(Strong) A_∞-weights on metric spaces

Riikka Korte riikka.korte@helsinki.fi
August 30, 2012

University of Helsinki
Department of Mathematics and Statistics
Outline

Introduction

Strong A_∞-weights

A_∞-weights in metric spaces

$SA_\infty(X) \subset A_\infty(X)$
Reference:

The talk is mainly based on the following paper:

- O. E. Kansanen and R. K.,
Introduction

- SA_∞-weights were introduced by David and Semmes when trying to characterize the subclass of A_∞-weights that are comparable to the Jacobian determinants of quasiconformal mappings in \mathbb{R}^n.

The inclusions above hold also in Ahlfors-regular metric spaces supporting a $(1,1)$-Poincaré inequality. In \mathbb{R}^n there are several characterizations for A_∞-weights that are not necessarily equivalent on metric spaces (Strömberg-Torchinsky).
Introduction

- SA_∞-weights were introduced by David and Semmes when trying to characterize the subclass of A_∞-weights that are comparable to the Jacobian determinants of quasiconformal mappings in \mathbb{R}^n.

- It turned out that Jacobians $\subsetneq SA_\infty \subsetneq A_\infty$.
Introduction

- SA_∞-weights were introduced by David and Semmes when trying to characterize the subclass of A_∞-weights that are comparable to the Jacobian determinants of quasiconformal mappings in \mathbb{R}^n.

- It turned out that Jacobians $\subsetneq SA_\infty \subsetneq A_\infty$.

- The inclusions above hold also in Ahlfors-regular metric spaces supporting a $(1,1)$-Poincaré inequality.
Introduction

- SA_∞-weights were introduced by David and Semmes when trying to characterize the subclass of A_∞-weights that are comparable to the Jacobian determinants of quasiconformal mappings in \mathbb{R}^n.
- It turned out that Jacobians $\subsetneq SA_\infty \subsetneq A_\infty$.
- The inclusions above hold also in Ahlfors-regular metric spaces supporting a $(1, 1)$-Poincaré inequality.
- In \mathbb{R}^n there are several characterizations for A_∞-weights that are not necessarily equivalent on metric spaces (Strömberg-Torchinsky).
Setting

\((X, d, \mu)\) metric measure space.
Setting

(X, d, μ) metric measure space.

- Ahlfors regular
 \[\mu(B(x, r)) \approx r^Q, \]
 or at least doubling
 \[\mu(B(x, 2r)) \leq c_D \mu(B(x, r)). \]
(\(X, d, \mu\)) metric measure space.

■ Ahlfors regular

\[\mu(B(x, r)) \approx r^Q, \]

or at least doubling

\[\mu(B(x, 2r)) \leq c_D \mu(B(x, r)). \]

■ (1, 1)-Poincaré inequality

\[
\int_{B(x, r)} |u - u_{B(x, r)}| \, d\mu \leq c_P r \int_{B(x, \lambda r)} g_u \, d\mu,
\]

where \(g_u\) is an upper gradient of \(u\) (corresponds to \(|\nabla u|\)).
Let ν be a doubling measure on X. We associate with ν the quasi-distance $\delta_\nu(x, y)$

$$\delta_\nu(x, y) = [\nu(B(x, d(x, y))) + \nu(B(y, d(x, y)))]^{1/Q}.$$
Strong A_∞-weights

- Let ν be a doubling measure on X. We associate with ν the quasi-distance $\delta_\nu(x, y)$

$$\delta_\nu(x, y) = \left[\nu(B(x, d(x, y))) + \nu(B(y, d(x, y))) \right]^{1/Q}.$$

- ν is a *metric doubling measure* if there exists a distance function δ such that

$$\frac{1}{c} \delta(x, y) \leq \delta_\nu(x, y) \leq c \delta(x, y)$$
Let ν be a doubling measure on X. We associate with ν the quasi-distance $\delta_\nu(x, y)$

$$\delta_\nu(x, y) = \left[\nu(B(x, d(x, y))) + \nu(B(y, d(x, y))) \right]^{1/Q}.$$

ν is a metric doubling measure if there exists a distance function δ such that

$$\frac{1}{c} \delta(x, y) \leq \delta_\nu(x, y) \leq c \delta(x, y)$$

$\omega \in L^1_{loc}(X)$ is a strong A_∞-weight ($\omega \in SA_\infty(X)$), if

$$d_\nu = \omega d_\mu.$$
A_∞-weights in metric spaces: possible definitions

1. There are $0 < \varepsilon, \delta < 1$ s.t. for all $E \subseteq B$,

$$\mu(E) < \varepsilon \mu(B) \implies \nu(E) < (1 - \delta)\nu(B)$$
\(A_{\infty} \)-weights in metric spaces: possible definitions

