Bounded Symbiosis and Upward Reflection

Yurii Khomskii

joint work with Lorenzo Galeotti and Jouko Väänänen

Helsinki Logic Seminar

Supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 706219 (REGPROP)
In mathematics, there are two ways to describe a class of structures:

- **defining** in set theory: \(\{ \mathcal{A} : \Phi(\mathcal{A}) \} \)
- **axiomatizing** by logic: \(\{ \mathcal{A} : \mathcal{A} \models \phi \} \)
In mathematics, there are two ways to describe a class of structures:

- **defining** in set theory: \(\{ \mathcal{A} : \Phi(\mathcal{A}) \} \)
- **axiomatizing** by logic: \(\{ \mathcal{A} : \mathcal{A} \models \phi \} \)

Example 1

Describe the class of all structures with 3 or more elements:
In mathematics, there are two ways to describe a class of structures:

- **defining** in set theory: \(\{ \mathcal{A} : \Phi(\mathcal{A}) \} \)
- **axiomatizing** by logic: \(\{ \mathcal{A} : \mathcal{A} \models \phi \} \)

Example 1

Describe the class of all structures with 3 or more elements:

- In set theory \(\{ \mathcal{A} : \Phi(\mathcal{A}) \} \) where \(\Phi(x) = "|x| \geq 3" \).
Defining or Axiomatizing?

In mathematics, there are two ways to describe a class of structures:

- **defining** in set theory: \(\{ A : \Phi(A) \} \)
- **axiomatizing** by logic: \(\{ A : A \models \phi \} \)

Example 1

Describe the class of all structures with 3 or more elements:

- In set theory \(\{ A : \Phi(A) \} \) where \(\Phi(x) = \lvert x \rvert \geq 3 \).
- In logic \(\{ A : A \models \phi \} \) where \(\phi \) is

\[
\exists x \exists y \exists z \ (x \neq y \land x \neq z \land y \neq z)
\]
Defining or Axiomatizing?

Example 2

Describe the class of infinite structures:

\[A : (A) \]

Impossible in \(L \). But, e.g., in \(L_1 \) we can axiomatize infinite structures:

\[Q \exists x_0 \ldots \exists x_n : x_0 = x_1 = \cdots = x_n \]

Alternatively, add a generalized quantifier \(Q \) expressing "there are infinitely many".
Example 2

Describe the class of infinite structures:

- In set theory \(\{ \mathcal{A} : \Phi(\mathcal{A}) \} \) where \(\Phi(x) \equiv \lvert x \rvert \geq \omega \).
Example 2

Describe the class of infinite structures:

- In set theory \(\{ \mathcal{A} : \Phi(\mathcal{A}) \} \) where \(\Phi(x) \equiv \lvert x \rvert \geq \omega \).
- Impossible in \(\mathcal{L}_{\omega \omega} \). But, e.g., in \(\mathcal{L}_{\omega_1 \omega_1} \) we can axiomatize infinite structures:

\[
\phi \equiv \exists x_0 \exists x_1, \ldots \bigwedge_{i \neq j} x_i \neq x_j
\]
Defining or Axiomatizing?

Example 2

Describe the class of infinite structures:

- In set theory $\{ \mathcal{A} : \Phi(\mathcal{A}) \}$ where $\Phi(x) \equiv \lvert x \rvert \geq \omega$.
- Impossible in $\mathcal{L}_{\omega\omega}$. But, e.g., in $\mathcal{L}_{\omega_1\omega_1}$ we can axiomatize infinite structures:

 $$\phi \equiv \exists x_0 \exists x_1, \cdots \bigwedge_{i \neq j} x_i \neq x_j$$

- Alternatively, add a generalized quantifier Q_∞ expressing “there are infinitely many”.

