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47. Evolutionary stability is about immunity of a resident population of a given
strategy against invasion by an initially rare mutant strategy. Invasion is essentially
a population dynamical concept. So far we have been rather implicit about the
connection between games and the underlying population dynamics.

The standard population dynamical embedding of games is the so-called replicator
equation: let x1, . . . , xk ∈ X be strategies, and let p1, . . . , pk ≥ 0 with

∑
i pi = 1 be

the corresponding relative frequencies in a given population. Then the expected
payoff to a player with strategy xi against a randomly selected opponent is

wi
def
=

k∑
j=1

π1(xi, xj)pj

and the expected payoff to a randomly selected player against a randomly selected
opponent is

w̄
def
=

k∑
i=1

k∑
j=1

π1(xi, xj)pipj

The replicator equation is the equation

dpi
dt

= pi
(
wi − w̄

)
(i = 1, . . . , k)

describing the continuous change of the relative frequencies pi. The replicator
equation describes a purely frequency-dependent process, which is also its great-
est weakness, because many populations are also regulated by density-dependent
processes.

Whole carriers have been based on the replicator equation, but here we shall not
pursue this equation any further. Instead we have a look from a different direction
that is typical of a fairly new approach to evolutionary games and which is called
adaptive dynamics.

48. Adaptive dynamics is a bottom-up approach in which we first describe the
population dynamics and from that derive fitness, as opposed to what happens in
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the replicator equation where we start with the fitness and from that construct a
population dynamics.

Consider a resident population of strategies x1, . . . , xk and corresponding popu-
lation densities n1, . . . , nk. The resident population dynamics we can generally
represent by the differential equations

dni

dt
= nif(xi|Eres) (i, . . . , k)

where f(xi|Eres) is the per capita growth rate of strategy xi in the environment
Eres generated by the resident populatioin as a whole:

Eres = h(n1, . . . , nk|x1, . . . , xk)

for some function h. We call Eres also the “feedback environment”, because while
Eres affects the growth of each strategy separately, all strategies and their popu-
lation densities together determine Eres thus closing the feedback loop from pop-
ulation growth to population growth.

Next, consider an initially rare mutant strategy y with corresponding population
density m. As long as the mutant is sufficiently rare, its effect on Eres is negligible,
but the effect of Eres on the mutant’s per capita growth rate f(y|Eres) is not
negligible. Like with linear stability analysis, the fate of the mutant (i.e., whether
it invades or not) is described by the linear equation

dm

dt
= mf(y|Eres)

Integration from zero to t and devision by t gives

1

t

(
logm(t)− logm(0)

)
=

1

t

∫ t

0

f(y|Eres(τ))dτ

Suppose that for t→∞ the right hand side converges to

sEres(y)
def
=
〈
f(y|Eres)

〉 def
= lim

t→∞

1

t

∫ t

0

f(y|Eres(τ))dτ

which is the time average per capita growth rate of the mutant. We call sEres(y)
the invasion fitness of strategy y in the environment Eres.

It is clear that if sEres(y) > 0, then the mutant invades, end if sEres(y) < 0, then
the mutant does not invade. The case sEres(y) = 0 cannot be decided without
involving non-linear properties of the resident-mutant population dynamics.

A resident population (n1, . . . , nk|x1, . . . , xk) is evolutionarily stable if sEres(y) < 0
for all y 6∈ {x1, . . . , xk}.

49. A few words about coexistence of resident strategies: we say that the resident
strategies x1, . . . , xk coexist if the corresponding population densities n1, . . . , nk
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stay bounded away from zero and from plus infinity, i.e., if there exist real numbers
a and A such that 0 < a ≤ ni ≤ A <∞ for all t ≥ 0 and all i ∈ {1, . . . , k}.

For any resident population with coexisting strategies x1, . . . , xk and resident en-
vironment Eres we have that sEres(xi) = 0 for all i. We call this the “principle of
selective neutrality of residents.”

To see why this is true, integrate the resident dynamics and divide by t, which
gives

1

t

(
log ni(t)− log ni(0)

)
=

1

t

∫ t

0

f(xi|Eres(τ))dτ

Since log ni(t) is bounded from below by log a and from above by logA, letting
t→∞ gives

0 = lim
t→∞

1

t

∫ t

0

f(xi|Eres(τ))dτ = sEres(xi)

which is what we wanted to show.

50. Consider the evolution of virulence, i.e., the additional death rate due to a viral
infection. Let S be the population density of susceptibles, i.e., population density
of uninfected individuals, and let Ii denote the population density of individuals
infected by a virus with a virulence xi. A simple model for the resident dynamics
with viral types x1, . . . , xi is



d
dt
S = α(N)S − δS − S

∑k
j=1 β(xj)Ij +

∑k
j=1 γ(xj)Ij

d
dt
Ii = β(xi)SIi − (δ + xi)Ii − γ(xi)Ii (i = 1, . . . , k)

N = S +
∑k

j=1 ε(xj)Ij

where N is a weighed total population density of susceptible and infected indi-
viduals; α(N) is the birth rate (note: only susceptibles give birth); δ basic death
rate; β(x) is the infectiousness of an individual with a virus of type x; γ(x) is the
recovery rate.

The only thing that matters for us is the equation

dIi
dt

= Iif(xi|Eres)

where

f(xi|Eres) = β(xi)S − γ(xi)− δ − xi
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Apparently, the feedback environment is given by the population density of sus-
ceptibles, i.e.,

Eres = S

Hence, the invasion fitness of an initially rare mutant virus with virulence y is

sEres(y) =
〈
f(y|Eres)

〉
= β(y)

〈
S
〉
− γ(y)− δ − y

and so y can invade (resp. not invade) if

(∗) sEres(y) > (<)0 ⇔ γ(y) + δ + y

β(y)
< (>)〈S〉

〈S〉 we find by applying the principle of selective neutrality of residents, i.e., we
find it from the equations

0 = β(xi)
〈
S
〉
− γ(xi)− δ − xi

for i = 1, . . . , k, which is a system of k equations in one unknown variable 〈S〉.
This tells us two things: firstly, only one virus type can robustly exist, because
with two or more resident types the system of equations tends to be over-specified;
and secondly,

〈
S
〉

=
γ(x) + δ + x

β(x)

for any resident type x. Substitution of the above into (∗) shows that with each
successful invasion and subsequent change of the resident viral type the long-
term average of the density of susceptibles decreases. Eventually this will lead
to the establishment of a viral type x∗ that minimizes 〈S〉. Since no other type
can produce a lower value of 〈S〉, no other type can invade, and hence x∗ is
evolutionarily stable.

This result may not be too nice for us, but at least it puts a break on the evolution
of virulence, i.e., the virus does not evolve to infinite lethality. To see how this
works, suppose that γ(x) = γ is constant, and that β(x) is a concave function of
x as in the following figure:
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Superimposed onto this graph we plot lines of constant 〈S〉, i.e., given by the
equation β = (γ + δ + x)/c for various values of c = 〈S〉:

It now can be immediately seen what value of x minimizes 〈S〉.


