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Abstract
Novel Monte Carlo techniques are described for the computation of reflection
coefficient matrices for multiple scattering of light in plane-parallel random
media of spherical scatterers. The present multiple scattering theory is
composed of coherent backscattering and radiative transfer. In the radiative
transfer part, the Stokes parameters of light escaping from the medium
are updated at each scattering process in predefined angles of emergence.
The scattering directions at each process are randomized using probability
densities for the polar and azimuthal scattering angles: the former angle
is generated using the single-scattering phase function, whereafter the latter
follows from Kepler’s equation. For spherical scatterers in the Rayleigh regime,
randomization proceeds semi-analytically whereas, beyond that regime, cubic
spline presentation of the scattering matrix is used for numerical computations.
In the coherent backscattering part, the reciprocity of electromagnetic waves
in the backscattering direction allows the renormalization of the reversely
propagating waves, whereafter the scattering characteristics are computed
in other directions. High orders of scattering (∼10 000) can be treated
because of the peculiar polarization characteristics of the reverse wave: after a
number of scatterings, the polarization state of the reverse wave becomes
independent of that of the incident wave, that is, it becomes fully dictated by
the scatterings at the end of the reverse path. The coherent backscattering part
depends on the single-scattering albedo in a non-monotonous way, the most
pronounced signatures showing up for absorbing scatterers. The numerical
results compare favourably to the literature results for nonabsorbing spherical
scatterers both in and beyond the Rayleigh regime.

1. Introduction

Natural complex media of scatterers give rise to nonlinear phenomena in the angular
dependences of intensity and polarization, when the illumination and observation geometries
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are varied. Close to astronomical opposition, atmosphereless planetary-system objects show
an opposition effect, a nonlinear increase of brightness at small solar phase angles α � 7◦, the
angle between the Sun and the observer as seen from the object. They show a negative
polarization surge in the degree of linear polarization (|a⊥|2 − |a‖|2)/(|a⊥|2 + |a‖|2) for
unpolarized incident sunlight: at phase angles α � 30◦, the brightness component |a‖|2
with the electric vector parallel to the scattering plane defined by the Sun, the object and the
observer predominates over the perpendicular component |a⊥|2.

The coherent backscattering mechanism has been invoked to explain the opposition effect
of planetary-system objects [1–5], as well as their peculiar negative polarization characteristics
[2, 3, 6, 7]. The surfaces of the objects are likely to be composed of inhomogeneous
small particles, constituting closely packed random media with random rough surfaces. A
novel numerical technique is here developed for coherent backscattering by semi-infinite and
finite plane-parallel media of spherical scatterers, aiming towards the interpretation of the
photometric and polarimetric observations of planetary-system objects.

Lyot [8] discovered the negative polarization surge for the Moon and Saturn’s rings,
whereas Seeliger [9] deduced the opposition brightening of Saturn’s rings from the
observations of the entire Saturnian system by Müller [10]. The observations and theoretical
interpretations of the photometric and polarimetric backscattering surges have been reviewed
in, e.g., [11–16].

Kuga and Ishimaru [17] measured the coherent backscattering peak experimentally for
dense suspensions of spherical latex particles. Simultaneously, coherent backscattering was
detected by van Albada and Lagendijk [18] and Wolf and Maret [19] as a manifestation of
weak localization of photons in disordered media of scatterers. Theoretically, the constructive
interference in multiple scattering was already known in studies of multiple scattering of
electromagnetic waves in underdense plasmas [20] and in electromagnetic scattering by
extended dielectric turbulent media [21]. The spatial anisotropy of the coherent backscattering
peak was experimentally documented in [22] although earlier measured by Lyot for porous
media of small MgO particles [8].

Within a multiple scattering approximation consisting of the so-called ladder (or radiative
transfer) and maximally crossed (or coherent backscattering) terms of the multiple scattering
theory, the scattering problem has been solved exactly for plane-parallel random media
composed of non-absorbing Rayleigh scatterers [23, 24]. The solution has allowed the
derivation of reference enhancement factors and polarization surge depths [25]. Coherent
backscattering has been studied for simplified scattering systems using both exact and
approximate treatments of the electromagnetic theory. Such studies include coherent
backscattering by two dipole scatterers [2, 3, 26], two spherical scatterers [27, 28], and
coherent backscattering by a dipole scatterer and a semi-infinite optically homogeneous and
isotropic medium [3, 30, 31]. Recently, coherent backscattering effects have been searched for
spherical media of Rayleigh scatterers using the volume integral equation technique [32] and
for isolated, randomly oriented tetrahedral crystals using the physical optics approximation
[33].

Numerical Monte Carlo (MC) analyses of coherent backscattering by random media
have been put forward by several authors [34–37]—such techniques are attractive because
of their conceptual clarity and applicability to complicated non-plane-parallel geometries of
the media. The present MC technique is the first one based on Stokes parameters, Mueller
scattering matrices and a Jones amplitude scattering matrix formulation of the reciprocity
principle for electromagnetic scattering [38–40]. Asymptotically, the technique offers an
exact treatment of the approximate multiple scattering theory cited above. The reciprocity
principle has earlier been used in the computation of enhancement factors in the backscattering
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Figure 1. Coherent backscattering mechanism for the intensity surge. The wave scattered through
source S → scatterer I → scatterer II → cone with axis L interferes constructively with the wave
scattered through source S → scatterer II → scatterer I → cone with axis L. The backscattering
direction is on the cone for arbitrary scatterers I and II, and configurational averaging results in
enhanced backscattering.

direction [40]. The present technique allows the computation of full angular dependences of
the backscattering peaks and polarization surges.

In section 2, the necessary multiple scattering theory and numerical techniques are
described, with special emphasis on both qualitative and quantitative understanding of coherent
backscattering by random media. Section 3 includes the application of the technique to plane-
parallel random media of spherical scatterers within and beyond the Rayleigh regime. In
section 4, the paper is closed by conclusions and remarks on future prospects.

2. Scattering theory and numerical techniques

The current study is based on approximate vector multiple scattering theory that consists
of the radiative transfer (the ladder terms of the diagrammatic presentation) and coherent
backscattering parts (the maximally crossed terms). We refer the reader to literature for the
details of the theory (e.g., [41–47]). In the numerical technique at hand, the computation
of coherent backscattering by absorbing and scattering media is carried out besides an MC
radiative transfer solution for the Stokes parameters of scattered intensity [12, 48].

