Inverse Problems with Sparsity Constraints

Peter Maaß

Center for Industrial Mathematics
University of Bremen

Helsinki, March 4th 2010
Outline

1. Sparsity concepts
2. Inverse Problems with Sparsity Constraints
3. Research directions
4. Parameter identification for PDEs
The usual setting

\[A : X \rightarrow Y, \quad g \in \text{range}(A) \]

- solutions \(\{ f \in X \mid Af = g \} \)
- noise \(\| g^\varepsilon - g \|_Y \leq \varepsilon \)
- approximate solutions \(\{ f \in X \mid \| Af - g^\varepsilon \| \leq \varepsilon \} \)
Set of possible solutions

\[\{ f \mid \|Af - g^\varepsilon\| \leq \varepsilon \} \]

\[\|Af_1 - g^\varepsilon\| \leq \varepsilon \]

\[\|Af_2 - g^\varepsilon\| \leq \varepsilon \]

\[\|f_1\| < \|f_2\| \]

Which one is the preferred approximation?
Sparse structures

critical structures Δ sparse representations

- High precision surfaces
- Linear guideways
- Quality control
- LC-MS spectra
- Aero engines
- Turning processes
- Quality control
- Test design
Sparse Decomposition

Definition

f is called sparse with respect to a basis/frame/dictionary $\{\varphi_i\}$, if

$$f = \sum_{i \in I} f_i \varphi_i, \quad |I| < \infty,$$

i.e. there exists a finitely supported decomposition of f.

Examples of bases:
- pixel basis
- Fourier basis
- object basis
- wavelets
- frames, dictionaries
Sparsity in Signal/Image Processing

\[A = I \]

- sparsity with respect to basis \(\{ \varphi_i \}_{i \in \mathbb{Z}} \), i.e. \(f = \sum f_i \varphi_i \)
- variational approach/ Tikhonov functional

\[
\min_f \| f - g^\varepsilon \|^2 + \alpha \| f \|_{\ell^p}^p
\]

- shrinkage operator \(f^\varepsilon_\alpha = S^p_\alpha (\{ g^\varepsilon_i \}) = \sum S^p_\alpha (\langle g^\varepsilon, \varphi_i \rangle) \varphi_i \), e.g.

\[
S^1_\alpha (u_i) := \begin{cases}
 u_i - \alpha, & \text{for } u_i > \alpha, \\
 0, & \text{for } -\alpha \leq u_i \leq \alpha, \\
 u_i + \alpha, & \text{for } u_i < \alpha.
\end{cases}
\]

D. Donoho. De-noising by soft thresholding. 1995. and many others
Overview

1. Sparsity concepts

2. Inverse Problems with Sparsity Constraints

3. Research directions

4. Parameter identification for PDEs
Sparsity and Inverse Problems

\[\min_{f} \| A f - g^\varepsilon \|^2 + \alpha \| f \|_{\ell^p} \]

- Regularization Properties
 \[f_{\alpha}^\varepsilon \rightarrow f^{\dagger}, \quad \varepsilon \rightarrow 0 \]

- Iterated Soft Shrinkage
 \[f(k+1) = S_{\alpha}^p [f(k) - A^* (A f(k) - g^\varepsilon)] \]

Bregman distance

\[D_{jp}(x, y) := \frac{1}{p} \|y\|^p - \frac{1}{p} \|x\|^p - \langle j_p(x), y - x \rangle \]

- measures the gap between the functional \(\frac{1}{p} \|x\|^p \) and its linearization
- in \(\ell^p, L^p, W^p_k, B^s_{p,q} \) with \(1 < p, q < \infty \) can be bounded from above resp. below by some power of \(\|x - y\| \)
- better suited for analysis than the norm
Duality mapping

- may be multivalued (j_p selection of J_p)
- $\langle j_p(x), x \rangle = \|x\|^p$ and $\|j_p(x)\| = \|x\|^{p-1}$
- in $\ell^p, L^p, W^p_k, B^s_{p,q}$ with $1 < p, q < \infty$

\[
J_p = \partial\left(\frac{1}{p} \| \cdot \|^p\right)
\]

\[
J_p^*(J_p(x)) = x \quad \text{and} \quad J_p(J_p^*(x^*)) = x^*
\]

- needed for Bregman distances, Source Conditions, Minimization schemes
Major research directions

- Generalizations
 - Non-linear operators
 - X, Y Banach spaces
 - Iteration methods for sparse approximations

- Some open problems
 - Efficient algorithms for minimizing Tikhonov functionals
 - Source conditions
 - Applications
Other sparse/local reconstruction schemes

- BV-regularization, $A : BV(\Omega) \rightarrow L^2(\Omega)$,

$$\min \|Af - g^\varepsilon\| + \alpha \sup \int_\Omega f \div p \, dx$$

- Sampling methods/ factorization schemes → A. Kirsch

- Mollifier methods → A.K. Louis
Overview

1. Sparsity concepts
2. Inverse Problems with Sparsity Constraints
3. Research directions
4. Parameter identification for PDEs
Non-linear operators

\[\min_f \| A(f) - g^\varepsilon \|_2^2 + \alpha \| f \|_{\ell^p} \]

\[f^{(k+1)} = S^p_{\alpha} \left[f^{(k)} - \left[A'(f^{(k)}) \right]^* \left(A(f^{(k)}) - g^\varepsilon \right) \right] \]

Grasmair, Haltmeier, Scherzer. *Sparse Regularization with \(\ell^q \) Penalty Term.* 2008.

