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Exercise 7

Solutions

1. a) Suppose X is a non-empty space and x € X. For every path-component
X, of X which does not contain z choose a point y, € X,. Prove that the set

{lva — 2] | a € A}

is a basis for Hy(X), which is thus a free abelian group.
Here A is a set of all path-components of X that do not contain .

) b) Suppose X = S = {1,-1} is a 2-point discrete space. Show that
Ho(X) = Z with 1 — (—1) a generator and H,(X) = 0 for n # 0.

Solution: a) By Corollary 3.1.3 and Proposition 3.1.4 Hy(X) is a free abelian
group with basis
N (el | @ € A} U {[a]).

Now Hy(X) = Kere,. First of all

5*[ya - l‘] - €<ya) - 5(1:) =0,
SO Yo — ] € Hy(X). Suppose

a= Z kilya) + k[z] € Kere,,

i=1
then e,(a) =31 ki +k=0,s0 k = —>_ k;, hence
a=>Y kil = [2]) = > killya — 2])-
i=1 i=1

Thus the set {[yo — x| | @ € A} generates the group Hy(X). It remains to
show that it is free. Suppose

0= Zki([?/a —z]) = Z kilya] + K[z],

where k = — > " | k;. Since the set {[y,] | « € A} U {[z]} is free, it follows
that by =... =k, =k =0.
b) The claim about Hy(X) follows from a). Also for n # 0
H,(X)=H,(X)=H,{-1}® H,(1) =080 = 0.
2. Prove that Mobius band has the same homotopy type as S*.

Solution: We think of Mobius band as a quotient space X = I?/ ~, where
I'=10,1] and (0,¢) ~ (1,1 —¢) for all ¢ € I. Consider the subspace

YV ={l(=1/2)}}



of X. Then Y is homeomorphic to S, so it enough to show that the inlusion
1: Y — X is a homotopy equivalence. Let us define ¢: X — Y by

a(fz.]) = [r,1/2] and
H: X xI— X by
H([x,t],t") =[x, (1 =t +1'/2].
Then ioq(a) = H(a,1), a = H(a,0) for all « € X and
H([0,8],¢)=1[0,(1 =t t+t/2]=1,1— (1 -t —t/2] =
=L, 1—-t—t+tt+t/2) =1, 1-t)1—-t)+1t/2] =
= H([1,1—t],t).
Hence H is well defined. Consider the commutative diagram

I?x1

BN

XxTI2.ox

Here 7: I? — X is a canonical projection and H is defined by the formula

H((z,t),t') = (z, (1 =)t +1'/2).
Now I? x I is compact and X is Hausdorff, so 7 X id is a quotient mapping
(Topology 1I). Since H is continuous, it follows that H is continuous.
Thus H is a homotopy from identity mapping to ¢ o ¢q. Clearly q o7 = id. We
have shown that ¢ is a homotopy equivalence.
. a) Suppose Y is a contractible space and X is any space. Suppose f: X — Y
and ¢g: Y — X are continuous mappings. Prove that both f and g are homo-
topic to constant mappings. Also prove that Y is path-connected.

b) Suppose Y is a non-empty space. Prove that the following conditions
are equivalent:
1) Y is contractible.
2) The set [X, Y] is a singleton for any space X.
3) Y is path-connected and the set [Y, X] is a singleton for every non-empty
path-connected space X.
4) Y has a homotopy type of a singleton space.

Solution: a) Since Y is contractible there exists y € Y such that id ~ ¢,
where ¢, is a constant mapping, ¢,(z) =y for all z € Y. Then

f=idof mcyof =,
g=goid=goc, = cyy).
Let H: Y xY — Y be a homotopy id =~ ¢,. Then for any z € X the path
a: I — Y defined by
a,(t) = H(x,t)
is a path from x to y in Y. In particular Y is path-connected.

b) Suppose Y is contractible. As above we see that there exists y € Y such
that every f: X — Y is homotopic to a constant mapping c¢,: = — y. Hence
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[X, Y] is a singleton. Also Y is path-connected. Suppose X is path-connected.
As above we see that every mapping g: Y — X is homotopic to a constant
mapping ¢, for some x € X. Let x, 2’ € X. Then there exists a path « from
x to 2’ and the mapping H: Y x I — Y defined by

H(y,t) = a(t)

is a homotopy ¢, =~ c¢,s. Hence all constant mappings ¥ — X are homotopic,
so all mappings Y — X are homotopic.

Consider singleton space {y} and let i: {y} — Y be inclusion, ¢: ¥ — {y}
the unique mapping. Then go¢ = id and ¢ o ¢ = ¢, is homotopic to identity.
Hence 7 is a homotopy equivalence.

We have shown that 1)=-2), 1)=-3), 1)=-4).

Suppose 2) or 3). Then in particular [Y,Y] is a singleton, so id: Y — Y is
homotopic to any constant mapping in Y. Hence Y is contractible.

