Appendix C

The theorem of Perron and Frobenius.

Irreducible matrix:

A non-negative square matrix is irreducible if its directed graph is strongly connected.
(i.e., if there is a path from every node to every other node).

Graph of a non-negative square matrix $A = (a_{ij})$:

Node j is connected to i if and only if $a_{ij} > 0$.

We then write $j \rightarrow i$.
Example.

\[A := \begin{pmatrix} 0 & 0 & a_{13} & a_{14} \\ a_{21} & 0 & 0 & 0 \\ 0 & a_{32} & 0 & 0 \\ 0 & 0 & a_{42} & 0 \end{pmatrix} \]

Matrix:

\[a_{13}, a_{14}, a_{21}, a_{32}, a_{42} > 0 \]

Graph:

The graph is obviously **strongly connected**.

So, the matrix is **irreducible**.
Example

Age-structured population with post-reproductive individuals (state y).

Life-cycle graph:

\[
\begin{array}{c}
1 \\
\downarrow a_{21} \\
3 \\
\downarrow a_{32} \\
4 \\
\uparrow a_{43} \\
\end{array}
\]

Not strongly connected, because from 4 you cannot go to 1, 2, or 3.

Matrix:

\[
A = \begin{pmatrix}
0 & 0 & a_{13} & 0 \\
0 & a_{21} & 0 & 0 \\
0 & 0 & a_{32} & a_{33} \\
0 & 0 & 0 & a_{43} \\
a_{44}
\end{pmatrix}
\]

So, the corresponding matrix is not irreducible (i.e., reducible).
Theorem

A \(\in \mathbb{R}^{d \times d} \) is irreducible if and only if \((I+A)^{d-1}\) is strictly positive.

Proof:

Primitive matrix

A non-negative matrix \(A \) is primitive if it becomes strictly positive if raised to a sufficiently high power.

(i.e., if \(\exists k > 0 : A^k > 0 \).
Properties

- Any primitive matrix is irreducible.

- An irreducible matrix is primitive if the greatest common division of the lengths of all loops in the directed graph is equal to one.

(→ Rosenblatt, 1957)

Theorem

\[A \in \mathbb{R}^{d \times d} \text{ is primitive if and only if } A^{m-1} \neq 0 \text{ for some } m \text{ and } A^{m-1} \text{ is strictly positive.} \]

Proof

(See: Horn & Johnson, 1985, pp. 507–520.)
Example.

$$
\begin{array}{ccccc}
1 & \rightarrow & 2 & \rightarrow & 3 & \rightarrow & 4 \\
& \nearrow & & \nwarrow & & \searrow & \\
4 & \leftarrow & 3 & \leftarrow & 2 & \leftarrow & 1
\end{array}
$$

graph is strongly connected and there are at least two loops (namely $1 \rightarrow 2 \rightarrow 3$ and $1 \leftarrow 2 \leftarrow 3 \leftarrow 4$) of lengths 3 and 4, which have a common divisor equal to one.

\Rightarrow The corresponding matrix is **primitive**.

Example

$$
\begin{array}{ccc}
1 & \leftrightarrow & 2 & \rightarrow & 3 \\
& \swarrow & & \searrow & \\
3 & \leftarrow & 2 & \leftarrow & 1
\end{array}
$$

Strongly connected, but the greatest common divisor is 3.

\Rightarrow Corresponding matrix is **irreducible** but not **primitive**.
Perron–Frobenius (P.F.)

This is part of the P.F. theorem.
Proof in, e.g., Horn & Johnson (1985)

1. Suppose $A \in \mathbb{R}^{n \times n}$ is non-negative and primitive.

Then there exists an eigenvalue $\lambda_1 > 0$ which is a simple root of the characteristic equation, and which has associated left and right eigenvectors $v_1 > 0$ and $w_1 > 0$ and all other eigenvalues λ_i ($i > 2$) satisfy $\lambda_i > 12 \lambda_1$.

2. Suppose $A \in \mathbb{R}^{n \times n}$ is non-negative and irreducible.

Then there exists an eigenvalue $\lambda_1 > 0$ which is a simple root.
of the characteristic equation and which have associated left
and right eigenvectors \(v, \geq 0 \) and \(w, \geq 0 \), and all other eigen-
values \(\lambda_i \ (i \neq 2) \) satisfy
\[\lambda_i \geq 12;1, \text{ but if } \lambda_i = 12;1 \text{ for some } i \neq 1, \text{ then } \lambda_i \text{ is complex and has complex eigenvectors.} \]

Dominant eigenvalue

The eigenvalue \(\lambda_1 \) above is called the **dominant eigenvalue**.
Application (discrete time)

Consider the discrete time invader dynamics

\[\mathbf{w}(t+1) = A \mathbf{w}(t) \quad \in \mathbb{R}^d \quad (d \geq 1) \]

where \(A \) is a constant, non-negative and primitive matrix, with eigenvalues \(\lambda_1, \ldots, \lambda_d \) and corresponding right eigen vectors \(\mathbf{w}_1, \ldots, \mathbf{w}_d \).

From the Perron-Frobenius theorem we know that \(A \) has a dominant eigenvalue, which we can choose to be denoted \(\lambda_1 \).