1. There are \(0 < \varepsilon, \delta < 1 \) s.t. for all \(E \subseteq B \),
\[
\mu(E) < \varepsilon \mu(B) \implies \nu(E) > (1 - \delta) \nu(B)
\]

2. There are \(c > 0 \) and \(p \geq 1 \) s.t. for all \(E \subseteq B \),
\[
\frac{\nu(E)}{\nu(B)} \leq c \left(\frac{\mu(E)}{\mu(B)} \right)^{1/p}
\]
A_∞-weights in metric spaces: possible definitions

1. There are $0 < \varepsilon, \delta < 1$ s.t. for all $E \subseteq B$,
 \[\mu(E) < \varepsilon \mu(B) \implies \nu(E) < (1 - \delta)\nu(B) \]

2. There are $c > 0$ and $p \geq 1$ s.t. for all $E \subseteq B$,
 \[\frac{\nu(E)}{\nu(B)} \leq c \left(\frac{\mu(E)}{\mu(B)} \right)^{1/p} \]

3. ω satisfies the reverse Hölder inequality.

In (3) – (5), we assume that ν is a weighted measure with respect to μ and that there exists ω s.t.
\[\nu(A) = \int_A \omega \, d\mu. \]
A_∞-weights in metric spaces: possible definitions

1. There are $0 < \varepsilon, \delta < 1$ s.t. for all $E \subseteq B$,
 \[
 \mu(E) < \varepsilon \mu(B) \implies \nu(E) < (1 - \delta) \nu(B)
 \]

2. There are $c > 0$ and $p \geq 1$ s.t. for all $E \subseteq B$,
 \[
 \frac{\nu(E)}{\nu(B)} \leq c \left(\frac{\mu(E)}{\mu(B)}\right)^{1/p}
 \]

3. ω satisfies the reverse Hölder inequality.

4. There are $c > 0$, $p \geq 1$ s.t. for all $E \subseteq B$,
 \[
 \frac{\nu(E)}{\nu(B)} \geq c \left(\frac{\mu(E)}{\mu(B)}\right)^{p}
 \]

In (3) – (5), we assume that ν is a weighted measure with respect to μ and that there exists ω s.t. $\nu(A) = \int_A \omega \, d\mu$.
A_∞-weights in metric spaces: possible definitions

1. There are $0 < \varepsilon, \delta < 1$ s.t. for all $E \subseteq B$,
 \[\mu(E) < \varepsilon \mu(B) \implies \nu(E) < (1 - \delta) \nu(B) \]

2. There are $c > 0$ and $p \geq 1$ s.t. for all $E \subseteq B$,
 \[\frac{\nu(E)}{\nu(B)} \leq c \left(\frac{\mu(E)}{\mu(B)} \right)^{1/p} \]

3. ω satisfies the reverse Hölder inequality.

4. There are $c > 0$, $p \geq 1$ s.t. for all $E \subseteq B$,
 \[\frac{\nu(E)}{\nu(B)} \geq c \left(\frac{\mu(E)}{\mu(B)} \right)^p \]

5. $\omega \in A_p$

In (3) – (5), we assume that ν is a weighted measure with respect to μ and that there exists ω s.t. $\nu(A) = \int_A \omega d\mu$.
Comparison of definitions for $A_{\infty}(X)$

- If μ is doubling, then we have

$$(1) \iff (2) \iff (3) \iff (4) \iff (5)$$
Comparison of definitions for $A_\infty(X)$

- If μ is doubling, then we have

$$(1) \iff (2) \iff (3) \iff (4) \iff (5)$$

- (4) implies that ν is doubling.
Comparison of definitions for $A_\infty(X)$

- If μ is doubling, then we have

\[(1) \iff (2) \iff (3) \iff (4) \iff (5)\]

- (4) implies that ν is doubling.

- If $r \mapsto \mu(B(x, r))$ is continuous, then (1) implies that ν is doubling.
Comparison of definitions for $A_\infty(X)$

- If μ is doubling, then we have
 \[(1) \iff (2) \iff (3) \iff (4) \iff (5)\]

- (4) implies that ν is doubling.
- If $r \mapsto \mu(B(x, r))$ is continuous, then (1) implies that ν is doubling.
- If also ν is doubling, then (1) \implies (4).
Comparison of definitions for $A_{\infty}(X)$

- If μ is doubling, then we have

 $$(1) \iff (2) \iff (3) \iff (4) \iff (5)$$

- (4) implies that ν is doubling.
- If $r \mapsto \mu(B(x, r))$ is continuous, then (1) implies that ν is doubling.
- If also ν is doubling, then (1) \implies (4).

