Modelling movement in space

Population-level description

\[n(x,t) \text{ pop. dens. at point } x \text{ and time } t. \]
\[J(x,t) \text{ pop. flux } \]
\[\int_{x_0}^{x} n(\xi,t) \, d\xi \text{ number of particles between points } x_0 \text{ and } x \text{ at time } t. \]

Ignoring births and deaths, we have

\[\partial_t \int_{x_0}^{x} n(\xi,t) \, d\xi = J(x_0,t) - J(x,t). \]

Differentiation with respect to \(x \) gives:

\[\partial_t n(x,t) = - \partial_x J(x,t) \] (1-dim balance equation)

How do we connect the flux \(J(x,t) \) (which is a population characteristic: number of particles passing through a given point per unit of time) to the behavior of individual particles?
Individual-level description

Partitioning of (1-dim.) space into discrete intervals of length Δx.

N_k: particle in interval $(k\Delta x, (k+1)\Delta x)$

Probability per unit of time of moving one interval up or down is α_k.

$N_k \xrightarrow{\alpha_k} N_{k+1}$ (monomolecular reactions).

N_k: pop. density in interval of length in interval $(k\Delta x, (k+1)\Delta x)$.

J_k: positive flux between intervals $(k\Delta x, (k+1)\Delta x)$ and $(k+1)\Delta x, (k+2)\Delta x)$.

\[J_k = \alpha_k \cdot n_k \Delta x - \alpha_k \cdot n_{k+1} \Delta x = -\alpha_k (\Delta x)^2 \frac{n_{k+1} - n_k}{\Delta x} \]

Let x_an, J_an be smooth interpolating functions $R^2 \to R$ such that $x_\text{an}(k\Delta x, t) = x_k$, $J_\text{an}(k\Delta x, t) = J_k$, $n_{k+1} \geq n_k$ for all k and all t.
Let \mathbf{x}_0, \mathbf{J}_0, \mathbf{n}_0 be smooth functions from \mathbb{R}^2 to \mathbb{R} such that

$$\mathbf{x}_0(\mathbf{k}\cdot \mathbf{x}, t) = \mathbf{x}_0$$
$$\mathbf{J}_0(\mathbf{k}\cdot \mathbf{x}, t) = \mathbf{J}_0$$
and $\mathbf{n}_0(\mathbf{k}\cdot \mathbf{x}, t) = \mathbf{n}_0$

for all \mathbf{k} and all t, and write $\mathbf{x} = \mathbf{k}\cdot \mathbf{x}$. Then

$$\mathbf{J}_0(\mathbf{x}, t) = \mathbf{x}_0(\mathbf{x}, t)(\Delta x)^2 \frac{\mathbf{v}_0(\mathbf{x}+\Delta \mathbf{x}, t) - \mathbf{v}_0(\mathbf{x}, t)}{\Delta x}$$

Let $k \rightarrow \infty$ and $\Delta x \rightarrow 0$ such that Δx stays constant, and assume that

$$\mathbf{x}_0(\mathbf{x}, t)(\Delta x)^2 \rightarrow D(x, t) \quad \text{(some given func.)}$$
$$\mathbf{J}_0(\mathbf{x}, t) \rightarrow \mathbf{J}(x, t) \quad \text{and} \quad \mathbf{n}_0(\mathbf{x}, t) \rightarrow \mathbf{n}_0(x, t).$$

Then

$$\mathbf{J}(x, t) = -D(x, t) \frac{\partial}{\partial x} \mathbf{v}(x, t) \quad \text{(Fick's Law).}$$

Fick's law describes diffusion on the population level, which corresponds to the uncorrelated random walk on the individual level.

$D(x, t)$ is called the diffusion coefficient.
Interpretation of the diffusion coefficient in terms of individual behavior.

Back to discretized space ...(p.2).

Expected distance travelled per unit of time is

$$\Delta x \cdot x_k - \Delta x \cdot x_k = 0.$$

Expected distance\(^2\) travelled per unit of time is

$$\langle \Delta x \rangle^2 \cdot x_k + (-\Delta x)^2 \cdot x_k = 2 \langle \Delta x \rangle^2 x_k.$$

Taking the limit \(k \to \infty \), \(\Delta x \to 0 \) as previously, we find that

$$2D(x,t) = \text{Expected distance}^2 \text{ travelled}$$

$$2D(x,t) = \frac{\text{per unit of time}}.$$

If \(D(x,t) \) is independent of \(x \) and \(t \), then the average position of a particle does not change with time and the variance grows linearly with time with rate \(2D \).

Hence, the standard deviation of the distribution of a particle's position grows \(\sqrt{2D \cdot \text{time}} \).
Diffusion-reaction equations.

\[J(x,t) = -D(x,t) \partial_x u(x,t) \]

(Fick's Law).

Population equation:

\[\partial_t n = \partial_x \left(D \partial_x n \right) + \text{(local reactions)} \]

(Reaction-diffusion equation).