2.1. Coherent backscattering mechanism

The explanation of the negative polarization surge observed for many planetary-system objects
based on the coherent backscattering mechanism [2, 6] is not widely known. Yet, the spatial
anisotropy of the coherent backscattering cone can be interpreted analogously, providing an
explanation differing from that in [22]. Curiously, the recent explanation put forward by Iwai
for the spatial anisotropy [36] resembles the explanation reviewed below.

The coherent backscattering mechanism for the opposition effect is described in
figure 1 for second-order scattering, readily applicable to any order of multiple scattering.
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Figure 2. Coherent backscattering mechanism for the polarization surge. The four geometries
represent a simplified picture of orientational averaging for unpolarized incident light. For
positively polarizing single scattering, e.g., Rayleigh scattering only the two topmost geometries
contribute to the coherent backscattering signal in the yz-plane at phase angle α, with differing
interference characteristics. Configurational averaging favours the negatively polarizing geometry
(no phase shift; top left) over the positively polarizing geometry (phase shift kd sin α for wave
number k and scatterer distance d; top right).

An electromagnetic plane wave is incident from the top and is represented by the solid
and dashed lines. The wave interacts with two scatterers I and II, which are of the order
of the wavelength λ to hundreds of wavelengths (or more) apart before travelling to the
observer to the left. The two scattered wave components deriving from the two opposite
propagation directions between the scatterers interfere constructively in the conical directions
defined by a rotation of the light source direction S about the axis L joining the two end
scatterers. Figure 1 illustrates a scattering direction on the cone precisely on the other side
of the light source direction. Consequently, the backward direction (phase angle α = 0◦) is
on the constructive-interference cone for arbitrary locations of the two scatterers. In other
directions, interference varies from constructive to destructive. Three-dimensional averaging
over scatterer locations results in an opposition effect. The angular width of the effect decreases
for increasing orders of interactions, because of the increasing average distance between the end
scatterers.

The coherent backscattering mechanism for the negative degree of linear polarization is
illustrated for second-order scattering in figure 2 using a simplified geometrical configuration
of the scatterers. The incident radiation is unpolarized (e.g., the Sun), requiring the derivation
and proper averaging of the Stokes parameters of the scattered electromagnetic fields (Es) for
two mutually perpendicular polarization states of the incident plane wave (Ei). In figure 2,
incident linear polarizations parallel and perpendicular to the scattering plane (here yz-plane)
are treated in the two leftmost and two rightmost geometries, respectively.
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Thus, in figure 2, the incident plane wave interacts with two scatterers I and II at a distance
d from one another aligned either on the x-axis or on the y-axis, while the observer is in the
yz-plane. For the present geometries, the constructive interference cones of figure 1 reduce to
the yz and xz-planes, depending on the alignment of the scatterers. Since first-order Rayleigh
scattering as well as Fresnel reflection is positively polarized, the scatterers sufficiently far
away from each other (kd = 2πd/λ � 1, where k and λ are the wave number and wavelength)
interact predominantly with the electric field vector perpendicular to the plane defined by the
source and the scatterers (two upper geometries), while interaction with the electric field
vector parallel to that plane is suppressed (two lower geometries). The observer in the yz-
plane will measure negative polarization from the upper left geometry in figure 2, and positive
polarization from the upper right geometry. However, the positive polarization suffers from
the phase difference kd sin α, whereas the phase difference for the negative polarization is zero
for all phase angles. Averaging over the simple configurations of figure 2 or, rigorously, three-
dimensional averaging over scatterer locations will result in negative polarization near the
backward direction. Scattering orders higher than the second experience similar preferential
interaction geometries, and contribute to negative polarization. As above for the opposition
effect, the contributions from increasing orders of scattering manifest themselves at decreasing
phase angles.

The present explanation of the negative polarization surge for positively polarizing single
scattering constitutes, after evident modifications, an explanation of the positive polarization
surge for negatively polarizing single scattering. As pointed out theoretically in [49] for
second-order scattering, positive polarization surges follow for random media of spherical
particles with certain optical properties. The positive polarization surges have yet to be
detected in laboratory experiments.

2.2. Phases and amplitudes of coherently backscattering waves

For the computation of coherent backscattering, we sum up the electromagnetic fields that
are directly and reversely scattered along the same path between the two end scatterers.
The reciprocity relation ties together the phases of the two waves in the backscattering
direction, allowing for the correct mutual phasing of the waves incident on the end scatterers
in the direct and reverse directions. Utilization of the Jones amplitude scattering matrices
for the final scattering processes guarantees that the two waves are correctly phased in all
scattering directions. The amplitudes and phase differences of the direct waves follow from
the radiative transfer computation. The relative amplitudes and phase differences of the reverse
waves follow from a radiative-transfer-like computation along the reverse paths. The precise
amplitudes of the reverse waves, and the phase difference between the direct and reverse
waves, follow from the reciprocity relation in the backscattering direction.

Denote the directly scattered transverse field by a⊥, a‖, δ, δ⊥, and δ‖ (a⊥, a‖ � 0) and the
reversely scattered transverse field by b⊥, b‖, γ , γ⊥, and γ‖ (b⊥, b‖ � 0) in a certain reference
coordinate system e⊥,e‖,

Ea = a⊥ exp(iδ + iδ⊥)e⊥ + a‖ exp(iδ + iδ‖)e‖,
(1)

Eb = b⊥ exp(iγ + iγ⊥)e⊥ + b‖ exp(iγ + iγ‖)e‖.

For convenience, we have introduced the phases δ and γ due to the propagation paths of the
fields Ea and Eb, respectively. The phase differences between the intrinsic field components
are �δ = δ‖ − δ⊥ and �γ = γ‖ − γ⊥.
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The Stokes parameters of the Ea field (analogously for the Eb field) are defined by

I =




I

Q

U

V


 =




a2
‖ + a2

⊥
a2

‖ − a2
⊥

2a‖a⊥ cos �δ

−2a‖a⊥ sin �δ


 . (2)

The inverse relation is unambiguous except for the absolute phase of the electromagnetic wave.
For |Q| �= I , that is, when a‖ �= 0 and a⊥ �= 0,

a⊥ =
√

I + Q

2
, cos �δ = U√

I 2 − Q2
, a‖ =

√
I − Q

2
, sin �δ = −V√

I 2 − Q2
.