Yuri Khomskii (UHH & AUC)
Bounded Symbiosis and Upward Reflection
Example 3
Describe the class of structures \((A, P)\) such that

\[|\{x : P(x)\}| = |\{x : \neg P(x)\}| \]
Example 3

Describe the class of structures \((A, P)\) such that

\[|\{x : P(x)\}| = |\{x : \neg P(x)\}| \]

- In set theory: like above.
Example 3
Describe the class of structures \((A, P)\) such that

\[
|\{x : P(x)\}| = |\{x : \neg P(x)\}|
\]

- In set theory: like above.
- Impossible in \(\mathcal{L}_{\omega\omega}, \mathcal{L}_{\omega_1\omega_1}\) or \(\mathcal{L}_{Q\omega}\).
Example 3

Describe the class of structures \((A, P)\) such that

\[
|\{x : P(x)\}| = |\{x : \neg P(x)\}|
\]

- In set theory: like above.
- Impossible in \(\mathcal{L}_{\omega\omega}, \mathcal{L}_{\omega_1\omega_1}\) or \(\mathcal{L}_{\omega_1}\).
- The **Härtig Quantifier** \(I\) is defined by

\[
A \models lxy\phi(x)\psi(y) \iff |\{a : A \models \phi[a]\}| = |\{b : A \models \psi[b]\}|
\]

Then this class is axiomatizable in \(\mathcal{L}_{\omega\omega}(I)\) by the formula \(\phi \equiv lxyP(x)\neg P(x)\).
Since $||=L^{\forall}$, any first-order axiomatizable model class is λ-class (closed under isomorphisms) is axiomatizable by the logic $(L^{\forall}(I))$ (definition later).

But not vice versa.

Every $(L^{\forall}(I))$ model class is λ-class.

But not vice versa.
Since $\models L_{\omega \omega}$ is Δ_1, any first-order-axiomatizable model class is Δ_1. But not vice versa.
Since $\models_{\omega \omega}$ is Δ_1, any first-order-axiomatizable model class is Δ_1.

But not vice versa.
Since $\models L_{\omega} \omega$ is Δ_1, any first-order-axiomatizable model class is Δ_1.

But not vice versa.

Every Δ_1-class (closed under isomorphisms) is axiomatizable by the logic $\Delta(L_{\omega} \omega(I))$ (definition later).
Since $\models L_{\omega \omega}$ is Δ_1, any first-order-axiomatizable model class is Δ_1.

But not vice versa.

Every Δ_1-class (closed under isomorphisms) is axiomatizable by the logic $\Delta(L_{\omega \omega}(I))$ (definition later).

But not vice versa.
Strength of set-theoretic and model-theoretic definability

- Since $|=\mathcal{L}_\omega \omega$ is Δ_1, any first-order-axiomatizable model class is Δ_1.
- But not vice versa.
- Every Δ_1-class (closed under isomorphisms) is axiomatizable by the logic $\Delta(\mathcal{L}_\omega \omega(I))$ (definition later).
- But not vice versa.
- Every $\Delta(\mathcal{L}_\omega \omega(I))$ model class is Δ_2.
Since $\models_{\mathcal{L}_{\omega\omega}}$ is Δ_1, any first-order-axiomatizable model class is Δ_1.

But not vice versa.

Every Δ_1-class (closed under isomorphisms) is axiomatizable by the logic $\Delta(\mathcal{L}_{\omega\omega}(I))$ (definition later).

But not vice versa.

Every $\Delta(\mathcal{L}_{\omega\omega}(I))$ model class is Δ_2.

But not vice versa.
Relative Strength

\[\Delta_2 \leftrightarrow \Delta(\mathcal{L}_{\omega\omega}(l)) \]

\[\Delta_1 \leftrightarrow \mathcal{L}_{\omega\omega} \]

Set Theory \quad Logic
An exact match between set-theory and logic?

Is there a correspondence between the expressive power of some strong logics \(\mathcal{L} \) and a certain set-theoretic complexity level?
An exact match between set-theory and logic?

Is there a correspondence between the expressive power of some strong logics \mathcal{L} and a certain set-theoretic complexity level?

Definition

Let R be a predicate in the language of set theory. We can classify formulas as $\Sigma_1(R)$, $\Pi_1(R)$, $\Delta_1(R)$ etc., if they have that complexity level with R treated as a new symbol.
An exact match between set-theory and logic?

Is there a correspondence between the expressive power of some strong logics \mathcal{L} and a certain set-theoretic complexity level?

