Page tree

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.


titleSTAG papers for winter/spring 2022

titlePapers under consideration
  • Kent C. Condie. 2018. A planet in transition: The onset of plate tectonics on Earth between 3 and 2 Ga?, Geoscience Frontiers, Volume 9.
  • M. Sayab, R. Lahtinen, J. Köykkä, P. Hölttä, T. Karinen, T. Niiranen, H. Leväniemi. 2021. Improved resolution of Paleoproterozoic orogenesis: Multi-directional collision tectonics in the Sodankylä belt of northern Finland, Precambrian Research, Volume 359.
  • Benjamin J. Drenth, William F. Cannon, Klaus J. Schulz, Robert A. Ayuso. 2021. Geophysical insights into Paleoproterozoic tectonics along the southern margin of the Superior Province, central Upper Peninsula, Michigan, USA. Precambrian Research, Volume 359.
  • Cagnard, F., Gapais, D., Barbey P., 2007. Collision tectonics involving juvenile crust: The examples of the southern Finnish Svecofennides. Precambrian Research 154, 125-141.
  • D. Chardon, D. Gapais, F. Cagnard, 2009. Flow of ultra-hot orogens: A view from the Precambrian, clues for the Phanerozoic. Tectonophysics, 477(3–4), 105-118.
  • R. Fischer, T. Gerya, 2016. Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modelling. Gondwana Research, 37, 53-70.
  • Spencer, C. J., Mitchell, R. N., & Brown, M. (2021). Enigmatic Mid‐Proterozoic Orogens: Hot, Thin, and Low. Geophysical Research Letters, 48(16), e2021GL093312.
  • Windley, B. (1992). Proterozoic collisional and accretionary orogens. In Developments in Precambrian Geology (Vol. 10, pp. 419-446). Elsevier.
  • Gerya, T. (2014). Precambrian geodynamics: concepts and models. Gondwana Research, 25(2), 442-463.
  • Weihed, P., Arndt, N., Billström, K., Duchesne, J. C., Eilu, P., Martinsson, O., ... & Lahtinen, R. (2005). 8: Precambrian geodynamics and ore formation: The Fennoscandian Shield. Ore Geology Reviews, 27(1-4), 273-322.
  • Brown, M. (2014). The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5(4), 553-569.
  • Schneider, D. A., Heizler, M. T., Bickford, M. E., Wortman, G. L., Condie, K. C., & Perilli, S. (2007). Timing constraints of orogeny to cratonization: Thermochronology of the Paleoproterozoic Trans-Hudson orogen, Manitoba and Saskatchewan, Canada. Precambrian Research, 153(1-2), 65-95.
  • Cawood, P. A., Kroner, A., & Pisarevsky, S. (2006). Precambrian plate tectonics: criteria and evidence. GSA today, 16(7), 4.
  • Corrigan, D., Pehrsson, S., Wodicka, N., & De Kemp, E. (2009). The Palaeoproterozoic Trans-Hudson Orogen: a prototype of modern accretionary processes. Geological Society, London, Special Publications, 327(1), 457-479.
  • St‐Onge, M. R., Searle, M. P., & Wodicka, N. (2006). Trans‐Hudson Orogen of North America and Himalaya‐Karakoram‐Tibetan Orogen of Asia: Structural and thermal characteristics of the lower and upper plates. Tectonics, 25(4).
  • Buntin, S., Artemieva, I. M., Malehmir, A., Thybo, H., Malinowski, M., Högdahl, K., ... & Buske, S. (2021). Long-lived Paleoproterozoic eclogitic lower crust. Nature communications, 12(1), 1-13.
  • Weller, O. M., & St-Onge, M. R. (2017). Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nature Geoscience, 10(4), 305-311.