(3)

For |Q| = I , that is, when either a‖ = 0 or a⊥ = 0, we set �δ = 0.
The Stokes parameters of the total field E = Ea + Eb are

I = IRT + IC, (4)

where the radiative transfer (superscript ‘RT’) and coherent backscattering (‘C’) parts are

IRT =




1
2

(
a2

‖ + a2
⊥ + b2

‖ + b2
⊥
)

1
2

(
a2

‖ − a2
⊥ + b2

‖ − b2
⊥
)

a‖a⊥ cos �δ + b‖b⊥ cos �γ

−a‖a⊥ sin �δ − b‖b⊥ sin �γ


 ,

(5)

IC =




a⊥b⊥ cos(�ε + δ⊥ − γ⊥) + a‖b‖ cos(�ε + �δ − �γ + δ⊥ − γ⊥)

−a⊥b⊥ cos(�ε + δ⊥ − γ⊥) + a‖b‖ cos(�ε + �δ − �γ + δ⊥ − γ⊥)

a⊥b‖ cos(�ε − �γ + δ⊥ − γ⊥) + a‖b⊥ cos(�ε + �δ + δ⊥ − γ⊥)

a⊥b‖ sin(�ε − �γ + δ⊥ − γ⊥) − a‖b⊥ sin(�ε + �δ + δ⊥ − γ⊥)


 .

Here �ε is the phase difference due to the differing propagation paths,

�ε = δ − γ = k(ei + es) · (rs − ri), (6)

where ei and es are the propagation directions of the incident and scattered waves and ri and
rs are the locations of the end scatterers.

The coherent backscattering part in equation (5) is expressed using the known phase
differences �δ, �γ , and �ε and the phase difference δ⊥ − γ⊥ that is unknown. If δ⊥(0) and
γ⊥(0) are the phases in the backscattering direction and η = γ⊥(0) − δ⊥(0),

δ⊥ − γ⊥ = [δ⊥ − δ⊥(0)] − [γ⊥ − γ⊥(0)] − η. (7)

As the phases δ⊥ − δ⊥(0) and γ⊥ − γ⊥(0) are relative and available from the amplitude
scattering matrix algebras for the fields Ea and Eb, the phase η emerges as being the one and
only unknown phase in the computation.

In what follows, the phase η is determined using the reciprocity principle. In
the backscattering direction, because of the coinciding propagation paths, �ε = 0 in
equation (5). According to the reciprocity principle in general, the amplitude scattering
matrices of arbitrary reciprocally propagating waves are interrelated by [38–40]

S(−ei,−es) = QST (es,ei)Q, (8)

where

S =
(

S⊥⊥ S⊥‖
S‖⊥ S‖‖

)
, Q =

(
1 0
0 −1

)
. (9)
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Combined Mueller and Jones matrix algebra in the reverse propagation direction allows
the computation of an unnormalized field b̃⊥, b̃‖, γ̃ , γ̃⊥, and γ̃‖ so that the phase differences
�γ̃ = γ̃‖ − γ̃⊥ = �γ , that is, the polarization properties of the reverse wave are available.
What is left is the scaling of the amplitudes b̃⊥ and b̃‖ and the shifting of the phases γ̃⊥ and γ̃‖
so that the reciprocity relation is fulfilled. Now the reciprocity relation in equation (8) gives
a complex-valued renormalization coefficient to be applied to the b̃-field. After writing the
directly and reversely backscattered waves using the amplitude scattering matrix formalism
and subtracting the expressions from one another, the renormalization coefficient C emerges
as the ratio (the subscript ‘i’ refers to the original field incident on the medium)

C = a⊥(0)ai,⊥ exp(iδ⊥(0) + iδi,⊥) − a‖(0)ai,‖ exp(iδ‖(0) + iδi,‖)
b̃⊥(0)ai,⊥ exp(iγ̃⊥(0) + iδi,⊥) − b̃‖(0)ai,‖ exp(iγ̃‖(0) + iδi,‖)

= |C| exp(iη), (10)

giving |C| and η as a function of known phases and amplitudes. It then follows that the
wave incident on the final scatterer in the reverse direction can be re-amplified by |C| and
phase-shifted by η in order to fulfil the reciprocity relation after the scattering process in the
backscattering direction. In the renormalization, the optical depths of the direct and reverse
waves have to be carefully accounted for.

Consequently, the properly renormalized reverse wave component and the direct wave
component can be used in the computation of the angular profiles in both intensity and
polarization close to the backscattering direction. The absolute electromagnetic phase is
computed for neither directly nor reversely propagating components; instead, the phase
difference between their phase differences is properly reset in the backscattering direction,
leaving the absolute phase as an arbitrary number having no influence on the results.

In principle, there are geometrical configurations of the incident and scattered fields that,
strictly, cannot be treated using the reciprocity relation. One advantage of the MC technique is
the fact that, in practice, these singular geometries have a vanishing probability of occurrence
in the computation.

Note that ensemble-averaged scattering matrices cannot be utilized in the coherent
backscattering computations, because such matrices are typically unpolarizing: at each
scattering event, the Stokes parameters of scattered light have to correspond to electromagnetic
field components with a well-defined phase difference. Indeed, it is possible to replace the
4 × 4 Mueller-matrix algebra unambiguously by a 2 × 2 Jones-matrix algebra.

2.3. Scattering theory

For spherical scatterers, the extinction, scattering, and absorption efficiencies and the single-
scattering albedo are [39]

qs = 2

x2

∞∑
l=1

(2l + 1)(|al|2 + |bl|2), qe = 2

x2

∞∑
l=1

(2l + 1)Re(al + bl),

(11)
qa = qe − qs, ω̃ = qs

qe
,

where al and bl are the vector spherical harmonics coefficients of the scattered electromagnetic
field, depending on the size parameter x = ka (a is radius) and the complex refractive index
m of the spherical scatterers:

al = mψl(mx)ψ ′
l (x) − ψl(x)ψ ′

l (mx)

mψl(mx)ξ ′
l (x) − ξl(x)ψ ′

l (mx)
, bl = ψl(mx)ψ ′

l (x) − mψl(x)ψ ′
l (mx)

ψl(mx)ξ ′
l (x) − mξl(x)ψ ′

l (mx)
. (12)
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Here ψl and ξl are Riccati–Bessel functions and strictly related to the spherical Bessel and
Hankel functions jl and h

(1)
l ,

ψl(x) = xjl(x), ξl(x) = xh
(1)
l (x). (13)

The normalized scattering phase matrix, below briefly scattering matrix, is

P = 2

x2qs




|S‖‖|2 + |S⊥⊥|2 |S‖‖|2 − |S⊥⊥|2 0 0
|S‖‖|2 − |S⊥⊥|2 |S‖‖|2 + |S⊥⊥|2 0 0

0 0 Re(S∗
⊥⊥S‖‖) Im(S∗

⊥⊥S‖‖)
0 0 −Im(S∗

⊥⊥S‖‖) Re(S∗
⊥⊥S‖‖)


