Pecube is a numerical modelling program used to simulate heat transfer in the lithosphere and to predict thermochronometer ages. Pecube uses the finite element method to calculate time-dependent temperatures in 3D including the effects of heat conduction, advection, and production. What is somewhat unique with Pecube is that the surface topography can evolve freely with time and there is a fairly flexible kinematic model built in, which allows users to define fault geometries and slip rates within their model domain. Pecube is open source, and available directly from Jean Braun or through the HUGG GitHub.
Useful Pecube links
- Pecube-HUGG GitHub
- Pecube documentation
- Pecube model design guidelines
Relevant journal articles
Crustal thermal processes
- Hamza, V., Cardoso, R., & Ponte Neto, C. (2008). Spherical harmonic analysis of earth’s conductive heat flow. International Journal of Earth Sciences, 97(2), 205–226.
- Pollack, H. N., Hurter, S. J., & Johnson, J. R. (1993). Heat flow from the Earth's interior: Analysis of the global data set. Reviews of Geophysics, 31(3), 267–280.
- Stüwe, K., White, L., & Brown, R. (1994). The influence of eroding topography on steady-state isotherms; application to fission track analysis. Earth and Planetary Science Letters, 124(1-4), 63–74.
- Tester, J., Anderson, B., Batchelor, A., Blackwell, D., DiPippo, R., Drake, E., Garnish, J., et al. (2006). The Future of Geothermal Energy; Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century (No. INL/EXT-06-11746) (p. 372). Idaho Falls, Idaho: Idaho National Laboratory.