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2. Fluctuating parameters

2.1. The general idea. Consider the scalar population equation

(1)
dx

dt
= f(x, θ)

where θ is a scalar parameter. How would x respond to fluctuations in θ? We study the
response to small fluctuations near a stable equilibrium. Suppose

(2)
f(x̄, θ̄) = 0
∂xf(x̄, θ̄) < 0

i.e., that x = x̄ is a stable equilibrium for given constant θ = θ̄.

Figure 1. Stability and instability of x̄ depending on the slope of f(x, θ̄).

If x̄ is stable, then small fluctuations in θ around θ̄ will cause only small fluctuations in x
around x̄. We write

(3)
x(t) = x̄+ ξ(t)
θ(t) = θ̄ + η(t)

where ξ(t) and η(t) are the deviations of, respectively, x from x̄ and θ from θ̄. If |ξ(t)| and
|η(t)| are uniformly small (i.e., for all t ≥ 0), then we can replace the population equation
by the linear approximation

(4)
dξ

dt
= ∂xf(x̄, θ̄)ξ + ∂θf(x̄, θ̄)η
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The solution of this is

(5) ξ(t) = ξ(t0)e(t−t0)∂xf(x̄,θ̄) + ∂θf(x̄, θ̄)

∫ t

t0

η(τ)e(t−τ)∂xf(x̄,θ̄)dτ

Since ∂xf(x̄, θ̄) < 0, the first term converges to zero as t→∞ (or t0 → −∞) and therefore
is called the transient part of the solution. We are interested in the rest, i.e., the persistent
solution,

(6) ξ(t) = ∂θf(x̄, θ̄)

∫ t

−∞
η(τ)e(t−τ)∂xf(x̄,θ̄)dτ

Notice that the above defines a linear map Λ : η 7−→ ξ that converts fluctuations in the
“input” θ into fluctuations in the “output” x.

In particular, we have

(7) eiωt
Λ7−→ ∂θf(x̄, θ̄)eiωt

iω − ∂xf(x̄, θ̄)

i.e., η(t) = eiωt is an eigenfuction of Λ with corresponding eigenvalue

(8) T (ω) =
∂θf(x̄, θ̄)

iω − ∂xf(x̄, θ̄)

called the transfer function. The theory of Fourier series tells us that every (sufficiently
smooth) periodic function can be written as a linear combination of countably many func-
tions of the form eiωt for different values of ω. As a simple example, consider

(9) sin(ωt) =
eiωt − e−iωt

2i

Exploiting the linearity of Λ and the fact that eiωt and e−iωt are eigenfunctions with
respective eigenvalues T (ω) and T (−ω), we have

(10) sin(ωt)
Λ7−→ T (ω)eiωt − T (−ω)e−iωt

2i
which can be written more conveniently as

(11) sin(ωt)
Λ7−→ |T (ω)| sin

(
ωt+ arg T (ω)

)
where |T (ω)| is the modulus of the transfer function and arg T (ω) its argument.

The significance of the transfer now becomes clear: (1) |T (ω)| is the ω-dependent gain, i.e.,
the factor by which fluctuations in the input θ of the specific frequency ω are amplified
in the output x, and (2) arg T (ω) is the phase-shift between the output and the input for
fluctuations of the specific frequency ω.

2.2. The population as a filter. If the input θ combines different frequencies, then
some of these frequencies are suppressed in the output x while others are amplified, and
the phase-shift in the response is different for different frequencies as well. The population
thus acts as a filter on the input signal.
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For small fluctuations in the input, the filter characteristics of the population are given by
the modulus and the argument of the transfer function. From equation (8) we have

(12) |T (ω)| = |∂θf(x̄, θ̄)|√
ω2 + ∂xf(x̄, θ̄)2

which is a decreasing function of |ω|, i.e., high frequencies are suppressed, and so the
population acts as a low-pass filter. The bandwidth of the filter is characterized by the
so-called “cutoff frequency”

(13) ωc = |∂xf(x̄, θ̄)|
The meaning of the cutoff frequency is clear if we plot |T (ω)| against |ω| on a double
logarithmic scale.

Figure 2. The gain as a function of signal frequency.

From equation (8) we also have

(14) arg T (ω) = arctan

(
ω

∂xf(x̄, θ̄)

)
For low frequencies |ω| the phase-shift is small, obviously because the population has
enough time to react to the changing input. Large phase-shifts of maximally ±π/2 occur
at high frequencies.

2.3. The logistic equation. We apply the above to the logistic equation

(15)
dx

dt
= rx

(
1− x

K

)
with

(16)
r = b− d
K = 2(b− d)/c
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(see section 1.8 of these lecture notes), and suppose that the birth rate and death rate
fluctuate around their average values b̄ and d̄. How does this affect the population?

Only the difference of the birth rate and the death rate enters the equations. We therefore
can write θ = b− d as a single fluctuating parameter and define

(17) f(x, θ) = θx
(

1− cx

2θ

)
If θ is fixed at θ̄, then there is a stable equilibrium

(18) x̄ = 2θ̄/c

Substitution of this into expression (8) for the transfer function gives

(19) T (ω) =
2θ̄/c

iω + θ̄

and hence the gain is given by

(20) |T (ω)| = 2θ̄/c√
ω2 + θ̄2

the phase-shift by

(21) arg T (ω) = − arctan
(ω
θ̄

)
and the cutoff frequency by

(22) ωc = θ̄

We know already from the previous subsection that all populations described by a single
ODE act as a low-pass filter. What we now see in addition is that in the present model
the bandwidth as characterized by the cutoff frequency is independent of the contest rate
c but increases linearly with the difference of the average birth and death rates b̄− d̄. The
phase-shift, too, is independent of c but decreases in absolute value with b̄− d̄.

Figure 3. Gain and phase-shift in the response (bold lines) to inputs (thin
lines) with different frequencies but the same amplitude.



STOCHASTIC POPULATION MODELS (SPRING 2011) 5

Since a low-pass filter suppresses high frequencies, the response x to a mixed input θ
containing many frequencies tend to look smoother than the input itself. This is illustrated
by the next figure where the input is te linear combination of a hundred different sinusoids
with random frequencies and phase-shifts.

Figure 4. Smoothing effect of a low-pass filter.


