Wiki-palvelun osoite wiki.helsinki.fi muuttuu wiki-emerita.it.helsinki.fi -osoitteeksi 4.12.2023 – katso lisätietoja tiedotteestamme: https://flamma.helsinki.fi/s/1uCkV
The Wiki address wiki.helsinki.fi will change to wiki-emerita.it.helsinki.fi on 4 December 2023 – see more information on Flamma: https://flamma.helsinki.fi/s/sreoE
Wiki-tjänstens adress wiki.helsinki.fi ändras till wiki-emerita.it.helsinki.fi 4.12.2023 – läs mer i vårt meddelande: https://flamma.helsinki.fi/s/fe3MT
The maximum likelihood method is a general principle in statistics wherein the statistical hypothesis that assigns the highest probability to the observed data is preferred. A statistical hypothesis assigns a probability value (in the case of discrete data, a probability between 0 and 1, or in the case of continuous data, a non-negative probability density) to all conceivable data. The probability value assigned to the observed data is called the likelihood of the hypothesis. The hypothesis can consist of structural components such as a tree topology or parameters such as edge lengths, or both. Maximum likelihood is generally considered superior to many other approaches due to its theoretically and empirically observed favourable proporties.
Phylogenetic trees that are based on a specific sequence evolution model such as the Jukes-Cantor model can be estimated using maximum likelihood (Felsenstein 1981). This may require some approximations to make the inference computationally tractable.
References
– Felsenstein, J., 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, (17): 368–376.
TR