Lineaariset mallit, spring 2012, Exercise 1, week 12

1. The symmetric matrix \mathbf{A} $(n \times n)$ is called positive definite (denoted $\mathbf{A} > \mathbf{0}$), if $\mathbf{x}'\mathbf{A}\mathbf{x} > \mathbf{0}$ for all $\mathbf{x} \neq \mathbf{0}$. Show that the matrix \mathbf{A} $(n \times n)$ is positive definite if and only if its eigenvalues are positive. Show further that a positive definite matrix is nonsingular (or invertible). (*Hint*: You can use the spectral decomposition of a symmetric matrix.)

2. Let **A** $(n \times n)$ be a positive definite matrix and **B** $(n \times k)$ a matrix of rank k (in other words, the columns of **B** are linearly independent). Show that **B'AB** $(k \times k)$ is positive definite and, hence, nonsingular.

3. Let \mathbf{A} $(n \times n)$ be an idempotent matrix, that is, it satisfies $\mathbf{A} = \mathbf{A}\mathbf{A}$ (the notation $\mathbf{A}\mathbf{A} = \mathbf{A}^2$ will be used). Show that $\mathbf{I}_n - \mathbf{A}$ is also idempotent and that all eigenvalues of \mathbf{A} are either 0 or 1. (*Hint*: Equations defining eigenvectors.)

4. Let $\bar{y} = n^{-1} \sum_{i=1}^{n} y_i$ and $s^2 = (n-1)^{-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$ be the sample mean and sample variance of the data set $y_1, ..., y_n$. Show that

$$(n-1) s^{2} = \sum_{i=1}^{n} y_{i}^{2} - n\bar{y}^{2} = \mathbf{y}' (\mathbf{I}_{n} - \mathbf{J}) \mathbf{y},$$

where $\mathbf{y} = [y_1 \cdots y_n]'$ and $\mathbf{J} = \mathbf{1}_n (\mathbf{1}'_n \mathbf{1}_n)^{-1} \mathbf{1}'_n (\mathbf{1}_n = [1 \cdots 1]', n \times 1)$. Show further that \mathbf{J} (and hence $\mathbf{I}_n - \mathbf{J}$) is symmetric and idempotent (or an orthogonal projector) by showing generally that the matrix $\mathbf{P} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'$ is symmetric and idempotent when \mathbf{X} is an $n \times p$ matrix of rank p.

5. (One-way analysis of variance) Let $Y_{11}, ..., Y_{1n_1}, Y_{21}, ..., Y_{2n_2}, ..., Y_{p1}, ..., Y_{pn_p}$ be independent with $Y_{ji} \sim \mathsf{N}(\mu_j, \sigma^2)(\mu_j \in \mathbb{R}, \sigma^2 > 0)$. Present the set up as a special case of the general linear model by using the matrix form of the linear model. What is the rank of the matrix **X**?