 ,

(14)
N11 =

∫
4π

d�

4π
P11(�) = 1, g11 =

∫
4π

d�

4π
cos θP11(�),

where the amplitude scattering matrix elements S⊥⊥ and S‖‖ are

S⊥⊥ =
∞∑
l=1

2l + 1

l(l + 1)

[
al

dP 1
l (cos θ)

dθ
+ bl

1

sin θ
P 1

l (cos θ)

]
,

(15)

S‖‖ =
∞∑
l=1

2l + 1

l(l + 1)

[
al

1

sin θ
P 1

l (cos θ) + bl

dP 1
l (cos θ)

dθ

]
,

and P 1
l are associated Legendre functions. The norm of the phase function is N11 = 1, and

g11 is its asymmetry parameter (see also equations (30) and (31)).
In the Rayleigh limit of light scattering by spherical particles, the scattering and absorption

efficiencies are reduced to [39]

qs = 8

3
x4

∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣
2

, qa = 4x Im

(
m2 − 1

m2 + 2

)
, (16)

and the scattering matrix is

P = 3

2




1
2 (1 + cos2 θ) − 1

2 sin2 θ 0 0
− 1

2 sin2 θ 1
2 (1 + cos2 θ) 0 0

0 0 cos θ 0
0 0 0 cos θ


 . (17)

For the physical quantities in multiple scattering, definitions in [50] are followed. The
specific intensity of the incident radiation (in units of J m−2 s−1 sr−1) is

I0(µ, φ) = πF 0δ(µ − µ0)δ(φ − φ0), (18)

where πF 0 is the incident flux density (in units of J m−2 s−1) and µ0 = cos ι. ι and φ0 are the
angle of incidence (measured from the outward normal of the plane-parallel medium) and the
azimuthal angle, respectively.

The 4 × 4 reflection coefficient matrix R, below briefly reflection matrix, relates the
incident flux density and the specific intensity of reflected radiation as

I r(µ, φ) = µ0R(µ,µ0, φ − φ0)F 0,
(19)

R(µ,µ0, φ − φ0) = RRT(µ,µ0, φ − φ0) + RC(µ,µ0, φ − φ0),

where µ = cos ε. ε and φ are the angle of emergence (measured from the outward normal
of the plane-parallel medium) and the azimuthal angle, respectively. The matrix element R11

corresponds to the so-called reflection coefficient in scalar radiative transfer. The enhancement
factor is

ζ(µ,µ0, φ − φ0) = R11(µ,µ0, φ − φ0)

RRT
11 (µ0, µ0, 0)

. (20)
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The degree of linear polarization is P = −R̃21/R̃11, where R̃ is the reflection matrix expressed
in the scattering plane defined by the source, object and the observer.

The plane albedo Ap(µ0) is the fraction of the incident flux which is reflected by the
plane-parallel medium in the case of incident unpolarized radiation,

Ap(µ0) = 1

π

∫ 1

0

∫ 2π

0
dµ dφ µRRT

11 (µ,µ0, φ − φ0). (21)

Note that the plane albedo here refers to the radiative transfer part only. The current treatment
of energy conservation is sufficient for narrow coherent backscattering peaks.

Extinction is assumed to be exponential within the random medium. The optical depth τs

between two locations a distance s apart is computed using the scalar extinction coefficient ke,

τs =
∫ s

0
ds ke = kes = s

�
, � = 1

ke
, (22)

where � is the extinction mean free path. If n and v are the number and volume densities of
scatterers with radii a in a discrete random medium, we obtain

ke = nqeπa2 = 3vqe

4a
, n = 3v

4πa3
. (23)

2.4. Randomizing scattering angles

Of interest in MC multiple scattering computations is the generation of scattering angles in
each scattering process. Here we outline an efficient technique for block-diagonal scattering
matrices enabled by the Stokes parameter formulation, with prospects for generalization to
more complicated matrices. For example, as it stands below, the technique is already applicable
to radiative transfer computations utilizing the block-diagonal ensemble-averaged scattering
matrices such as those of Gaussian particles [51].

We denote the Stokes parameters of the incoming and outgoing rays by I1 =
(I1,Q1, U1, V1)

T and I2 = (I2,Q2, U2, V2)
T , respectively, and assume that the reference

system of the incoming ray is arbitrary. The outgoing ray in the reference system of the local
scattering plane is given by

I2 ∝ P (θ, φ) · K(φ) · I1, (24)

where K is a 4 × 4 Mueller matrix for the rotation to the scattering plane, P is the 4 × 4
Mueller matrix for scattering (scattering matrix), and θ and φ are the temporary scattering
angles in the reference system of I1.

The Monte Carlo generation of the scattering angles is based on the angular intensity
distribution I2(θ, φ); i.e.,

I2(θ, φ) ∝ I1P11(θ, φ) + Q1[P12(θ, φ) cos 2φ + P13(θ, φ) sin 2φ]

+ U1[−P12(θ, φ) sin 2φ + P13(θ, φ) cos 2φ] + V1P14(θ, φ). (25)

For scattering by spherical particles, the scattering matrix is independent of the azimuthal
scattering angle φ and P13 = P14 = 0, so we obtain

I2(θ, φ) ∝ I1P11(θ) + Q1P12(θ) cos 2φ − U1P12(θ) sin 2φ. (26)

The azimuthal angle φ shows up only in the rotation, and I2(θ, φ) is independent of the Stokes
parameter V1.

In order to obtain the probability density function p(θ, φ), we normalize I2(θ, φ) and
obtain

p(θ, φ) = 1

4π
P11(θ) +

1

4π
P12(θ)

(
Q1

I1
cos 2φ − U1

I1
sin 2φ

)
. (27)



374 K Muinonen

The marginal probability density for θ is

p(θ) = 1

2
P11(θ) (28)

and thus independent of I1. For φ, it is more complicated and depends on I1:

p(φ) = 1

2π
+

(
Q1

I1
cos 2φ − U1

I1
sin 2φ

)
1

4π

∫ π

0
dθ sin θP12(θ). (29)

Curiously, the integral on the right gives rise for a polarization norm,

N12 = −1

2

∫ π

0
dθ sin θP12(θ), (30)

which can be used to measure, first, whether the scatterers are net positively or negatively
polarizing and, second, how efficiently they can polarize incident unpolarized light. For
Rayleigh scatterers, N12 = 1

2 (cf the phase function norm N11 = 1 in equation (14)). Note
that the polarization asymmetry parameter can be defined as

g12 = −1

2

∫ π

0
dθ sin θ cos θP12(θ). (31)