Definition

Let R be a predicate in the language of set theory. We can classify formulas as $\Sigma_1(R)$, $\Pi_1(R)$, $\Delta_1(R)$ etc., if they have that complexity level with R treated as a new symbol.

Example:

- $\text{Cd}(x) \leftrightarrow "x \text{ is a cardinal}".$
- $\text{PwSt}(x, y) \leftrightarrow "y \text{ is the power set of } x".$

\[
\text{If } R \text{ true, then } \Delta_i \leq \Delta_i(R) \leq \Delta_2
\]
Symbiosis (Väänänen, 1976)

Idea: a logic \mathcal{L} is **symbiotic** with a predicate R, if \mathcal{L} and $\Delta_1(R)$ have the same expressive power in terms of characterizing a class of structures in a fixed vocabulary.

Applications of Symbiosis

Why is this useful?

1. Set theoretic principles (e.g. reflection) corresponding to model-theoretic principles (e.g., Löwenheim-Skolem).

2. Large cardinal strength of model-theoretic principles.

3. Large cardinal strength of set-theoretic principles (e.g., Vopěnka-type principles)
Definition

The (downwards) Löwenheim-Skolem number $\text{LST}(\mathcal{L})$ is the least κ (assuming it exists) such that if $\mathcal{A} \models_\mathcal{L} \phi$ then there is a sub-structure $\mathcal{B} \subseteq \mathcal{A}$ s.t. $|\mathcal{B}| < \kappa$ and $\mathcal{B} \models_\mathcal{L} \phi$.

Definition

The (downwards) structural reflection number $\text{SR}(R)$ for a predicate R is the least κ (assuming it exists) such that if \mathcal{K} is a $\Sigma_1(R)$-class of τ-structures, then for every $\mathcal{A} \in \mathcal{K}$ there is $\mathcal{B} \in \mathcal{K}$ with $|\mathcal{B}| < \kappa$ and $\mathcal{B} \preceq \mathcal{A}$.

Theorem (Bagaria-Väänänen 2015)

Suppose \mathcal{L} and R is symbiotic. Then $\text{LST}(\mathcal{L}) = \kappa$ iff $\text{SR}(R) = \kappa$.
Definitions

- We consider extensions of first-order logic: \(\mathcal{L} \) may refer to any logic with a definable satisfaction relation \(\models \).

- E.g.: second-order logic with full semantics, first order logic \(\mathcal{L}_{\omega \omega} \) enhanced with generalized quantifiers.

- A class \(\mathcal{K} \) of \(\tau \)-structures is \(\mathcal{L} \)-axiomatizable if \(\mathcal{K} = \text{Mod}(\phi) = \{ A : A \models \mathcal{L} \phi \} \) for some \(\phi \) in \(\mathcal{L} \).

- We will always consider many-sorted languages.

- If \(\tau \subseteq \tau' \) and \(A \) is a \(\tau' \)-structure, then the \(\tau \)-reduct \(A \upharpoonright \tau \) is defined by ignoring all symbols not in \(\tau' \) and restricting the domain to the sorts in \(\tau \).

- In particular, \(A \upharpoonright \tau \) can have a smaller domain than \(A \).
The Δ-operator

Definition
A class \mathcal{K} of τ-structures is $\Sigma(\mathcal{L})$-axiomatizable if $\mathcal{K} = \{ A|_\tau : A \models _\mathcal{L} \phi \}$ for ϕ in some finite extension τ' of τ.

Example: $\mathcal{K} = \{ (A, B) : |A| = |B| \}$ is \mathcal{L}-axiomatizable. Add a new function symbol F and write expressing that F is a bijection between the two sorts. Then \mathcal{K} is the projection of $\text{Mod}(\mathcal{L})$ to the original language.
The Δ-operator

Definition

A class \mathcal{K} of τ-structures is **$\Sigma(\mathcal{L})$-axiomatizable** if $\mathcal{K} = \{ A \models \tau : A \models \phi \}$ for ϕ in some finite extension τ' of τ.

