Computer implementations on light-scattering methods

Antti Penttilä

2016
Methods and codes that we deal here

• Mie for spherical particles

• T-matrix for rotationally symmetric particles

• Multiple sphere T-matrix for collection of spheres

• Discrete dipole approximation for any shape

Hands-on work with the codes
• Based on spherical vector wave function series where the fields are represented. Series coefficients are solved.
• Applicable to spheres and coated spheres
• When the size parameter of the sphere gets large, also the required truncation number of the infinite series gets large, and the computations slow
 • In practice, this happens when the sphere is already in the geometric optics regime
• Implementations: BHMIE (Fortran, IDL, Matlab, C, Python – check Wikipedia for Mie codes), MatScat (for Matlab, google the link)
Mie task

• Sphere with size parameter $x = kr = 2$, ice material with refractive index $m = 1.31 + i 0.001$

• Compute scattering phase function (P_{11}-element of the Mueller matrix) and degree of linear polarization ($-100\% P_{21}/P_{11}$ vs. phase angle)

• Plot scattering efficiency $Q_{\text{sca}} \left[= C_{\text{sca}} / (\pi x^2) \right]$ as a function of size x, varying x from 0.5 to 20. Why Q_{sca} can be more than one?
• Also based on vector spherical wave function basis and coefficients for the functions
• Transition (T) – matrix can be solved for all shapes, but is computationally efficient for rotationally symmetric particles
• Implementation by Mishchenko, see http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html and “Double-precision T-matrix code for randomly oriented nonspherical particles”
• Good with moderate size parameters (max. some tens) and moderate aspect ratios (<4)
• Old-fashioned Fortran77-code, all input variables hard-coded in the source file, so altering them requires compiling
T-matrix task

• Oblate spheroid particle with aspect ratio 2, $x=2$ (volume-equivalent size parameter), $m=1.31+i0.001$

• Compute scattering phase function (P_{11}-element of the Mueller matrix) and degree of linear polarization (-100% P_{21}/P_{11} vs. phase angle), compare to sphere
Multiple sphere T-matrix code

• Based on vector spherical wave functions and translation to joint origin
• MSTM, applicable to sphere clusters and spheres inside spheres, sphere surfaces cannot cross each other
• Works with hundreds of spheres (moderate size parameters, not too sparse aggregate) or parallel version with thousands of spheres
• Implementation by Mackowski, http://www.eng.auburn.edu/~dmckwski/scatcodes/, Fortran 90 code with input file for parameters
MSTM task

• Create aggregate/cloud with ten $x=2$, $m=1.31+i0.001$ spheres. You can place the spheres as you wish
• Compute phase function and degree of linear polarization in random orientation setup
Discrete dipole approximation

• Based on volume-integral-equation solution for Maxwell equations in the approximation where scatterer(s) are replaced with small dipole elements. For efficiency (FFT-acceleration) the dipoles are located in rectangular grid

• Applicable for targets with size parameter up to 100, moderate refractive index (below 2 or 3 preferably)
 • Memory requirements grow with size, parallel computing needed for large sizes

• Few implementations, most popular are ADDA (Yurkin, C, https://github.com/adda-team/adda) and DDSCAT (Braine, Fortran 90, http://ddscat.wikidot.com/)
• Same as Mie, sphere with size parameter \(x = kr = 2 \), ice material with refractive index \(n = 1.31 + i \times 0.001 \)
• Compute scattering phase function (\(P_{11} \)-element of the Mueller matrix) and degree of linear polarization (-100% \(P_{21}/P_{11} \) vs. phase angle)
• Compare to Mie solution
• Sphere is among predefined shapes so you don’t need to create the shape discretization yourself
 • Discretation accuracy (i.e., dipole size, dipoles per lambda) an important parameter. About ten dipoles at least per wavelength