Non-linear operators with projections on \(\ell_1 \) ball

\[\min_{f \in B_R} \| A(f) - g^\varepsilon \|_2^2 \]

\[f^{(k+1)} = P_{B_R} \left[f^{(k)} - \frac{\beta^k}{r} \left[A'(f^{(k+1)}) \right]^* \left(A(f^{(k)}) - g^\varepsilon \right) \right] \]

Teschke, Borries. *Accelerated Projected Steepest Descent Methods,* 2010
Tikhonov-functionals T_α in Banach spaces

$$T_\alpha(x) = \frac{1}{r} \| Ax - y^\delta \|_Y^r + \alpha \frac{1}{p} \| x \|_X^p$$

X, Y Banach spaces

$x_{n+1} = j_p^*(j_p(x_n) - \mu_n \partial T_\alpha(x_n))$

$x_{n+1}(x) = x_n - \mu_n j_p^*(\partial T_\alpha(x_n))$

- update in the dual space or in the primal space
- Tikhonov or generalized Landweber-iteration ($\alpha = 0$)

Bonesky et al. 2008, Kazimierski 2009
Efficient minimization Algorithms

\[\min_f \| Af - g^\varepsilon \|^2 + \alpha \| f \|^{\ell_p} \]

- **active set methods**

- **iterative methods**

- **gradient descent**

- **forward-backward splitting**

- **FISTA** Beck-Teboulle (2009), SpaRSA Wright-Nowak-Figueiredo (2009)
Source Conditions

Assumptions for \(\ell^1\) penalty

- \(K\) has finite basis injectivity property
- minimum-\(\| \cdot \|_{\ell^1}\)-norm-solution \(f^\dagger\) is finitely supported
- source condition

\[
\text{range } A^* \cap \text{Sign}(f^\dagger) \neq \emptyset.
\]

Extended concepts

- approximate source conditions Hofmann, Düvelmeyer, Krumbiegel 2006
- variational source conditions Hofmann, Kaltenbacher, Pöschl, Scherzer 2007, Hein
Overview

1. Sparsity concepts

2. Inverse Problems with Sparsity Constraints

3. Research directions

4. Parameter identification for PDEs
Impedance tomography (EIT)

\[f^{n+1} = S_\alpha \left(f^n - [A'(f^n)]^*(A(f^n) - g^\delta) \right) \]

determine \(\sigma \) from EIT measurements

\[
\begin{align*}
-\text{div}(\sigma \nabla u) &= 0 \text{ in } \Omega \\
\sigma \frac{\partial u}{\partial n} &= j \text{ on } \partial \Omega
\end{align*}
\]

forward solver: \(u = F^\sigma(j) \)

measurements (restr. of \(u \) on \(\partial \Omega \)) \(g = \gamma_0 u \)
Sparsity reconstruction Bangti Jin, T. Khan, P. Maass

- assumption: known background σ_0
- then calculating $\sigma^\dagger = \sigma_0 + \delta\sigma^\dagger$
- $\delta\sigma^\dagger$: localized inclusion

\[
\min_{\sigma} \max_j \left\| \gamma_0 F^{\sigma}(j) - \gamma_0 F^{\sigma^\dagger}(j) \right\|
\]

reconstruction algorithm

\[
\delta\sigma^{n+1} = S_\alpha \left(\delta\sigma^n - \left[\frac{\partial}{\partial \sigma} \gamma_0 F^{\sigma^n}(j) \right]^* (\gamma_0 F^{\sigma^n}(j) - \gamma_0 F^{\sigma^\dagger}(j)) \right)
\]
Analytic prerequisites

\[
\frac{d}{d\sigma} F^\sigma(j) : L_\infty(\Omega) \to H^1(\Omega)
\]

adjoint not defined

\[
\frac{d}{d\sigma} F^\sigma(j) : L_q(\Omega) \to H^1(\Omega)
\]

algorithm

- step size selection: Barzilai-Borwein rule
- Sobolev smoothing

Ref: Jin B, Khan T, Maass P. Sparse reconstruction in electrical impedance tomography, preprint.
Results (continuum model)

- single inclusion (1% noise)
- complex model (5% noise)
Results (../../../bilder/complete electrode model)

32 electrodes, 2% noise

- **real data, 3D**: Kaipio et al (2010),
- **finite element analysis**: Chen-Zou (1999), Jin-Zou (2009)