Example: $\mathcal{K} = \{(A, B) : |A| = |B|\}$ is $\Sigma(\mathcal{L}_{\omega\omega})$. Add a new function symbol F and write ϕ expressing that F is a bijection between the two sorts. Then \mathcal{K} is the projection of $\text{Mod}(\phi)$ to the original language.
The Δ-operator

Definition

A class \mathcal{K} of τ-structures is **$\Sigma(\mathcal{L})$-axiomatizable** if $\mathcal{K} = \{ A | \tau : A \models_\mathcal{L} \phi \}$ for ϕ in some finite extension τ' of τ.

Example: $\mathcal{K} = \{ (A, B) : |A| = |B| \}$ is $\Sigma(\mathcal{L}_{\omega \omega})$. Add a new function symbol F and write ϕ expressing that F is a bijection between the two sorts. Then \mathcal{K} is the projection of $\text{Mod}(\phi)$ to the original language.

Definition

A class \mathcal{K} of τ-structures is **$\Delta(\mathcal{L})$-axiomatizable** if both \mathcal{K} and its complement are $\Sigma(\mathcal{L})$-axiomatizable.
The Δ-operator

Some remarks about the Δ-operator.

1. $\Delta(L_{\omega \omega}) = L_{\omega \omega}$ and $\Delta(L^2) = L^2$.

2. In general: if \mathcal{L} satisfies the **Craig Interpolation Theorem** then $\Delta(\mathcal{L}) = \mathcal{L}$.

3. The Δ-operation preserves many properties of \mathcal{L}, e.g., downward Löwenheim-Skolem.

4. It is convenient to regard $\Delta(\mathcal{L})$ itself as an **abstract logic** (without syntax but with the model classes corresponding to $\Delta(\mathcal{L})$-axiomatizable classes).
Definition of Symbiosis

Definition (Väänänen)

\(\mathcal{L} \) and \(R \) are \textbf{symbiotic} if

1. \(\models_\mathcal{L} \) is \(\Delta_1(R) \), and

Converse?

Every \(\Delta_1(R) \)-class is \(\text{Mod}(\phi) \)

\(\leq - \text{closed} \)
Definition of Symbiosis

Definition (Väänänen)

\(\mathcal{L} \) and \(R \) are \textbf{symbiotic} if

1. \(\models_\mathcal{L} \) is \(\Delta_1(R) \), and

2. Every \(\Delta_1(R) \)-definable class of \(\tau \)-structures closed under isomorphisms is \(\Delta(\mathcal{L}) \)-axiomatizable.

\[\mathcal{L} \models \Delta(\mathcal{L}) \]
L^2 and PwSt

Example

L^2 and PwSt are symbiotic.

Proof.

Note: $\forall \phi \in L^2$ is absolute for models of set theory which correctly interpret $P(x) = y$.
Proof.

DEF: M is PwSt-correct if

\[(\forall x \in \mathbb{L}^2 \phi) \iff \exists M (M \models \exists x \phi \land M \models (x =_{\mathbb{L}^2} \phi))\]

\[\vdash_{\Delta_1} (\forall x \in \mathbb{L}^2 \phi) \iff \exists M (M \models \exists x \phi \land M \models (x =_{\mathbb{L}^2} \phi))\]

\[\Sigma_1 (\text{PwSt}) \iff \forall M (M \models (x =_{\mathbb{L}^2} \phi) \rightarrow M \models (x =_{\mathbb{L}^2} \phi))\]

\[\Pi_1 (\text{PwSt}) \iff \Delta_1 (\text{PwSt})\]
L^2 and PwSt

Proof.

2. K is $\Delta^1_1(PwSt)$ class. First look at $\exists_1(R)$ formula Φ. $\psi \Pi^1_1(R)$

Now: You want $K = \text{proj of } \text{Mod}(\forall)$ to original lang.

Extend: $I + \text{lang of set theory } (E)$

Idea: \forall express "$(N,E,c \ldots) \text{ is such that}$ is PwSt-correct"

$\Delta(L^2)$ $\Delta(L^2)$ $\Delta(L^2)$ $\Delta(L^2)$

$(N,E) \equiv (M,E) \vDash ZFC$ which

and $\Gamma \vDash \Phi(c)$ $\psi(c)$ $\vDash \Phi(c)$ $\psi(c)$

expr in L^2
\mathcal{L}^2 and PwSt

Essence of the proof:

1. $\models_{\mathcal{L}^2}$ is absolute for PwSt-correct models of set theory, and

2. Being (isomorphic to) a PwSt-correct model of set theory can be expressed in a $\Delta(\mathcal{L}^2)$ way.
In fact, this is the essence of Symbiosis.