Corollary

If both ν and μ are doubling, then the conditions (1)–(5) are equivalent.
Example

- $X = \{ x \in \mathbb{R}^n : x_1 x_2 = 0 \}, \ n \geq 2$ with

$$d(x, y) = \max_{1 \leq i \leq n} |x_i - y_i|$$

$$\mu = \mathcal{L}^{n-1}$$
Example

- $X = \{ x \in \mathbb{R}^n : x_1 x_2 = 0 \}, n \geq 2$ with

 $$d(x, y) = \max_{1 \leq i \leq n} |x_i - y_i|$$

 $$\mu = \mathcal{L}^{n-1}$$

- X satisfies doubling and (1, 1)-Poincaré.
Example

- \(X = \{ x \in \mathbb{R}^n : x_1 x_2 = 0 \}, \ n \geq 2 \) with

\[
d(x, y) = \max_{1 \leq i \leq n} |x_i - y_i|
\]

\[
\mu = \mathcal{L}^{n-1}
\]

- \(X \) satisfies doubling and \((1, 1)\)-Poincaré.

- \(\omega = \chi_{\{x_1 \neq 0\}} \).
(2) is not (4)

Example

- $X = \{ x \in \mathbb{R}^n : x_1 x_2 = 0 \}, \ n \geq 2$ with
 \[d(x, y) = \max_{1 \leq i \leq n} |x_i - y_i| \]
 \[\mu = \mathcal{L}^{n-1} \]
- X satisfies doubling and (1, 1)-Poincaré.
- $\omega = \chi_{\{x_1 \neq 0\}}$.
- Satisfies (2) with $p = 1$ and $c = 2$.
Example

- \(X = \{ x \in \mathbb{R}^n : x_1 x_2 = 0 \}, \ n \geq 2 \) with
 \[
 d(x, y) = \max_{1 \leq i \leq n} |x_i - y_i|
 \]
 \[\mu = \mathcal{L}^{n-1}\]

- \(X \) satisfies doubling and (1, 1)-Poincaré.

- \(\omega = \chi_{\{ x_1 \neq 0 \}} \).

- Satisfies (2) with \(p = 1 \) and \(c = 2 \).

- \(\nu \) is not doubling and therefore cannot satisfy (4).
Main result

Theorem
Suppose that ν is a metric doubling measure. Then ν has an A_∞ density i.e.

$$\frac{\nu(E)}{\nu(B)} \leq c \left(\frac{\mu(E)}{\mu(B)} \right)^\delta.$$
Main result

Theorem
Suppose that ν is a metric doubling measure. Then ν has an A_∞ density i.e.

$$\frac{\nu(E)}{\nu(B)} \leq c \left(\frac{\mu(E)}{\mu(B)} \right)^\delta.$$

Corollary
Every strong A_∞-weight is an A_p-weight for some $p < \infty$.
Proof of the Main Theorem (1)

Strategy of the proof:
Proof of the Main Theorem (1)

Strategy of the proof:

- Construct measures ν_t that approximate ν at scale $t > 0$. (\mathbb{R}^n: convolution)
Proof of the Main Theorem (1)

Strategy of the proof:

- Construct measures ν_t that approximate ν at scale $t > 0$. (\mathbb{R}^n: convolution)

- Show that weights ω_t related to ν_t satisfy reverse Hölder's inequality with uniform constants. (\mathbb{R}^n: integrate along lines parallel to coordinate axes)
Proof of the Main Theorem (1)

Strategy of the proof:

- Construct measures ν_t that approximate ν at scale $t > 0$. (\mathbb{R}^n: convolution)

- Show that weights ω_t related to ν_t satisfy reverse Hölder’s inequality with uniform constants. (\mathbb{R}^n: integrate along lines parallel to coordinate axes)

- Show that ω_t converges nicely enough to some weight ω. (We will skip at least this part in this talk.)
Proof of the Main Theorem (2)

We construct the measure $\nu_t, t > 0$.

- Fix $t > 0$. Take a cover $\{B_i = B(x_i, t)\}$ of X and a partition of unity $\{\phi_i^t\}$ subordinate to the cover.
Proof of the Main Theorem (2)

We construct the measure ν_t, $t > 0$.

- Fix $t > 0$. Take a cover $\{B_i = B(x_i, t)\}$ of X and a partition of unity $\{\phi_i^t\}$ subordinate to the cover.

- Set

$$a_i^t := \frac{\int_X \phi_i^t d\nu}{\int_X \phi_i^t d\mu} \quad \text{then} \quad a_i^t \approx \frac{\nu(B_i)}{\mu(B_i)}$$
Proof of the Main Theorem (2)

We construct the measure ν_t, $t > 0$.

- Fix $t > 0$. Take a cover $\{B_i = B(x_i, t)\}$ of X and a partition of unity $\{\phi^t_i\}$ subordinate to the cover.