For Rayleigh scatterers, g12 = 0.
The practical generation of θ and φ can be carried out using, first, p(θ) to obtain the

sample polar scattering angle θ̃ and, second, the conditional probability

p(φ | θ̃ ) = p(θ̃, φ)

p(θ̃)
= 1

2π

[
1 +

P12(θ̃)

P11(θ̃)

(
Q1

I1
cos 2φ − U1

I1
sin 2φ

)]
(32)

to obtain the sample azimuthal scattering angle φ̃.
For the Rayleigh scattering matrix in equation (17), we obtain θ̃ -values analytically from

cos θ̃ = 3

√√
1 + y2 + y − 3

√√
1 + y2 − y, (33)

where y is a uniform random deviate y ∈ ]−2, 2[. For spherical scatterers beyond the Rayleigh
regime, the generation of θ̃ can best be carried out via interpolation in a precomputed table of
cos θ̃ -values as a function of y ∈ ]0, 1[.

For the subsequent generation of φ̃, denote

e cos γ = −P12(θ̃)

P11(θ̃)

Q1

I1
, e sin γ = −P12(θ̃)

P11(θ̃)

U1

I1
, (34)

where

e =
√

P 2
12(θ̃)

P 2
11(θ̃)

Q2
1 + U 2

1

I 2
1

(35)

and the angle γ is unambiguously determined by equation (34). Then, the probability density
function is

p(φ|θ̃ ) = 1

2π
[1 − e cos(2φ + γ )] , (36)

and the cumulative distribution function is

P(φ | θ̃ ) = 1

2π

[
φ − 1

2
e sin(2φ + γ ) +

1

2
e sin γ

]
. (37)

For generating φ̃, we thus obtain (with y ∈ ]0, 1[ a uniform random deviate)

(2φ̃ + γ ) − e sin(2φ̃ + γ ) = 4πy + γ − e sin γ, (38)

that is, Kepler’s equation E−e sin E = M with ‘eccentric anomaly’ E = 2φ̃ + γ , ‘eccentricity’
e, and ‘mean anomaly’ M = 4πy + γ − e sin γ . Kepler’s equation can be solved for φ̃

efficiently using Newton’s technique [52]: typically, only a few iterations are necessary to
obtain φ̃ with sufficient accuracy and the generation is next-to analytical.
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2.5. Summary of numerical technique

The vector radiative transfer part of the numerical MC technique has been carefully verified
using reference results for a Rayleigh-scattering planetary atmosphere [53]. Entire reflection
matrices are computed by repeating the analysis for varying Stokes parameters of incident
light. Whereas close-packing effects can be approximately accounted for by, e.g., the structure
factor formalism, we constrain our computations to volume densities less than 10% to avoid
such corrections.

The reversely propagating waves exhibit peculiar polarization characteristics as a function
of the scattering order. The polarization state of the directly propagating wave changes at each
additional scattering process, but the state of the reversely propagating wave converges after
a number of scatterings. In other words, the scattering processes at the end of the reverse
path tend to control the overall polarization properties of the reverse wave, and the scatterers
constitute an efficient reverse polarizer. The convergence of the polarization state is here
utilized to speed up the computations of the coherent backscattering contribution.

An essential feature of the numerical technique is the a priori selection of
reflection/transmission directions for updating Stokes parameters during the MC radiative
transfer computation, thus avoiding collection of rays into finite bins. Fixed angles allow for
the computation of electromagnetic phase differences and thus the coherent backscattering
effect. In the technique, there are two sets of fixed angles. First, the radiative transfer set
utilizes Gauss–Legendre abscissae and weights for the polar angle and uniform spacing for
the azimuthal angle [54]. Second, the coherent backscattering set can be chosen to cover any
angular domain necessary.

In the backscattering reference frame, where the z-axis points in the direction of the
source, two angular schemes A-I and A-II are incorporated for the coherent backscattering
computations. In both schemes, the azimuthal angle is uniformly spaced with maximum
four angles. In A-I, the backscattering angle takes the 23 values of α = 0.0◦, 0.05◦,
0.1◦, 0.15◦, 0.2◦, 0.25◦, 0.5◦, 1.0◦, 1.5◦, 2.0◦, 2.5◦, 3.0◦, 4.5◦, 6.0◦, 7.5◦, 9.0◦, 12.0◦, 15.0◦,
18.0◦, 21.0◦, 24.0◦, 27.0◦, and 30.0◦. The A-II scheme has a finer angular resolution and
takes the 26 values of α = 0.0◦, 0.005◦, 0.01◦, 0.015◦, 0.02◦, 0.025◦, 0.05◦, 0.1◦, 0.15◦,
0.2◦, 0.25◦, 0.3◦, 0.45◦, 0.6◦, 0.75◦, 0.9◦, 1.2◦, 1.5◦, 1.8◦, 2.1◦, 2.4◦, 2.7◦, 3.0◦, 4.0◦, 5.0◦,
and 6.0◦.

In the generation of new propagation directions, Kepler’s equation is efficiently solved
using Newton’s method. Within the media, due to constant updating of the Stokes parameters
of reflected light, the generation of propagation directions is coupled with the generation of
the propagation path lengths, confining the subsequent scattering processes into the scattering
medium.

3. Results and discussion

In order to evaluate the number of rays needed for acceptable numerical accuracy, computations
were carried out for plane-parallel media of Rayleigh scatterers with ω̃ = 0.9 and k� = 300
(figure 3, angular scheme A-I) using 10, 102, 103, 104, 105 and 106 rays. Whereas 102 rays can
already give a rough idea of the main features, of the order of 105 rays are required to reach
acceptable convergence. A small offset of R12 from zero is typically found in the backscattering
direction for normal incidence. The offset vanishes with increasing number of rays, and is here
subtracted from the polarization curves across the angular regime close to backscattering—the
legitimacy of the subtraction is supported by the coinciding polarization surges in figure 3 for
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Figure 3. Numerical accuracy of the enhancement factors and polarization surges for plane-parallel
media of Rayleigh scatterers with single-scattering albedo ω̃ = 0.9 and extinction mean free path
k� = 300. With increasing line thickness, 10, 102, 103, 104, 105 and 106 rays were utilized in the
computation.

large numbers of rays. Note that the characteristics are plotted against 2k� sin α/2 ≈ k�α

(α small), a dimensionless quantity showing up in the coherent backscattering terms.
The polarization state of the reversely scattered waves was studied for semi-infinite plane-

parallel media of spherical scatterers allowing for a maximum deviation of 10−12 for Stokes
parameters scaled to a unit parameter I. For Rayleigh scatterers with ω̃ = 0.99, the distribution
of scattering orders where convergence was reached turned out to be bell-shaped with the most
probable scattering order for polarization convergence at 50 and the full distribution spanning
orders 15–115. For scatterers beyond the Rayleigh regime with x = 1.4 and m = 1.2 + i10−4

(see table 2 and figure 9), the scattering order distribution was similar, evidently due to the
Rayleigh-like polarization characteristics of the scatterers. For spherical scatterers with larger
size parameters (x ≈ 10), the scattering order distribution shifts considerably, spanning several
hundred orders of scattering just below the order of 1000. The distributions are sensitive to
the maximum deviation specified.