Write

\[\Lambda = \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \lambda_d \end{pmatrix} \quad \text{and} \quad \mathbf{W} = \begin{pmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_d \end{pmatrix} \]

Both are \(d \times d \) matrices, and

\[A \mathbf{W} = \mathbf{W} \Lambda \]

Assume that \(W \) is nonsingular (i.e., \(w_1, \ldots, w_d \) are linearly independent)
Then
\[A = W W^{-1} \]
and hence
\[W^{t} m(t+1) = \Lambda W^{t} m(t) \]
which is a system of decoupled difference equations, with solution
\[W^{t} m(t) = \Lambda^{t} W^{t} m(0) \]
and so
\[m(t) = W^{t} W^{-1} m(0) \]
where
\[\Lambda^{t} = \begin{pmatrix} 2^{t} & 0 \\ 0 & 2^{t} \end{pmatrix} \]
Since the eigenvectors \(w_{1}, \ldots, w_{d} \) are assumed to be l.u. indep, there exists a (complex-valued) vector \(c = (c_{1}, \ldots, c_{d}) \) such that
\[m(0) = c_{1} w_{1} + \cdots + c_{d} w_{d} = Wc \]
Substitution into \(\star \) gives
\[w(t) = W^t W^T Wc = W^t c \]

Thus, in,

\[w(t) = \sum_{i=1}^{N} c_i \lambda_i^t w_i \]

Since \(\lambda_i > 0 \) (P,F) we can write

\[\frac{w(t)}{\lambda_i^t} = c_i w_i + \sum_{i \geq 2} c_i (\frac{\lambda_i}{\lambda_1})^t w_i \]

and since \(\lambda_i > 1 \), \(\lambda_i \geq 2 \) (P,F)

\((\lambda_2 / \lambda_1)^t \rightarrow 0 \) as \(t \rightarrow \infty \), and hence

\[\lim_{t \rightarrow \infty} \frac{w(t)}{\lambda_i^t} \rightarrow c_i w_i \]

In other words, the structure of the population converges to the dominant eigen vector as \(t \rightarrow \infty \), which is known as the strong ergodic theorem.

Taking norms and logarithms in ** and then dividing by \(t \) gives
\[
\lim_{t \to 0} \frac{\log \mu(t) s(t)}{t} - \log \lambda_1 = 0
\]

\[\Rightarrow \text{invasion fitness} = \frac{\log \text{arithmetic dominant eigenvalue}}{\text{discrete tone}}\]
Application (cont'd)

\[\mathbf{m} = A \mathbf{m} \in \mathbb{R}^d \quad (d \geq 2) \]

where \(A \) is a constant matrix with non-negative off-diagonal elements, and eigen values \(2, \ldots, 2d \) and corresponding right eigen vectors \(\mathbf{w}_1, \ldots, \mathbf{w}_d \).

Let \(\mu > 0 \) such that \(A + \mu \mathbf{I} \) in non-negative (i.e., also on the diagonal) and suppose \(A + \mu \mathbf{I} \) is irreducible.

Note, that this is a condition on \(A \) (not on \(\mu \)), and therefore we can also say that \(A \) is irreducible even if its diagonal elements may be negative.
The eigenvalues of $A + \mu I$ are $\lambda_1 + \mu, \ldots, \lambda_d + \mu$ and the associated eigenvectors w_1, \ldots, w_d.

By the P.F. theorem we know that $A + \mu I$ has a dominant eigenvalue, which we can take to be $\lambda_1 + \mu$. Hence, for all $i \neq 1$:

$$|\lambda_i| = |(\lambda_1 + \mu) - \mu| \geq |\lambda_i + \mu| - |\mu| \geq |\text{Re}(\lambda_i + \mu)| - |\mu| = |\text{Re}\lambda_i|$$

So we show:

$$\lambda_i > \text{Re}\lambda_1 \quad \forall i \neq 1$$

Solving $w_i = A w_i$ given

$$w(t) = W e^{\Lambda t} W^{-1} m(0)$$

where

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\
& \ddots & \\
& & \lambda_d \end{pmatrix}$$

and $W = (w_1, \ldots, w_d)$
and assuming that \(W \) is not singular.

Write \(m(0) \) as a linear combination of \(w_1, \ldots, w_d \):

\[
m(0) = \sum_{i=1}^{d} w_i \cdot c_i = Wc
\]

where \(c = (c_1, \ldots, c_d) \in \mathbb{C}^d \).

Then, from (2) on prev. page,

\[
m(t) = W e^{At} c = \sum_{i=1}^{d} c_i e^{\lambda_i t} w_i
\]

Hence

\[
e^{-\lambda_1 t} m(t) = c_1 w_1 + \sum_{i \neq 1} c_i e^{\lambda_i t} w_i
\]

\[
\rightarrow c_1 w_1, \text{ as } t \rightarrow \infty.
\]

So, the structure of the invader population converges to the dominant eigenvector as \(t \rightarrow \infty \)

(Strong ergodic theorem)
\(e^{-2t} \) maps \(c, w \) on \(t \to \infty \)

Taking norms, logarithms and dividing by \(t \) gives

\[
\log \left| \frac{\| u \|_2}{t} \right| - 2, \quad t \to 0 \quad \text{on } t \to 0
\]

Invasion fitness:

\[
\text{invasion fitness} = \frac{\text{dominant eigenvalue}}{(\text{continuous time})}
\]