\(\text{N.B. The local reactions describe birth, death and i-state transitions as modelled by mono- and bimolecular reactions.} \)

\[\begin{align*}
\partial_x k &= \partial_x (D_k \partial_x k) + \beta k (1 - \frac{R}{K}) - \frac{\beta RC}{1 + \beta TR} \\
\partial_x c &= \partial_x (D_c \partial_x c) + \frac{\beta RC}{1 + \beta TR} - \delta c
\end{align*} \]

Example. (Resource-consumer)

see previous lectures for mechanistic underpinning

const. death rate for consumer

Holling II func. resp.

logistic growth of resource

diffusion

Boundary conditions

Frequently encountered boundary conditions

* Constant concentration boundary

\[u(0, t) = u_0 \geq 0 \quad \forall t. \]

Special case: absorbing boundary

\[u(0, t) = 0 \quad \forall t. \]

* Constant flux boundary

Case of diffusion: \(\frac{\partial}{\partial x} n(0, t) = \text{const.} \quad \forall t. \)

Special case: reflecting boundary

\[\frac{\partial}{\partial x} u(0, t) = 0 \quad \forall t. \]

Formulating the bud conditions in year of the model formulation...
Example

\[21\% O_2 \]

- oxygen conc. \(c \)
- fish density \(n \)
- dissolved \(O_2 \) in equil. with atmospheric \(O_2 \)
- at bottom oxygen is absorbed in detritus layer.

\[\frac{\partial c}{\partial t} = D_c \frac{\partial^2 c}{\partial x^2} - \beta c n \]
(oxygen consumption by fish)

\[\frac{\partial n}{\partial t} = D_n \frac{\partial^2 n}{\partial x^2} \]

oxygen

\[c(0, t) = c_o > 0 \quad \forall t \]
(const. conc. bnd)

\[c(L, t) = 0 \quad \forall t \]
(absorbing bnd).

init.

\[n(x, 0) = \begin{cases} \frac{\partial n(0, t)}{\partial t} = 0 \quad \forall t \\ \frac{\partial n(L, t)}{\partial t} = 0 \quad \forall t \end{cases} \]
(reflecting bnds for fish).
Generalizations to k-dim space

\[x = (x_1, ..., x_k), \quad J = (J_1, ..., J_k) \]

\[\left(x_0, x_1, ..., x_k \right) \text{ pop density.} \] (2-dim case:

\[\text{total no of particles is} \]
\[\iint_{x_0 x_k} n(x_1, x_2, t) \, dx_2 \, dx_1. \]

\[\text{change in total no of particles per unit of time} \]
\[\partial_t \iint_{x_0 x_k} n(x_1, x_2, t) \, dx_2 \, dx_1 = \]
\[= \int_{x_0}^{x_2} J_1(x_1, x_2, t) \, dx_2 - \int_{x_2}^{x_1} J_1(x_1, x_2, t) \, dx_2 + \]
\[+ \int_{x_0}^{x_1} J_2(x_1, x_2, t) \, dx_1 - \int_{x_1}^{x_0} J_2(x_1, x_2, t) \, dx_1. \]

Differentiate with respect to \(x_1 \) and \(x_2 \)

\[\Rightarrow \partial_t n = -\partial_{x_1} J_1 - \partial_{x_2} J_2 \] (2-dim balance equation)

Random movement on i-level

\[J = \begin{pmatrix} \delta_{i,1} & \delta_{i,2} \\ \delta_{i,2} & \delta_{i,2} \end{pmatrix} \begin{pmatrix} \partial_{x_1} n \\ \partial_{x_2} n \end{pmatrix} \] (Fick's Law) (2-dim, space)
General k-dim. case:

\[\partial_t u = - \nabla \cdot J \]
(balance equation)

where \(\nabla = (\partial_x, \ldots, \partial_x) \) (del operator)

\(\nabla \cdot J = \partial_x J_x + \ldots + \partial_x J_x \) (divergence).

Diffusion given

\[J = -D \nabla u \]
(Fick's law)

where \(\nabla u = (\partial_x u, \ldots, \partial_x u) \) (gradient)

\[D = \text{matrix of diffusion coefficients}. \]

\[D = (D_{ij}) \] where \(D_{ij} \) is the expected distance travelled in \(i \) direction \(\times \) distance travelled in \(j \) direction per unit of time.

If \(D \) is constant matrix, then the covariation between \(x_i \) and \(x_j \) of the distribution of the particle's position \(x = (x_1, \ldots, x_k) \) grows at a rate \(2D_{ij} \).
Subst. of Fick's Law into the balance equation gives

\[\partial_t n = \nabla \cdot (D \nabla n) \]

If \(D \) is constant, this becomes

\[\partial_t n = D \Delta n \]

where \(\Delta \) is the Laplacian:

\[\Delta n = \nabla \cdot \nabla c = (\partial_{x_1}, \ldots, \partial_{x_k}) \cdot (\partial_{x_1} n, \ldots, \partial_{x_k} n) = \partial_{x_1}^2 n + \cdots + \partial_{x_k}^2 n. \]

(Alternative notation: \(\Delta n = \nabla^2 n \).)

Adding local reactions gives a reaction–diffusion equation

\[\partial_t n = \nabla \cdot (D \nabla n) + \text{(local reactions)} \]