Suppose 4). There is y such that the only possible mapping ¢: Y — {y} is
a homotopy equivalence. Let i: {y} — Y be homotopy inverse of ¢q. Suppose
X is a space and f: X — Y is a mapping. Then

f=idof mioqo f=ciyy),

hence [X, Y] is a singleton. In other words 4) = 2).
. a) Suppose f: (X, A) — (Y, B) is amapping of pairs. Suppose that f: X — Y
as well as f|A: A — B are homotopy equivalences. Prove that

fe: Hy(X, A) —» H,(Y, B)

is an isomorphism.

b) Let
X = [J{1/n} xTu{0} xTUT x {0}
neNL
(so-called "topological comb space ") and zo = (0,1). Prove that a constant
mapping f: (X, x9) — (x9,z0) is such that its restrictions to X — z, and

xo9 — xo are homotopy equivalences, but f is not a homotopy equivalence (as
a mapping of pairs).

Solution: a) By Corollary 3.2.5 f.: H,(X) — H,(Y) aswell as (f|A).: H,(A) —
H,(B) are isomorphisms for every n € Z. Consider the commutative diagram

i

Hy(A) —2> Hoy(X) —2 Hy (X, A) 2= H,_(A) — H,_1(X)

N P I |52 |

2 J= 0

Hy(B) —— Ho(Y) —— Hy(Y, B) —— Hy1(B) — H, (V)
with exact rows. Five Lemma (Lemma 2.2.9) implies the claim.

b) mapping {zo} — {xo} is a homeomorphism, in particular a homo-
topy equivalence. Let i: {xr} — X be an inclusion. Then f oi = id. Let



H,,Hy, H3: X x I — X be homotopies defined by
Hy((z,1),t') = (z, (1 = )1),
Hy((z,t),t") = ((1 —t")z,0).
Hi((z,t),t) = (0,1 —1").
Then H; is a homotopy id ~ pry, where pri(z,y) = (z,0), Hs is a homo-

topy pr1 = ¢, where ¢: X — X is a constant mapping (z,y) — (0,0) and Hj
is a homotopy c ~ i o f. Hence i o f ~ id.

Suppose f: (X, x9) = (zo, 7o) is a homotopy equivalence of pairs, then its
inverse must be the only mapping i: (zg,z0) — (X, o), i(z9) = 29 € X.
Now ¢ o f is homotopic to identity as a mapping of pairs i.e. there exists a
homotopy H: X — I — X such that

H(z,0) =z,
H(m,l):l’o
for all x € X and H(zo,t) =z for all t € 1.

Let
U={(x,y) e X |y>0}CX.
Then U is open and H({xo} x I) C U, hence
{xo} x I ¢ HY(U),

which is then open in X x I, by continuity.
Since both {x¢} and I are compact, there exist open neighbourhood V' of z,
in X such that

{mo}y x IV xIcHYU)

(see Topology IT). In other words H(V x I) C U. Since V is a neighbourhood
of 2o = (0, 1), there exists n € N such that z,, = (1/n,1) € V. Hence mapping
a: I — X defined by

a(t) = H(zp,t)
is a path from x, to z¢ in U. But this is impossible since x,, and z( clearly
belong to different components of U.

. Suppose K is a finite A-complex. For every geometric n-simplex o of K
choose a point z, € into and let U = |K"| \ {z,|o € K,,/ ~}. Prove that U
is open in K™ and the inclusion |[K"!| < U is a homotopy equivalence.
Deduce that the inclusion i: (|K"|,|K"|) — (|K™|,U) induces isomorp-
hisms in relative homology in all dimensions.

Solution: Suppose o is a geometrical simplex in |K™|. Then U No is either
o (if dimo < n) or o/setminus{z,} (if dimo = n), so is open in ¢ in every
case. Since |K"| has weak topology coherent with simplices, it follows that U
is open in |K™|.
Let

Z = Usekno,

U=2\{z,l0 € K,/ ~}
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and let 7: Z — |K"| be a canonical projection (which is quotient mapping
with respect to the weak topology on |K"|). Then U = 7 'U is open in Z.
We define H: U x [ — |K"| so that H(x,t) =z for x € |[K""!| and

H(z,t) = (1 —t)x + tx/|z|

for x € o,x # x,, where ¢ is an n-dimensional simplex of K. Here we identify
o with B" via a homeomorphism which maps z, to 0 (Proposition 1.1.10).
Then there is a (unique) mapping H: U x I — |K™| such that the diagram

UxI
| xid
Ux I |Kn.

commutes. To show H is continuous we need to prove that 7| x id is a quo-
tient mapping. Since K is finite Z x [ is compact, so continuous surjective
mxid: Z x I — |K™ x I is a closed mapping, hence quotient mapping,
provided we know that |K™| is Hausdorff. Let us go back to that later. Also
notice that for us "K is finite"means that K has finitely many geometrical
simplices, but the set of simplices K can be infinite, in which case Z is not
compact. However in this case we can always reduce the amount of simpices
in K to finite, without altering the amount of geometrical simplices.

