Skip to end of metadata
Go to start of metadata

Topologia II (10 op), kevät 2013

Luennot

Pekka Nieminen, viikoilla 3-9 ja 11-18 maanantaisin 12-14 salissa C123 ja tiistaisin 14-16 salissa C124. Pääsiäisloma 28.3.-3.4.

Luentopäiväkirja

Harjoitukset

Okko Kanerva, maanantaisin 14-16 salissa CK111. Ensimmäiset harjoitukset ovat 21.1.

Tehtävät: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Ratkaisut lähetetään asianomaisille sähköpostitse.

Kurssikuvaus

Topologia II on matematiikan syventävien opintojen valinnainen kurssi, joka sopii mainiosti kaikille matematiikan ja soveltavan matematiikan opiskelijoille. Erityisen suositeltava se on mm. algebran ja topologian sekä matemaattisen logiikan linjoilla.

Kurssilla opiskellaan yleistä topologisten avaruuksien teoriaa, jossa lähtökohtana ovat avaruuden avoimet joukot (eli topologia) sellaisenaan – ilman että ne määriteltäisiin esimerkiksi metriikan avulla kuten kurssilla Topologia I.

Sisältöä:

  • topologiset avaruudet
  • topologioiden kannat
  • topologioiden indusointi kuvausten avulla
  • relatiivitopologia, tulotopologia ja tekijätopologia
  • avaruuksien erotteluominaisuudet, mm. Hausdorff-ominaisuus
  • avaruuksien numeroituvuusominaisuudet
  • yhtenäisyys
  • kompaktius ja kompaktisointi
  • metristys
  • kuvausten jatkuva jatkaminen

Esitiedoiksi riittävät matematiikan aineopinnot sisältäen kurssin Topologia I.

Kirjallisuus

Kurssilla seurataan oppikirjaa

Myös kirjan 1. painos (1999) käy (korjaukset). Huomaa kuitenkin, että lauseiden, harjoitustehtävien ym. kohtien numeroinnissa on paikoin pieniä eroja 2. painokseen verrattuna.

Suorittaminen

Kurssilla järjestetään kaksi kurssikoetta:

  • 1. kurssikoe perjantaina 1.3. kello 13.00-15.00 Exactumin auditorioissa. Viimeinen kuulusteltava asia on tulotopologia. Koealue muodostuu siis kirjan pykälistä 1-7 ja harjoitusten 1-6 tehtävistä. Seuraavat aihepiirit eivät kuitenkaan kuulu koealueeseen: järjestystopologia (2.11.2), verkot ja filtterikannat (3.15, 3.16), normiavaruuden heikot topologiat (6.4.3, 7.8), kompakti-avoin topologia (7.17), Cantorin joukkoon liittyvät tarkastelut (7.18) ja inverssi raja (7.21, 7.22). Koetehtävät ja malliratkaisut.
  • 2. kurssikoe perjantaina 3.5. kello 13.00-15.00 Exactumin auditorioissa. Koealueena ovat kirjan pykälät 8-13 ja 15-20 sekä harjoitusten 7-13 tehtävät. Seuraavat aihepiirit eivät kuulu koealueeseen: suora raja (9.13, 9.14), l^p-avaruudet (10.7), ei-derivoituva jatkuva funktio (10.11.3), tasainen suppeneminen (10.12-10.15), funktioavaruudet ja Kuratowskin upotuslause (10.16, 10.17), täydellistymä (10.18-10.20), ykkösen ositus ja lokaali äärellisyys (12.24-12.28), kvasikomponentit (13.32-13.40, 15.25), monistot (14, 19.6), jonokompaktiuteen liittyvät vastaesimerkit (15.27, 15.28), numeroituva kompaktius (15.29), kompaktius verkkojen ja filtterien avulla (15.30), yhtäjatkuvuus ja Ascolin lause (16.6-16.10), metrisen avaruuden yhden pisteen laajennus (17.10, 17.11), jonokompaktiuden säilyminen numeroituvassa tulossa (18.2), Alaoglun lause (18.6), retraktiot ja retraktit (20.4-20.8), Schoenfliesin lause (20.9). Tihonovin lauseen (18.4) todistusta ei vaadita. Koetehtävät ja malliratkaisut.

Kurssikokeista saa enintään 20+20 pistettä, ja välttämätön ehto hyväksytylle suoritukselle on, että kummastakin kokeesta saa ainakin 7 pistettä. Harjoitustehtävien ratkaisemisesta ja harjoituksiin osallistumisesta saa enintään 7 lisäpistettä kurssikoepisteiden jatkoksi.

Vaihtoehtoisesti kurssin voi suorittaa erilliskokeella yleistentissä ja kesätentissä. Ratkaistuista harjoitustehtävistä saa hyvitystä 16.5.2013, 13.6.2013 ja 8.8.2013 järjestettävissä tenteissä.

  • No labels