Delay differential equations

Reproduction: \(R(t) = \begin{cases} \gamma & \text{for } a > T \\ 0 & \text{for } a \leq T \end{cases} \)

Mortality: \(\mu(a) = \delta \) for \(a > T \)

(Effectively, we've removed any age-structure among adults.)

\[\begin{align*}
N(t) &= \int_0^T n(t,a) \, da \quad (\text{pop. dens. adults}) \\
B(t) &= \gamma N(t) \quad (\text{pop. birth rate}) \\
F(a) &= \exp\left\{ -\int_0^a \mu(x) \, dx \right\} \quad \text{for } 0 \leq a \leq T .
\end{align*} \]

Integrate transport equation over \([T, \infty)\):

\[\dot{N}(t) - N(t,T) + \delta N(t) = 0. \]

From renewal equation:

\[N(t,T) = B(t-T) F(T) \quad (t > T) \]

\[\begin{align*}
\dot{N}(t) = \gamma F(T) N(t-T) - \delta N(t) \end{align*} \]

(Delay differential equation)
\[\dot{N}(t) = \gamma N(t-T) F(T) - \delta N(t) \]

- **birth rate**
- **survival probability**
- **time**
- **units ago**
- **time**
- **T**
- **recruitment rate**
- **at present time**
- **t**

The delay differential equation is complemented by an initial condition which gives \(N \) over an interval of length \(T \):

\[N(0) \quad \rightarrow \quad t \]

given initial condition

How to "put" a delay in a given ODE like, e.g.,

\[\dot{N} = r N \left(1 - \frac{N}{K} \right) \]
logistic

Example (Hutchinson 1948; May 1972)

\[\dot{N} = r N \left(1 - \frac{N_T}{K} \right) \]
delayed logistic

with \(N_T(t) = N(t-T) \), where does the Hutchinson-May equation come from? What are the underlying i-level processes?
The Hutchinson-May equation is of the form

\[\dot{N} = aN - bNN_T \] \((a, b > 0 \text{ constant}) \)

First mechanism:

\[\begin{aligned}
\text{mortality rate } & \mu(t) \\
0 & \xrightarrow{t} T \\
\text{birth rate } & 2N \\
\end{aligned} \]

Although this mechanism gives a delay-differential equation, it is not of the form of the Hutchinson-May equation 1. Note, however, that without the delay (or \(T=0 \)) both 1 and 2 become the logistic ODE.
Second mechanism.

i-states:

- \(N \): territory owner (adult)
- \(Y \): adult without territory.
- \(X_a \): juvenile of age \(a \in [0,T] \).
- \(S \): free territory.

i-processes:

\[
\begin{align*}
N & \xrightarrow{\lambda} N + X_0 \quad \text{(reproduction)} \\
S + Y & \xrightarrow{\gamma} N \quad \text{(finding territory)} \\
N & \xrightarrow{\delta} S \\
Y & \xrightarrow{\mu(a)} \uparrow \\
X_a & \xrightarrow{\uparrow} \uparrow \\
X_0 & \xrightarrow{\text{delay } T} Y \quad \text{(maturation)}
\end{align*}
\]

i-equations:

\[
\begin{align*}
\dot{N} & = \beta SY - \delta N \\
\dot{Y} & = -\beta SY - \gamma Y + 2N_T F(T) \\
\dot{S} & = -\beta SY + \delta N
\end{align*}
\]

with \(F(T) = \exp\{-\int_0^T \mu(t) \, dt\} \).
Note that $S_0 = S + N$ is constant.
Use this to eliminate S from the equations:

\[
\begin{align*}
\dot{N} &= \beta (S_0 - N) Y - dN \\
\dot{Y} &= -\beta (S_0 - N) Y - \gamma Y + 2N_T F(T)
\end{align*}
\]

Assume that I and Y are large compared with other parameters.

\implies Y fast variable; N slow variable.

Fast Y-dynamics:

QSS: $\dot{Y} = \frac{I}{\gamma} F(T)$

Slow N-dynamics:

\[
\dot{N} = \frac{\beta F(T)}{\gamma} (S_0 - N) N_T - dN
\]

Note that this equation is also not the Hutchinson-May equation (1), although without delay (i.e., $T = 0$) both (1) and (3) give the ordinary logistic equation.
Third mechanism.

\[N \quad \text{territory owner who has}
\text{sufficiently settled down to}
\text{start reproducing.} \]

\[Y \quad \text{free individuals}
\text{(i.e., without a territory)} \]

\[S \quad \text{unoccupied territory} \]

\[Z_a \quad \text{territory owner who is still}
\text{in the phase of preparing}
\text{herself and the territory}
\text{for reproduction, (a \in [0, T])} \]

\[N \xrightarrow{\lambda} N + Y \quad \text{(reproduction)} \]

\[S + Y \xrightarrow{\beta} Z_o \quad \text{(occupying territory)} \]

\[Z_o \xrightarrow{\text{delay } T} N \quad \text{(preparing for repro)} \]

\[N \xrightarrow{\delta} S \]

\[Z_a \xrightarrow{\mu} S \quad \text{(death)} \]

\[Y \xrightarrow{\gamma} t \quad \text{(notice in now age-independent)} \]
\[\dot{N} = z(t, T) - \delta N \]
\[\dot{y} = 2N - \beta SY - YY \]
\[z(t, a) = B(t-a) F(a) \]
\[B(t) = \beta SY \]
\[F(a) = e^{-\mu a} \]
\[s = -\beta SY + \delta N + \mu \int_0^T z(t, a) \, da. \]

Note that \(S_0 = N(t) + \int_0^T z(t, a) \, da \) is constant.

Also define \(z(t) = \int_0^T z(t, a) \, da \).

\[\Rightarrow \begin{cases}
 \dot{N} = \beta (S_0 - N - Z) y T F(t) - \delta N \\
 \dot{y} = 2N - \beta (S_0 - N - Z) y - YY
\end{cases} \]

From the transport equation:

\[\Rightarrow \dot{z}(t) + z(t, a) \bigg|_0^T + \mu z = 0 \]

\[\iff \dot{z}(t) + \beta (S_0 - N - Z) y T F(t) - \beta (S_0 - N - Z) y + \mu z = 0 \]
Assume that I and Y are large compared with the other parameters. (Interpret Y)

Fast Y-dynamics

QSS: $Y = \frac{2}{\delta} N$

Slow (N,Z)-dynamics

\[
\dot{N} = \beta (S_0 - N_T - Z_T) \frac{2}{\delta} N_T F(L) - 8 \delta N
\]
\[
\dot{Z} = -\beta (S_0 - N_T - Z_T) \frac{2}{\delta} N_T F(L) + \beta (S_0 - N - Z) \frac{2}{\delta} N - N Z
\]

There are two equations in an essential way, i.e., we cannot eliminate one or the other by separation of time scales.

Without delay ($T=0$ and hence $Z=0$) system (4) becomes the ordinary logistic equation.

But with the delay, we still don't have recovered the Hutchinson-Verhulst equation.

But we've had some practice with deriving delay diff. equations.