Call a model \(M \) of set theory \(R\)-correct if for all \(x_1, \ldots, x_n \in M \) we have
\[M \models R(x_1, \ldots, x_n) \text{ iff } R(x_1, \ldots, x_n). \]

Lemma

\(\mathcal{L} \) and \(R \) are **symbiotic** if

1. \(\models_\mathcal{L} \) is absolute for \(R\)-correct models of set theory, and
2. being (isomorphic to) an \(R\)-correct model of set theory is \(\Delta(\mathcal{L}) \).
Symbiosis

\[
\Delta_2 = \Delta_1(PwSt) \quad \Delta(L^2)
\]

\[
\Delta_1(Cd) \quad \Delta(L_{\omega\omega}(I))
\]

\[
\Delta_1 \quad \Delta(L_{WF})
\]

Set Theory \quad Logic
Definition

The (downwards) Löwenheim-Skolem number $\text{LST}(\mathcal{L})$ is the least κ (assuming it exists) such that if $\mathcal{A} \models \phi$ then there is a sub-structure $\mathcal{B} \subseteq \mathcal{A}$ s.t. $|\mathcal{B}| < \kappa$ and $\mathcal{B} \models \phi$.

Definition

The (downwards) structural reflection number $\text{SR}(R)$ for a predicate R is the least κ (assuming it exists) such that if \mathcal{K} is a $\Sigma_1(R)$-class of τ-structures, then for every $\mathcal{A} \in \mathcal{K}$ there is $\mathcal{B} \in \mathcal{K}$ with $|\mathcal{B}| < \kappa$ and $\mathcal{B} \preceq \mathcal{A}$.

Theorem (Bagaria-Väänänen 2015)

Suppose \mathcal{L} and R is symbiotic. Then $\text{LST}(\mathcal{L}) = \kappa$ iff $\text{SR}(R) = \kappa$.
About the proof

\[\text{SR}(R) \subseteq K \quad \Rightarrow \quad \text{LSI}(L) \subseteq K \]

Other directions:

- Direct:
 - All of this can be expressed in \(\Delta(L) \)

- Symbiosis (2) is \(\Delta(R) \)

\[\text{R symb. in } L \]

A satisfies \(\phi(\mathfrak{M}) \)

\(\Theta \text{ R-correct} \)

\[H \Theta = \phi(\mathfrak{M}) \]

\(K = \{ \mu \mid \phi(\mathfrak{M}) \} \)
By Löwenheim–Skolem

\[N \models \phi(B) \]

\[N \text{ also } R\text{-correct} \]

\[B \]

\[\text{Lö-Sk} \]

\[N \leq H\theta \]

\[B \models A \]

\[\text{coll} \downarrow N \]
What about other properties?

We were interested in other properties of \mathcal{L}, in particular κ-compactness?
What about other properties?

We were interested in other properties of \mathcal{L}, in particular κ-compactness?

Question

Which set-theoretic principle for $\Sigma_1(R)$-classes corresponds to κ-compactness of \mathcal{L}, for symbiotic \mathcal{L} and R?
What about other properties?

We were interested in other properties of \mathcal{L}, in particular κ-\textbf{compactness}?

Question

\textit{Which set-theoretic principle for $\Sigma_1(R)$-classes corresponds to κ-compactness of \mathcal{L}, for symbiotic \mathcal{L} and R?}

Compactness is related to \textbf{upwards} Löwenheim-Skolem principles, so it is natural to look at them first.
Upwards Löwenheim-Skolem

Definition

The **upwards Löwenheim-Skolem number** $\text{ULST}(\mathcal{L})$ is the least κ such that if $\mathcal{A} \models \mathcal{L} \phi$ and $|\mathcal{A}| \geq \kappa$, then for every $\kappa' > \kappa$ there is a super-structure $\mathcal{B} \supseteq \mathcal{A}$ with $|\mathcal{B}| \geq \kappa'$ and $\mathcal{B} \models \mathcal{L} \phi$.
Definition

The **upwards Löwenheim-Skolem number** $\text{ULST}(\mathcal{L})$ is the least κ such that if $\mathcal{A} \models \phi$ and $|\mathcal{A}| \geq \kappa$, then for every $\kappa' > \kappa$ there is a super-structure $\mathcal{B} \supseteq \mathcal{A}$ with $|\mathcal{B}| \geq \kappa'$ and $\mathcal{B} \models \phi$.

