}^{\tilde{c}-1}\left(1-\lambda_{B}\right)^{\tilde{d}-1}}{B(\tilde{c}, \tilde{d})}, \quad \tilde{c}=c+\sum_{i=1}^{m} y_{i}, \quad \tilde{d}=d+m-\sum_{i=1}^{m} y_{i}, \tag{14}
\end{equation*}
$$

where m is the number of visitors and $\sum_{i=1}^{m} y_{i}$ is the number of complete purchases in version B .
Posterior distribution of the size of purchase in version A. Now assume that the size of purchase has exponential distribution with parameter θ_{A} (that is reciprocal of the average size of purchase):

$$
\begin{equation*}
p\left(z, \theta_{A}\right)=\theta_{A} e^{-\theta_{A} z}, z \geq 0, \theta_{A}>0 . \tag{15}
\end{equation*}
$$

The likelihood function is determined by:

$$
\begin{equation*}
p\left(z_{1}, \ldots, z_{k} \mid \theta_{A}\right)=\theta_{A} e^{-\theta_{A} z_{1}} \ldots \theta_{A} e^{-\theta_{A} z_{k}}=\left(\theta_{A}\right)^{k} e^{-\theta_{A} \sum_{i=1}^{k} z_{i}}, z_{i}>0 \text { for all } i \tag{16}
\end{equation*}
$$

The prior information about parameter θ_{A} is defined by Gamma distribution with parameters (s, t) :

$$
\begin{equation*}
f\left(\theta_{A}\right)=\frac{t^{s}}{\Gamma(s)} \theta_{A}^{s-1} e^{-t \theta_{A}}, \theta_{A} \geq 0, s>0, t>0 \tag{17}
\end{equation*}
$$

According to Bayes' theorem, the posterior distribution for parameter θ_{A} is given by:

$$
\begin{equation*}
f\left(\theta_{A} \mid z_{1}, \ldots, z_{k}\right)=\frac{f\left(\theta_{A}\right) p\left(z_{1}, \ldots, z_{k} \mid \theta_{A}\right)}{\int_{0}^{+\infty} f\left(\theta_{A}\right) p\left(z_{1}, \ldots, z_{k} \mid \theta_{A}\right) d \theta_{A}} . \tag{18}
\end{equation*}
$$

Substituting $f\left(\theta_{A}\right), p\left(z_{1}, \ldots, z_{k} \mid \theta_{A}\right)$ in (18), we get:

$$
\begin{equation*}
f\left(\theta_{A} \mid z_{1}, \ldots, z_{k}\right)=\frac{\theta_{A}^{s-1} e^{-t \theta_{A}}\left(\theta_{A}\right)^{k} e^{-\theta_{A} \sum_{i=1}^{k} z_{i}}}{\int_{0}^{+\infty} \theta_{A}^{s-1} e^{-t \theta_{A}}\left(\theta_{A}\right)^{k} e^{-\theta_{i} \sum_{i=1}^{k} z_{i}} d \theta_{A}} \tag{19}
\end{equation*}
$$

Integrating (19) in θ_{A}, we obtain:

$$
\begin{equation*}
f\left(\theta_{A} \mid z_{1}, \ldots, z_{k}\right)=\frac{\left(t+\sum_{i=1}^{k} z_{i}\right)^{s+k}}{\Gamma(s+k)} \theta_{A}^{s+k-1} e^{\left.-\left(t+\sum_{i=1}^{k}\right)^{z_{i}}\right) \theta_{A}} \tag{20}
\end{equation*}
$$