Next we use the following well-known topological result (proof of which is left
to the reader, in case he/she is not familiar with it):

Suppose f: X — Y is quotient mapping and U C Y is open (or closed). Then
the restriction f|: f~'U — U is also a quotient mapping.

Hence in the end we obtain that 7| x id is a quotient mapping, which suf-
fices to assure H is continuous. Clearly H is a homotopy from identity to the
mapping ¢ = H(-,1): U — |K™!|, or, to be precise to the mapping i o g,
where i is the inclusion |[K™"™!| < U. Also ¢ is constructed so that ¢ x i = id.
Hence ¢ is a homotopy equivalence of i.

Consider inclusion of pairs ¢: (|[K"|, |[K""!|) — (|K™|,U). Then the restric-
tion 7|: |K™!| — U is the inclusion, which we just proved to be homotopy
equivalence. Also the restriction i: |K™| — |K"| is a homotopy equivalence,
since it is just identity mapping.

Now the last claim follows from exercise 4a).

The only problem left is that we did not verify that |K"| is Hausdorff. This
actually follows from more general results on CW-complexes we will prove
later in the course.

This can also be proved directly by induction on n. For n = 0 this is clear,
since |K°| is discrete. Suppose z,y € |K"|,z # y and the claim is true for
n — 1. Suppose y is in the interior of an n-simplex o, which we identify
with the open disk B™, so that y corresponds to 0. Then no matter where
x is, there is small enough r > 0 so that open disk V' = B(0,r) of radius
r does not contain z, while W = |K"|\ B(x,r) does contain x, in which
case V and W are disjoint neighbourhoods of y and z. By symmetry this



also handles the case z is in the interior of some n simplex. We are left with
the case z,y € |[K"!|. We take U = |K"|\ {z,|0c € K,/ ~} as above and
U= p~Y(U). By the general topological results mentioned above we know that
the restriction p|: U — U is a quotient mapping. We define §: U — |K"!|
as above, so that it is identity on simplices of dimension smaller than n and
then a natural restriction to the boundary on o/ \ {z,} on every n-simplex
0. As above we easily seen that this mapping quotiens out in the diagram

Lﬂ q

UxI—2 K.

giving us a continuous mapping q: U — |K™™!|, which is, in fact, a retrac-
tion of U onto |[K™"7!|.

Now since U is open in |K™|, it is enough to prove that x and y have disjoint
neighbourhoods V, W in U. But by inductive assumption they have disjoint
neighbourhoods V/, W’ in |K"!| and we just assert

V= (V)W =g ),

Remark: The only technical problem we faced was to show that 7 xid: X x
I — Y x [ is a quotient mapping, when 7: X — Y is, and that is why we
had to restrict ourselves to the finite case. This is not necessary - it is always
true that m x id: X x I — Y x [ is a quotient mapping, when 7: X — Y
is, but the proof is not trivial so we skip it in this course. You can find it in
Maunder, Algebraic Topology (Theorem 6.2.4).

. Suppose C',C,D, D’ are chain complexes, f,g,h: C — D, k,m: D — D',
[: C" — C are chain mappings.

a) Suppose H is chain homotopy from f to g, H' chain homotopy from g¢
to h. Prove that H + H’ is a chain homotopy from f to h. Deduce that the
relation " f and ¢ are chain homotopic"is an equivalence relation in the set
of all chain mappings C' — D.

b) Prove that k o H is a chain homotopy from ko f to kogand Holis a
chain homotopy from folto gol.

¢) Suppose H” is a chain homotopy from k to m. Then H” o f +m o H and
ko H + H" o g are chain homotopies from ko f to mo g.

Solution: a) We have equations

OH+ HO=g— f,
OH' + H'O=h-—g.
Adding them together gives
OH + ')+ (H + H)) = (g— f)+ (h—g) = h— [,

so H + H' is a chain homotopy from f to h. This implies that the relation " f
and ¢ are chain homotopic"is transitive. It is also reflexive, since 0 is a chain
homotopy from f to f, for every chain mapping f, and it is symmetric since
if H is a chain homotopy from f to g, —H is a chain homotopy from ¢ to f.



b) Again we begin with equation
OH+HO=g—f.
Applying k on the left gives us
kOH +kHO = kg — kf.
But £ is a chain mapping, so k0 = 0k, thus we obtain
J(kH)+ (kH)0 = kg — kf,

which implies that £H is a chain homotopy from kf to kg.
The second claim is proved in the similar way.

¢) This is combination of a)and b) - by b) H” o f is a homotopy from
ko ftomo f, while mo H is a homotopy from m o f to m o g. Hence by a)
H" o f +mo H is a chain homotopy from k o f to m o g. The other claim is
proved similarly.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.