- The **Hanf number** of \mathcal{L} is defined identically but without the assumption “super-structure”. Hanf numbers always exist in ZFC but $\text{ULST}(\mathcal{L})$ usually implies large cardinals.

- A suitable version of κ-compactness implies $\text{ULST}(\mathcal{L})$, but it is not clear whether (for which logics) the converse implication holds.
Problems

However, if we define an “upwards” version of Structural Reflection for $\Sigma_1(R)$-classes and try to carry over the same proof, we are faced with some difficulties:
Dealing with the problems of size

- Not just a problem with the proof: while the Δ-operator preserves downwards Löwenheim-Skolem properties of a logic, it may not preserve the Hanf number (J. Väänänen, Δ-extensions and Hanf-numbers, 1983).

- We need the bounded Δ-operator.

- Also need some definable way of “linking” the size of a model \mathcal{A} with the size of the larger model of set theory M containing it.

- Need a bounded version of $\Sigma_1(R)$ formulas.

- We need to adapt the concept of symbiosis: Bounded Symbiosis.
Dealing with the problems of size
The Bounded Δ-operator

Definition (Väänänen, 1983)

A class \mathcal{K} of τ-structures is $\Sigma^B(\mathcal{L})$-axiomatizable if there is ϕ is a finite extension τ' of τ such that

1. $\mathcal{K} = \{B|_\tau : B \models \mathcal{L} \phi\}$, and
2. For all \mathcal{A} there is a cardinal $\lambda_{\mathcal{A}}$ such that for any τ'-structure B, if $B \models \phi$ and $\mathcal{A} = B|_\tau$, then $|B| \leq \lambda_{\mathcal{A}}$.

A class is $\Delta^B(\mathcal{L})$-axiomatizable if both \mathcal{K} and its complement are $\Sigma^B(\mathcal{L})$-axiomatizable.
For many logics, $\Delta(\mathcal{L}) = \Delta^B(\mathcal{L})$.

(Väänänen, 1983) It is consistent that for some logics $\Delta(\mathcal{L}) \neq \Delta^B(\mathcal{L})$.

(Väänänen, 1983) Δ^B preserves the Hanf number of a logic.
Definably Bounding Functions

Now we turn to set theory:

Definition

A class function \(F : \text{Card} \to \text{Card} \) is **definably bounding** if the class of structures

\[
\mathcal{K} := \{(A, B) : |B| \leq F(|A|)\}
\]

is \(\Sigma^B (\mathcal{L}_{\omega \omega}) \)-axiomatizable.

Idea: the **witness** \(B \) may be larger than \(A \), but not too much. This can be expressed in first-order logic with the help of additional sorts (but with a bound on the domain).
Lemma

$F(\kappa) = 2^\kappa$ is definably bounding.

Proof.

Extend the vocabulary with a new relation symbol $\dot{E} \subseteq \dot{A} \times \dot{B}$ and consider the first-order formula

$$\phi \equiv \forall b \forall b' (\forall a (a \dot{E} b \iff a \dot{E} b') \rightarrow b = b')$$

If $(A, B, E) \models \phi$ then $b \mapsto \{a \in A : a \dot{E} b\}$ is an injection from B to $\mathcal{P}(A)$.