- Set

$$a^t_i := \frac{\int_X \phi^t_i d\nu}{\int_X \phi^t_i d\mu} \quad \text{then} \quad a^t_i \approx \frac{\nu(B_i)}{\mu(B_i)}$$

- Define

$$\nu_t(A) := \sum_i a^t_i \int_A \phi^t_i d\mu$$

Then

$$\omega_t = \sum_i a^t_i \phi^t_i$$
Proof of the Main Theorem (3)

Given a curve family Γ, we define the 1-\textit{modulus} by

$$\text{mod}(\Gamma) = \inf_{\rho} \int \rho \, d\mu,$$

where ρ satisfies for all $\gamma \in \Gamma$

$$\int_{\gamma} \rho \, ds \geq 1.$$
Proof of the Main Theorem (3)

Given a curve family Γ, we define the 1-modulus by

$$\text{mod}(\Gamma) = \inf_{\rho} \int \rho \, d\mu,$$

where ρ satisfies for all $\gamma \in \Gamma$

$$\int_{\gamma} \rho \, ds \geq 1.$$

Lemma

Let Γ be a curve family consisting of all curves joining $B(x_0, r_0)$ and $X \setminus B(x_0, 2r_0)$. Then there exists $C = C(c_D, c_P)$ s.t.

$$\text{mod}(\Gamma) \geq C \frac{\mu(B(x_0, r_0))}{r_0}.$$
Proof of the Main Theorem (4)

The case \(t \gtrsim r_0 \) is easy so we may assume \(t \ll r_0 \)
Proof of the Main Theorem (4)

- The case $t \gtrsim r_0$ is easy so we may assume $t \ll r_0$
- Take $\gamma \in \Gamma$ as above. ν is metric doubling measure \Rightarrow

$$\int_\gamma \omega_t^{1/Q} ds \gtrsim \delta_\nu(\gamma(0), \gamma(L)) \approx \nu(B(x_0, r_0))^{1/Q}$$
Proof of the Main Theorem (4)

- The case $t \gtrapprox r_0$ is easy so we may assume $t \ll r_0$
- Take $\gamma \in \Gamma$ as above. ν is metric doubling measure \Rightarrow
 $$\int_\gamma \omega_s^{1/Q} ds \gtrapprox \delta_{\nu}(\gamma(0), \gamma(L)) \approx \nu(B(x_0, r_0))^{1/Q}$$
- Thus ρ is a good test function for the modulus if
 $$\rho = \frac{C}{\nu(B(x_0, r_0))^{1/Q} \omega_t^{1/Q} \chi_{B(x_0, 2r_0)}}$$
Proof of the Main Theorem (4)

- The case $t \gtrsim r_0$ is easy so we may assume $t \ll r_0$
- Take $\gamma \in \Gamma$ as above. ν is metric doubling measure \Rightarrow
 \[\int_{\gamma} \omega_t^{1/Q} ds \gtrsim \delta_{\nu}(\gamma(0), \gamma(L)) \approx \nu(B(x_0, r_0))^{1/Q} \]
- Thus ρ is a good test function for the modulus if
 \[\rho = \frac{C}{\nu(B(x_0, r_0))^{1/Q}} \omega_t^{1/Q} \chi_B(x_0, 2r_0) \]
- Combined with $\omega_t(B(x_0, 2r_0)) \lesssim \nu(B(x_0, 2r_0 + 4t))$ this gives
 \[\left(\int_B \omega_t d\mu \right)^{1/Q} \leq C \int_B \omega_t^{1/Q} d\mu \]
Proof of the Main Theorem (4)

- The case $t \gtrsim r_0$ is easy so we may assume $t << r_0$
- Take $\gamma \in \Gamma$ as above. ν is metric doubling measure \Rightarrow
 $$\int_{\gamma} \omega_t^{1/Q} ds \gtrapprox \delta_{\nu}(\gamma(0), \gamma(L)) \approx \nu(B(x_0, r_0))^{1/Q}$$
- Thus ρ is a good test function for the modulus if
 $$\rho = \frac{C}{\nu(B(x_0, r_0))^{1/Q} \omega_t^{1/Q} \chi_{B(x_0, 2r_0)}}$$
- Combined with $\omega_t(B(x_0, 2r_0)) \lesssim \nu(B(x_0, 2r_0 + 4t))$ this gives
 $$\left(\int_B \omega_t d\mu \right)^{1/Q} \leq C \int_B \omega_t^{1/Q} d\mu$$
- Gehring lemma implies that
 $$\left(\int_B \omega_t^{1+\varepsilon} d\mu \right)^{1/(1+\varepsilon)} \leq C \int_B \omega_t d\mu.$$