3.1. Rayleigh scattering

Within the Rayleigh regime, the scattering matrices are identical for all scatterers. The single-
scattering albedos and extinction mean free paths can thus take values obtained by mixing
Rayleigh scatterers with different physical characteristics without destroying the Rayleigh
scattering matrix. In what follows, after a detailed feasibility study based on extensive
computations for spherical scatterers using the software by Bohren and Huffman [39], we
have chosen to make use of k� = 100, 300, 900 and ω̃ = 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95,
0.99, 0.999, 0.9999, 1.0 (table 1). Unless otherwise stated, 105 rays have been traced for each
case, and ray tracing has been terminated when the relative flux density falls below 10−6.

Selected enhancement factors ζ and polarization surges −R21/R11 are shown in figure 4 for
given ω̃ and k� in the case of normal incidence (A-I). In general, the intensity and polarization
surges become narrower for increasing lengths of wave propagation paths, in accordance with
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(a) (b)

Figure 4. Enhancement factors and polarization surges for semi-infinite plane-parallel media of
Rayleigh scatterers with varying single-scattering albedos ω̃ and extinction mean free paths k�

(normal incidence): (a) ω̃ = 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 and k� = 300; (b) ω̃ = 0.9 and
k� = 100, 300, 900. Angular scales shifted for better illustration.

Table 1. Plane albedos Ap (%), enhancement factors ζ(0) and minimum polarizations Pmin (%)
for plane-parallel media of given optical thickness τh consisting of Rayleigh scatterers with single-
scattering albedo ω̃ in the case of normal incidence. The extinction mean free path is k� = 300.

Ap ζ(0) Pmin

τh τh τh

ω̃ 2 5 ∞ 2 5 ∞ 2 5 ∞
0.05 0.857 0.864 0.864 1.029 1.030 1.030 −0.32 −0.33 −0.34
0.10 1.77 1.78 1.78 1.058 1.060 1.060 −0.63 −0.68 −0.67
0.30 6.09 6.16 6.17 1.175 1.182 1.182 −1.83 −1.91 −1.86
0.50 12.0 12.3 12.3 1.290 1.303 1.303 −2.95 −3.03 −2.97
0.70 20.8 21.8 21.8 1.402 1.422 1.421 −3.91 −3.89 −3.87
0.90 36.7 42.0 42.3 1.501 1.525 1.525 −4.47 −4.12 −4.13
0.95 43.1 52.9 54.0 1.523 1.542 1.539 −4.56 −3.98 −3.94
0.99 75.3 1.552 −3.52
0.999 91.2 1.535 −3.09
0.9999 97.0 1.537 −2.83
1.0 51.5 73.6 1.543 1.553 −4.50 −3.48

the coherent backscattering mechanism. For the darkest media with ω̃ = 0.05, the opposition
effect is almost hidden but the negative polarization surges are clearly visible, underscoring
the importance of multiple scattering even for dark samples.

Figure 5 shows both individual and cumulative contributions from different scattering
orders to the entire reflection matrix for ω̃ = 0.9 and k� = 300 (A-I, 106 rays). Up to seven
orders of scattering are gradually included in the computations. According to figures 5(a) and
(b), the leading contribution arises from the second order, with the seventh-order contribution
being roughly an order of magnitude weaker. With increasing order of scattering, the widths
of the surges become narrower.

In figure 5(c), the reflection matrix element R22 underscores the known result that coherent
backscattering tends to conserve the linear polarization state of the incident radiation. Note
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(a)

(c)

(d)

(b)

Figure 5. Individual (left) and cumulative reflection matrix elements (right) from the scattering
orders n = 1, 2, . . . , 7 for semi-infinite plane-parallel media of Rayleigh scatterers with ω̃ = 0.9 and
k� = 300 (normal incidence): (a) R

(n)
11 (α)/RRT

11 (0), (b) −R
(n)
21 (α)/R11(α), (c) R

(n)
22 (α)/R11(α),

(d) R
(n)
33 (α)/R11(α), (e) R

(n)
44 (α)/R11(α). Also shown are the cumulative elements from all

significant orders of scattering. Note that the individual contributions have been illustrated so that
they are additive.

that very high orders of scattering are needed to reverse the angular dependence close to the
backscattering direction. The matrix element R33 (figure 5(d)) is close to a mirror image of R22

with respect to the zero-ordinate axis. For both R22 and R33, the first-order contribution behaves
qualitatively in a way opposite to the higher-order contributions. However, recalling that the
denominator includes the abrupt coherent backscattering surge, the first-order contribution
without the denominator does indeed increase towards the backscattering direction.

The reflection matrix element R44 (figure 5(e)) shows a mixed trend among the different
orders. For the second and third orders, the contributions are negative and amplified for
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(e)

Figure 5. (Continued.)

Figure 6. Enhancement factors and polarization surges for varying angles of incidence
ι = 0◦, 15◦, 30◦ and 60◦ for scattering planes perpendicular (dotted line) and parallel (solid
and dashed lines) to the surface normal–source direction-plane (semi-infinite media of Rayleigh
scatterers with ω̃ = 0.9 and k� = 300). For the parallel plane, results differ in the directions
towards the surface normal (dashed line) and the surface (solid line).

decreasing phase angle whereas, for the fourth order, the contribution is negative but neutralized
for decreasing phase angle. For the higher orders, the contributions are positive and amplified,
signalling of a weak conservation of the circular polarization state incident on the medium. The
reflection matrix element R34 vanishes as expected for a plane-parallel medium of Rayleigh
scatterers in normal incidence. To summarize, all of the backscattering characteristics in
figure 5 are in agreement with the physical interpretation of the coherent backscattering
mechanism reviewed in section 2.1 (figures 1 and 2).