Also: if F, G definably bounding then $F \circ G$ definably bounding. Hence $F(\kappa) = 2^{2^\kappa}$, $F(\kappa) = 2^{2^\cdot\cdot\cdot\kappa}$ etc. are definably bounding.
$\Sigma_1^F(R)$ and $\Delta_1^F(R)$ formulas

Definition

1. The **H-rank** of a set x, denoted by $\rho_H(x)$, is the least infinite κ such that $x \in H_{\kappa^+}$.
2. Let F be **definably bounding**. A formula $\phi(x)$ is Σ_1^F if there exists a Δ_0 formula $\psi(x, y)$ such that

 $$\forall x (\phi(x) \iff \exists y (\rho_H(y) \leq F(\rho_H(x)) \land \psi(x, y)))$$

3. Π_1^F and Δ_1^F are defined as usual, and $\Delta_1^F(R)$ etc., if we add a predicate R.

Example

The satisfaction relation \models_{ω_1} is Δ_1^{id}.
\[\Sigma^F_1(R) \text{ and } \Delta^F_1(R) \text{ formulas} \]

\[\phi(x) \iff \exists y \psi(x,y) \]

\[\rho(y) \leq F(\rho(x)) \]

\[\Delta^0 \]
Definition (Galeotti-K-Väänänen)

\(\mathcal{L} \) and \(R \) are **bounded-symbiotic** if

1. \(\models_{\mathcal{L}} F(R) \) for some definably bounding \(F \), and
2. Every \(\Delta^E (R) \) class closed under isomorphisms is \(\Delta^B (\mathcal{L}) \)-axiomatizable.
Bounded Symbiosis

Definition (Galeotti-K-Väänänen)

\mathcal{L} and R are **bounded-symbiotic** if

1. $\models\mathcal{L}$ is $\Delta_1^F(R)$ for some definably bounding F, and
2. Every $\Delta_1^F(R)$ class closed under isomorphisms is $\Delta_1^B(\mathcal{L})$-axiomatizable.

Lemma (Galeotti-K-Väänänen)

All examples of \mathcal{L} and R which were known to be **symbiotic**, are in fact **bounded-symbiotic**.

In particular

- \mathcal{L}_{WF} and \emptyset ✓
- $\mathcal{L}_{\omega}(I)$ and Cd ✓
- \mathcal{L}^2 and PwSt ✓

are **bounded-symbiotic**.
Upwards Structural Reflection Principle

Definition

Let R be a Π_1 predicate. The **bounded upwards structural reflection number** $\mathcal{USR}(R)$ is the least κ (if it exists) such that:

For every definably bounding function F, and every $\Sigma_1^F(R)$-definable class of τ-structures in a fixed vocabulary τ closed under isomorphisms:

If there is $A \in \mathcal{K}$ with $|A| \geq \kappa$, then for every $\kappa' > \kappa$ there is a $B \in \mathcal{K}$ with $|B| \geq \kappa'$ and an elementary embedding $e : A \preceq B$.

$\Sigma_1^F(R)$
Main Result

Theorem (Galeotti-K-Väänänen)

Let \mathcal{L} be a logic with Δ_0-definable syntax and dependence number $= \omega$, and let R be a Π_1 predicate. Assume that \mathcal{L} and R are **boundedly symbiotic**.

Then $\text{ULST}(\mathcal{L}) = \kappa$ iff $\text{USR}(R) = \kappa$.

0-definable syntax

L has Δ_0-definable syntax if every formula (as a syntactic object) is Δ_0-definable with parameter \dd.

L has dependence number ω if every L-formula uses at most finitely many symbols from the vocabulary.

All logics obtained by adding finitely many generalized quantifiers to L or L^2 satisfy these conditions. This covers most of the logics we are interested in.
Main Result

Theorem (Galeotti-K-Väänänen)

Let \mathcal{L} be a logic with Δ_0-definable syntax and dependence number $= \omega$, and let R be a Π_1 predicate. Assume that \mathcal{L} and R are boundedly symbiotic.

Then $\text{ULST}(\mathcal{L}) = \kappa$ iff $\text{USR}(R) = \kappa$.

- \mathcal{L} has Δ_0-definable syntax if every formula ϕ (as a syntactic object) is Δ_0-definable with parameter τ.

- \mathcal{L} has dependence number ω if every \mathcal{L}-formula ϕ uses at most finitely many symbols from the vocabulary.