Therefore, the posterior distribution for parameter θ_{A} is Gamma distribution with parameters (\tilde{s}, \tilde{t}) :

$$
\begin{equation*}
f\left(\theta_{A} \mid z_{1}, \ldots, z_{k}\right)=\frac{\tilde{t^{\tilde{s}}}}{\Gamma(\tilde{s})} \theta_{A}^{\tilde{s}-1} e^{-\tilde{\theta} \theta_{A}}, \tilde{s}=s+k, \tilde{t}=t+\sum_{i=1}^{k} z_{i} \tag{21}
\end{equation*}
$$

where k is the number of purchases and $\sum_{i=1}^{k} z_{i}$ is the sum of complete purchases in version A.
Posterior distribution of the size of purchase in version B. Suppose the size of purchase has exponential distribution with parameter θ_{B} (that is reciprocal of the average size of purchase):

$$
\begin{equation*}
p\left(w, \theta_{B}\right)=\theta_{B} e^{-\theta_{B} w}, w \geq 0, \theta_{B}>0 . \tag{22}
\end{equation*}
$$

The likelihood function is determined by:

$$
\begin{equation*}
p\left(w_{1}, \ldots, w_{l} \mid \theta_{B}\right)=\theta_{B} e^{-\theta_{B} w_{i}} \ldots \theta_{B} e^{-\theta_{B} w_{k}}=\left(\theta_{B}\right)^{l} e^{-\theta_{B} \sum_{i=1}^{1} w_{i}}, w_{i}>0 \text { for all } i \tag{23}
\end{equation*}
$$

The prior information about parameter θ_{B} is defined by Gamma distribution with parameters (u, v) :

$$
\begin{equation*}
f\left(\theta_{b}\right)=\frac{v^{u}}{\Gamma(u)} \theta_{B}^{u-1} e^{-v \theta_{B}}, \theta_{B} \geq 0, u>0, v>0 . \tag{24}
\end{equation*}
$$

According to Bayes' theorem, the posterior distribution for parameter θ_{B} is given by:

$$
\begin{equation*}
f\left(\theta_{B} \mid w_{1}, \ldots, w_{l}\right)=\frac{f\left(\theta_{B}\right) p\left(w_{1}, \ldots, w_{l} \mid \theta_{B}\right)}{\int_{0}^{+\infty} f\left(\theta_{B}\right) p\left(w_{1}, \ldots, w_{l} \mid \theta_{B}\right) d \theta_{B}} \tag{25}
\end{equation*}
$$

Using (22), (23), we get:

$$
\begin{equation*}
f\left(\theta_{B} \mid w_{1}, \ldots, w_{l}\right)=\frac{\theta_{B}^{u-1} e^{-v \theta_{B}}\left(\theta_{B}\right)^{l} e^{-\theta_{B} \sum_{i=1}^{l} w_{i}}}{\int_{0}^{+\infty} \theta_{B}^{u-1} e^{-v \theta_{B}}\left(\theta_{B}\right)^{l} e^{-\theta_{B} \sum_{i=1}^{l} w_{i}} d \theta_{B}} \tag{26}
\end{equation*}
$$

Finally, we obtain:

$$
\begin{equation*}
f\left(\theta_{B} \mid w_{1}, \ldots, w_{l}\right)=\frac{\left(v+\sum_{i=1}^{l} w_{i}\right)^{u+l}}{\Gamma(u+l)} \theta_{B}^{u+l-1} e^{-\left(v+\sum_{i=1}^{l} w_{i}\right) \theta_{B}} \tag{27}
\end{equation*}
$$

Hence, the posterior distribution for parameter θ_{B} is Gamma distribution with parameters (\tilde{u}, \tilde{v}) :

$$
\begin{equation*}
f\left(\theta_{B} \mid w_{1}, \ldots, w_{l}\right)=\frac{\tilde{v}^{\tilde{u}}}{\Gamma(\tilde{u})} \theta_{B}^{\tilde{u}-1} e^{-\tilde{v} \theta_{B}}, \tilde{u}=u+l, \tilde{v}=v+\sum_{i=1}^{l} w_{i}, \tag{28}
\end{equation*}
$$