Figure 6 shows the effects of oblique incidence angles on the backscattering surges in
intensity and polarization, again for k� = 300 and ω̃ = 0.9 (A-II, 5 × 104 rays). The
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Figure 7. Enhancement factors and polarization surges for semi-infinite plane-parallel media with
extinction mean free path k� = 300 composed of Rayleigh scatterers with high single-scattering
albedos of ω̃ = 0.95, 0.99, 0.999 and 0.9999.

angle of incidence assumes four values of ι = 0◦, 15◦, 30◦ and 60◦, and backscattering
characteristics are plotted in two scattering planes perpendicular to one another, crossing in
the backscattering direction. For the scattering plane perpendicular to the plane defined by
the directions of incidence and the outward normal vector of the medium, the results coincide
on the two azimuthal angles differing 180◦ (in the backscattering frame). For the scattering
plane coinciding with the plane defined by the normal vector and direction of incidence, the
results are different for scattering directions between the backscattering and outward normal
vector directions and between the backscattering and grazing directions. On one hand, the
backscattering peaks are insensitive to the incidence angle: they are slightly smaller for
the largest angle of incidence. On the other hand, the polarization surges reveal a clear
dependence on the incidence angle.

For the perpendicular plane, increasing the incidence angle results in substantial positive
polarization being superimposed upon the coherent backscattering surge. The surge itself
becomes more pronounced with increasing incidence angle. For the parallel plane, substantial
negative polarization is superimposed upon the coherent backscattering surges and the surges
become shallower. The overall background angular dependences are almost linear and vary
as a function of ι. In the backscattering direction, as is correct, the enhancement factors and
the absolute values of polarization are identical within each of the three sets for a given ι.

In figure 7, the intensity and polarization surges are plotted for semi-infinite media with
high single-scattering albedos of 0.95, 0.99, 0.999 and 0.9999 (A-II). With increasing albedo,
the polarization surges neutralize. These dependences are to be compared with the polarization
curve in [25]. Several days of CPU time on a desktop workstation were needed to trace 105

rays for ω̃ = 0.9999.
The enhancement factors and minimum polarizations for k� = 300 are shown in

figure 8 together with the reference numbers for plane-parallel media of conservative Rayleigh
scatterers (1.5368 and −2.765% [25]). The angular scheme is A-II for the semi-infinite media
with albedos 0.95, 0.99, 0.999 and 0.9999, and A-I for the rest of the cases.

The enhancement factors first increase rapidly with increasing single-scattering albedo,
finally balancing out for plane albedos of about 0.5 corresponding to single-scattering albedos
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(a)

(c)

(b)

Figure 8. Enhancement factors in the backscattering direction (ζ(0)) and minimum polarizations
(Pmin) for semi-infinite plane-parallel media with k� = 300 consisting of Rayleigh scatterers
with varying single-scattering albedos ω̃. Note the differing turning points for ζ(0) and Pmin
and the convergence towards the literature values [25] for the conservative medium (ω̃ = 1.0:
ζ(0) = 1.5368, Pmin = −2.765%): (a) 10[ζ(0) − 1] versus Ap, (b) Pmin versus Ap, and (c) Pmin
versus 10[ζ(0) − 1].

0.9–0.95. The minimum polarizations first decrease sharply with increasing single-scattering
albedo, reaching their minima for plane albedos of about 0.4, and thereafter increasing towards
the reference value of −2.765% for the conservative plane-parallel medium. The enhancement
factor reaches its maximum for single-scattering albedos below 1.0. Moreover, dictated by
the current theory, the enhancement factors ζ(0) coincide for random media with differing
k� but similar ω̃. Note that the earlier reference results include the polarization effects of
coherent backscattering only, whereas also the first-order contributions are included in the
present results. In particular, figure 8(b) suggests a first-order scattering contribution near the
conservative case, where the almost linear trend in the minimum polarization appears to cross
over the reference line from pure coherent backscattering. The minimum polarizations are
rather inert to k�, too. The plot of the minimum polarization versus the enhancement factor
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Table 2. Plane albedos Ap (%), enhancement factors ζ(0) and minimum polarizations Pmin (%)
for semi-infinite plane-parallel media of spherical scatterers (refractive index m, size parameter x).
Also shown are the scattering and absorption efficiencies qs and qa, the single-scattering albedo
ω̃, the extinction mean free path k�, the polarization norm N12, and the asymmetry parameters g11
and g12 (e.g., 4.20(−2) stands for 4.20 × 10−2). The volume density of the scatterers is v = 0.01.
For the first four entries, x = 1.4, Re(m) = 1.2 and Im(m) = 10−ν . For the four remaining
entries, m = 2.0 + i2.0.

qs qa ω̃ k� N12 g11 g12 Ap ζ(0) Pmin

ν

1 0.104 0.368 0.220 396 0.45 0.38 8.0(−2) 1.9 1.29 −3.2
2 0.953 4.10(−2) 0.699 1370 0.46 0.36 7.6(−2) 14 1.64 −5.9
3 0.965 4.15(−3) 0.959 1850 0.46 0.36 7.6(−2) 49 1.67 −5.2
4 0.966 4.15(−4) 0.996 1920 0.46 0.36 7.6(−2) 79 1.60 −3.4

x
0.3 0.224 0.498 4.30(−2) 76.9 0.50 9.4(−3) 2.9(−3) 0.73 1.03 −0.3
1 1.57 1.74 0.474 40.2 0.45 0.12 3.1(−2) 9.7 1.35 −3.2
3 1.73 1.22 0.586 136 0.18 0.63 0.13 5.4 1.55 −1.6
10 1.61 0.895 0.643 532 0.20 0.73 0.13 5.9 1.55 −1.8

in figure 8(c) consists of two roughly linear branches: first, ζ and Pmin are amplified up until
ω̃ = 0.7–0.9, whereafter ζ is almost saturated and Pmin is neutralized.

Table 1 gives the plane albedos Ap, enhancement factors ζ(0) and minimum polarizations
Pmin for plane-parallel media of given optical thickness τh consisting of Rayleigh scatterers
with single-scattering albedo ω̃ in the case of normal incidence. The extinction mean free
path is k� = 300. For plane-parallel media of finite optical thicknesses τh = 2 or τh = 5 and
small single-scattering albedos, the results coincide with those for semi-infinite media, but
clear differences are seen for ω̃ � 0.7: for the larger optical thickness, the polarization surges
are shallower, and the backscattering peaks are sharper. For example, maximum enhancement
factors result for τh = 5, that is, not for the smallest or the largest optical thickness. Also,
the most pronounced polarization minima follow for τh = 2 and ω̃ = 0.99; for τh = 5 and
semi-infinite media, the extrema are reached for ω̃ = 0.9. Finally, the relevant enhancement
factors of table 1 are in agreement with those in [40].