All logics obtained by adding finitely many generalized quantifiers to $\mathcal{L}_{\omega\omega}$ or \mathcal{L}^2, satisfy these conditions. This covers most of the logics we are interested in.
Main Result

About the proof

\[|M| \geq \ell (2^2 F(K')) \]

\[|d| > k' \]

upw. Low-Sk

\[M \leq N \]

\[A \trianglelefteq_{\text{low}} B \]

|B| as large as needed

|B| > k'
Main Result

About the proof
Applications: \textit{USR} from large cardinals

We look at the \textbf{large cardinal strength} of \textit{ULST}(L^2) and \textit{USR}(PwSt).
Applications: \textit{USR} from large cardinals

We look at the \textbf{large cardinal strength} of ULST(\mathcal{L}^2) and \textit{USR}(PwSt).

- Magidor 1971: κ is the least \underline{extendible cardinal} iff \mathcal{L}^2 is κ-compact.
Applications: \(\text{USR} \) from large cardinals

We look at the **large cardinal strength** of ULST\((\mathcal{L}^2)\) and \(\text{USR}(\text{PwSt}) \).

- Magidor 1971: \(\kappa \) is the least **extendible cardinal** iff \(\mathcal{L}^2 \) is \(\kappa \)-compact.

Corollary

If \(\kappa \) is the least extendible cardinal then ULST\((\mathcal{L}^2) \leq \kappa \).
Applications: USR from large cardinals

We look at the **large cardinal strength** of $ULST(L^2)$ and $USR(PwSt)$.

- Magidor 1971: κ is the least **extendible cardinal** iff L^2 is κ-compact.

Corollary

If κ is the least extendible cardinal then $ULST(L^2) \leq \kappa$.

Corollary

If κ is the least extendible cardinal then $USR(PwSt) \leq \kappa$.
Applications: USR from large cardinals

We look at the large cardinal strength of $ULST(L^2)$ and $USR(PwSt)$.

- Magidor 1971: κ is the least **extendible cardinal** iff L^2 is κ-compact.

Corollary

*If κ is the least extendible cardinal then $ULST(L^2) \leq \kappa$.***

Corollary

*If κ is the least extendible cardinal then $USR(PwSt) \leq \kappa$.***

Corollary

*If κ is the least extendible cardinal and R is any Π_1 predicate then $USR(R) \leq \kappa$.***

\[\text{because} \quad \Delta_1(R) \leq \Delta_1(PwSt) \leq \Delta_2 \]
What about the converse? How much large cardinals can we obtain from $\text{USR}(\text{PwSt})$?

Theorem

If $\text{USR}(\text{PwSt})$ is defined, then there exists an n-extendible cardinal for every n.

\[\eta \text{- ext.} \]
Large cardinals from $USR(PwSt)$

What about the converse? How much large cardinals can we obtain from $USR(PwSt)$?

Theorem

If $USR(PwSt)$ is defined, then there exists an n-extendible cardinal for every n.

Corollary

If $ULST(L^2)$ is defined, then there exists an n-extendible cardinal for every n.
What about the converse? How much large cardinals can we obtain from $\text{USR}(\text{PwSt})$?

Theorem

If $\text{USR}(\text{PwSt})$ is defined, then there exists an n-extendible cardinal for every n.

Corollary

If $\text{ULST}(\mathcal{L}^2)$ is defined, then there exists an n-extendible cardinal for every n.

Conjecture

$\text{USR}(\text{PwSt})$ is defined iff there exists an extendible cardinal.

\[\forall \alpha \ (\alpha \text{- ext.}) \]
Open questions and future direction

Question
What is the exact large cardinal strength of $\mathcal{USR}(PwSt)$ and ULST(\mathcal{L}^2)?

Question
What is the large cardinal strength of $\mathcal{USR}(R)$ and ULST(\mathcal{L}) for other pairs of (boundedly) symbiotic \mathcal{L} and R?

Question
Is there a set-theoretic principle for $\Sigma_1(R)$ classes which corresponds to κ-compactness of \mathcal{L}, for (boundedly) symbiotic \mathcal{L} and R? Can this be used to compute large cardinal strength of κ-compactness for various logics \mathcal{L}?
Thank You!

Yuriĭ Khomskii

yurii@deds.nl

Supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 706219 (REGPROP)