where l is number of purchases and $\sum_{i=1}^{l} w_{i}$ is sum of accomplished purchases in landing page B.
Likelihood. The foregoing results allows us to describe probability of purchase λ and reciprocal of θ It is clear that λ_{A} is the average number of complete purchases in one trial in version A, λ_{B} is the average number of complete purchases in one trial in version B. Continuing in the same way, we see that $1 / \theta_{A}$ is the average size of complete purchases in version $\mathrm{A}, 1 / \theta_{B}$ is the average size of complete purchases in version B. Finally, the average income in version A is equal to λ_{A} / θ_{A} and the average income in version B is equal to λ_{B} / θ_{B}. Likelihood that the average income in version B is greater than the average income in version A is defined by:

$$
\begin{gathered}
P\left\{\frac{\lambda_{B}}{\theta_{B}}>\frac{\lambda_{A}}{\theta_{A}}\right\}=P\left\{\frac{\lambda_{B}}{\theta_{B}}-\frac{\lambda_{A}}{\theta_{A}}>0\right\}= \\
=\int_{\frac{\lambda_{B}}{\theta_{B}} \frac{\lambda_{A}}{\theta_{A}}>0} p\left(\lambda_{A}, \theta_{A}, \lambda_{B}, \theta_{B} \mid x_{1}, \ldots, x_{n} ; z_{1}, \ldots, z_{k} ; y_{1}, \ldots, y_{m} ; w_{1}, \ldots, w_{l}\right) d \lambda_{A} d \theta_{A} d \lambda_{B} d \theta_{B}= \\
=\int_{\frac{\lambda_{B}}{\theta_{B}}-\frac{\lambda_{A}}{\theta_{A}}>0} p\left(\lambda_{A} \mid x_{1}, \ldots, x_{n}\right) f\left(\theta_{A} \mid z_{1}, \ldots, z_{k}\right) p\left(\lambda_{B} \mid y_{1}, \ldots, y_{m}\right) f\left(\theta_{B} \mid w_{1}, \ldots, w_{l}\right) d \lambda_{A} d \theta_{A} d \lambda_{B} d \theta_{B}= \\
=\int_{\frac{\lambda_{B}}{\theta_{B}}-\frac{\lambda_{A}}{\theta_{A}}>0} \frac{\lambda_{A}^{\tilde{\alpha}-1}\left(1-\lambda_{A}\right)^{\tilde{b}-1}}{B(\tilde{a}, \tilde{b})} \frac{\tilde{t}^{\tilde{s}}}{\Gamma(\tilde{s})} \theta_{A}^{\tilde{s}-1} e^{-\tilde{t} \theta_{A}} \frac{\lambda_{B}^{\tilde{c}-1}\left(1-\lambda_{B}\right)^{\tilde{d}-1}}{B(\tilde{c}, \tilde{d})} \frac{\tilde{v}^{\tilde{u}}}{\Gamma(\tilde{u})} \theta_{B}^{\tilde{u}-1} e^{-\tilde{v} \theta_{B}} d \lambda_{A} d \theta_{A} d \lambda_{B} d \theta_{B} .
\end{gathered}
$$

Likelihood can be approximated with Monte Carlo sampling. Many computer languages have procedures for simulating this sampling process.

References

Bondarenko, Ya. (2019) Sequential A/B Testing. In: Proceedings of the 2019 IEEE International Conference on Advanced Trends in Information Theory, 488-491. https://ieeexplore.ieee.org/document/9030448

Bondarenko, Ya., Kravchenko, S. (2019) Bayesian approach to landing page testing. Problems of Applied Mathematics and Mathematical Modelling, 3-16. https://pm-mm.dp.ua/index.php/pmmm/article/view/240

Bondarenko, Ya. (2021) A sequential probability ratio test for randomized online experiments. Problems of Applied Mathematics and Mathematical Modelling, 3-15. https://pm-mm.dp.ua/index.php/pmmm/article/view/304

Stucchio, C. (2015) Bayesian A/B Testing at VWO. Whitepaper, Visual Website Optimizer.