3.2. Scattering beyond the Rayleigh regime

Coherent backscattering by plane-parallel media of spherical scatterers is illustrated using two
examples for particle volume density of v = 0.01. On one hand, gradually mimicking latex
particles in water, computations are carried out for a medium of absorbing spherical particles
with the size parameter x = 1.4 and refractive index m = 1.2 + i10−1, 1.2 + i10−2, 1.2 + i10−3,
and 1.2 + i10−4 (cf [40]). 5 × 104 and 104 rays were traced for the first and last two
cases, respectively. On the other hand, computations are carried out for a medium of
absorbing spherical particles in vacuum with x = 0.3, 1.0, 3.0 and 10.0, and m = 2.0 + i2.0
(105 rays). Table 2 (A-II) shows single-scattering characteristics for the spherical particles
under consideration. All of the particles are predominantly forward scattering with g11 > 0,
net positively polarizing with N12 > 0, and their polarization asymmetry parameters are
positive, g12 > 0.

Figure 9 shows the reflection matrices for the latex-mimicking particles. Note the
sharpening of the enhancement factor and the polarization surge with decreasing imaginary
part of the refractive index (figure 9(a)). As for Rayleigh scatterers but in a more pronounced



Coherent backscattering by complex media 383

(a)

(b)

(c)

Figure 9. Reflection matrix elements for semi-infinite plane-parallel media of spherical scatterers
with size parameter x = 1.4, real part of the refractive index Re(m) = 1.2, varying imaginary part
of the refractive index Im(m) = 10−1, 10−2, 10−3, 10−4, and medium volume density v = 0.01:
(a) R11/R

RT
11 (0) and −R21/R11, (b) R22/R11 and R33/R11, (c) R34/R11 and R44/R11.

way, the largest enhancement factors and steepest polarizations are seen for intermediate
single-scattering albedos. The enhancement factor of ζ(0) = 1.60 for x = 1.4 and
m = 1.2 + i10−4 is already close to the literature value of ζ(0) = 1.59 for m = 1.2 [40].

The element ratios R22/R11 and R33/R11 are, again, almost mirror images of one another,
revealing a very narrow surge next to the backscattering direction (figure 9(b)). The element
ratio R44/R11 signals the conservation of the circular polarization state for the case with the
smallest absorption (cf [4, 55]). The element R34/R11 vanishes within the computational
noise.

Figure 10 shows the full reflection matrices for the particles with m = 2.0 + i2.0. The
enhancement factor and polarization surge are gradually strengthened with increasing size
parameter, here implying increasing single-scattering albedo (figure 10(a)). In contrast to the
latex-mimicking particles above, the rest of the reflection matrix elements show little or no
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(a)

(c)

(b)

Figure 10. As in figure 9 for spherical scatterers with varying size parameter x = 0.3, 1, 3, 10,
refractive index m = 2.0 + i2.0, and medium volume density v = 0.01.

deviations from a linear dependence (figures 10(b), (c)). For the medium with the largest
particles, R44/R11 is neutralized close to the backscattering direction.

For curiousity, careful inspection of figures 9(a) and 10(a) leads to the conclusion that
the angular dependence of the enhancement factor is a plausible discriminator among the
eight cases under study. The discrimination becomes clear, when the polarization surges and
remaining reflection matrix elements are incorporated. It is necessary to emphasize that such
discrimination may generally not be possible based on backscattering characteristics only. As
compared to the results for Rayleigh scatterers, the larger scatterers allow more pronounced
enhancement factors (ζ(0) � 1.6) and negative polarization surges (Pmin � −5.8%).

4. Conclusions

A novel numerical Monte Carlo technique is presented for coherent backscattering by complex
random media of spherical scatterers. The MC technique allows the computation of full
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angular characteristics of the 4 × 4 reflection matrices interrelating the Stokes parameters of
the incoming and outgoing radiation. The MC technique is turning useful in the interpretation
of backscattering characteristics of planetary-system objects (cf [11, 56]).

Using the current MC technique in resemblance to the past radiative transfer techniques
(cf [57, 58]), coherent backscattering effects can be studied for complex random media with
random rough surfaces. It is possible to study such effects for media constrained by a spherical
envelope with a given radial optical thickness. The effects can further be studied for discrete
scatterers embedded in an optically homogeneous and isotropic medium and for random rough
interfaces between two homogeneous and isotropic media (cf [59]). The MC technique allows
the study of potential corrections to radiative transfer in the case of close-packed random
media of scatterers.

For plane-parallel media composed of Rayleigh scatterers, the angular characteristics of
the full reflection matrices have been computed for several mean free paths over the entire range
of single-scattering albedos. Agreement has been reached with reference enhancement factors
and polarization surges available in the literature. It has been shown that absorbing Rayleigh
scatterers can yield more pronounced enhancement factors and polarization surges than non-
absorbing Rayleigh scatterers. The future computations can be optimized with respect to
single-scattering albedo and mean free path: first, the multiple scattering contributions from
various orders of scattering for conservative media can be readily utilized to compute multiple
scattering for arbitrary single-scattering albedos (less than unity) and, second, numerous mean
free paths can be treated simultaneously.

For plane-parallel media of spherical scatterers beyond the Rayleigh regime, the
computations show convergence towards reference enhancement factors for non-absorbing
latex spheres in water and, for the first time, give the full angular dependences close to
the backscattering direction. For media composed of highly absorbing scatterers, the first
results indicate a resonant dependence of the polarization surge on the size of the scatterers:
for spherical scatterers with volume density 1% and refractive index 2.0 + i2.0, substantial
widening of the polarization surge is observed for size parameter x = 1, as compared to
smaller or larger scatterers. An extensive study across the size parameter and refractive index
domain is to be carried out in future, with special attention to be paid to the polarization states
of the reverse waves.

Several challenges remain in the theory of coherent backscattering and the computational
techniques for obtaining numerical results. First, it is of priority to compare the multiple
scattering computations to the predictions of the electromagnetic scattering theory for
constrained media of scatterers. The MC technique utilizes far-field scattering only so
mean-free paths of the order of the wavelength must be treated with caution. Second, the
law of energy conservation is violated for plane-parallel media of finite optical thickness,
where the reflected and transmitted energy due to radiative transfer already adds up to
unity. Third, the generalization of the numerical technique for nonspherical single scatterers
is possible but requires vast computer programming efforts in both single and multiple
scattering.
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