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Stochastic atom model

I want to generate an arrow of time from a microscopic reversible
dynamics. The ultimate aim is to study the interaction of systems
with conflicting arrows of time,
Deterministic chaos: too difficult for me.
Langevin dynamics already dissipative.
Stochastic atom model from analogy with radiation theory
wN→N−1 = |〈N − 1|c|N〉|2 = |〈N|c+|N − 1〉|2 = wN−1→N ⇒

EbEa
a bΦ

w(Ea,Eb → Ea + ∆E ,Eb + ∆E ) =
= w(Ea + ∆E ,Eb −∆E → Ea,Eb) = Γ(Ea + ∆E )Eb

Energy conservation; Ea,b positive defined.
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Strong detailed balance

Microscopic reversibility implies uniform equilibrium distribution:

w(E′; t ′|E, t) = w(E; t ′|E′, t)⇒ P̄(E′) = P̄(E)

Extension to the case of N atoms
Microcanonical equilibrium distribution.
We can prove the law of increase for the entropy
S(t) = −〈ln P(E, t)〉, Ṡ ≥ 0.

SDE representation
Continuous limit ∆E → 0

dEa = Γ(Eb − Ea)dt +
√

2ΓEaEb dW , 〈dW 2〉 = dt;
∂tP = Γ∂Ea (EaEb∂Ea P).
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Interaction with a thermal bath

Atom a becomes the system. Many atoms b together form the
thermostat.

dEa = Γ(〈Eb〉 − Ea)dt +
√

2ΓEa〈Eb〉 dW ,

Better written

dEa = Γ(T − Ea)dt +
√

2ΓTEa dW ,

The associated Fokker-Planck equation reads

∂tP = Γ∂Ea [Ea(P + T∂Ea P)].

At equilibrium we get the Boltzmann distribution

P̄(Ea) = (1/T ) exp(−Ea/T ). (1)

If the system contains N � 1 atoms, we get the Langevin equation

dẼa = −ΓẼadt +
√

2ΓNT dW , Ẽa = Ea − NT . (2)
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dẼa = −ΓẼadt +
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2ΓNT dW , Ẽa = Ea − NT . (2)

Helskinki 2019, Stochastic systems with mixed boundary conditions in time 4/20



Interaction with a thermal bath

Better written

dEa = Γ(T − Ea)dt +
√

2ΓTEa dW ,

The associated Fokker-Planck equation reads

∂tP = Γ∂Ea [Ea(P + T∂Ea P)].

At equilibrium we get the Boltzmann distribution

P̄(Ea) = (1/T ) exp(−Ea/T ). (1)

If the system contains N � 1 atoms, we get the Langevin equation
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Additional properties

It is possible to prove that P(E , t) approaches equilibrium by first
relaxing onto a time-dependent Boltzmann distribution:

P(Ea, t) −→ 1
〈Ea(t)〉 exp

(
− Ea
〈Ea(t)〉

)
−→ 1

T exp
(
− Ea

T

)
.

If the relaxation of the thermal bath is faster than that of the
system, the total entropy S = Sa + Sbath of the system + thermostat
obeys

Ṡ = Ṡa −
〈Ėa〉
T ≥ 0.
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Few remarks on time arrows and reversibility

After averaging, the drift becomes de facto a dissipation (a
thermodynamic limit is actually required, but this is more a matter
of interpretation).

Microscopic reversibility is replaced by macroscopic reversibility, i.e.
by standard detailed balance

P(E′, t ′|E, t)P̄(E) = P(E, t ′|E′, t)P̄(E′).

Detailed balance implies the reversibility relation

P(E′, t ′|E, t) = P(E′, t|E, t ′). (3)

This tells us that the time reversed dynamics conditioned in the
future is identical to the original dynamics conditioned in the past.
The choice of conditioning determines the arrow of time for the
system.
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Two atoms in a thermal bath

Eb TEaT
Γ ΓΓg

Forward dynamics quite easy to study:
Initial conditions E(ti ) = Ei .
We can write SDE and Fokker-Planck equations to describe the heat
transfer
Boltzmann equilibrium

P̄(E) = T −2 exp[−(Ea + Eb)/T ].

Mean heat transfer

〈Ėa〉 = Γ[T − 〈Ea〉+ g〈Eb − Ea〉]; 〈Ėb〉 = Γ[T − 〈Eb〉 − g〈Eb − Ea〉].

Total entropy growth

Ṡ = Γ
T 2 [(〈Ea〉 − T )2 + (〈Eb〉 − T )2 + g(〈Ea〉 − 〈Eb〉)2] ≥ 0.
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Mixed boundary conditions

Impose boundary
condition in the past on
a and in the future on b.

E (t )=Ea a
i

i

E (t )=Eb b
f

f

Eb TEaT
Γ ΓΓg

Incomplete Schrödinger bridge

P(E, t|E i
a, ti ; E f

b, tf )

= P(E f
b, tf |E, t; E i

a, ti )P(E, t; E i
a, ti )

P̄(E i
a, ti ; E f

b, tf )

= P(E f
b, tf |E, t)P(E, t|E i

a, ti )
P(E f

b, tf |E i
a, ti )

.

Boundary conditions:

P(E, ti |E i
a, ti ) = δ(Ea − E i

a)P̄(Eb)
P(Eb, tf |Ef , tf ) = δ(Eb − E f

b).
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Opposite arrows of time

Alternative form of Schrödinger bridge formula

P(E, t|E i
a, ti ; E f

b, tf ) = P(E, t|E i
a, ti )

P̄(Eb)
P(E, t|E f

b, tf )
P̄(Ea)

P̄(E i
a)P̄(E f

b)
P̄(E i

a, ti ; E f
b, tf )

.

The approach to equilibrium in opposite directions of time becomes
evident when a and b are decoupled:
P(E, t|E i

a, ti )/P̄(Eb) = P(Ea, t|E i
a, ti );

P(E, t|E f
b, tf )/P̄(Ea) = P(Eb, t|E f

b, tf ).
Note the complete symmetry of the Schrödinger bridge expression
with respect to boundary conditions in the past and in the future.
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Conflicting relaxation

Far from the boundaries, P(E, t) is instantaneously Boltzmann.
Its evolution can be described in terms of the temperature anomaly
Êa,b ≡ Ea,b/T − 1:

〈Êa(t)|E i
a, ti ; E f

b, tf 〉 = A(t − ti )Ê i
a + B(tf − t)Ê f

b,

〈Êb(t)|E i
a, ti ; E f

b, tf 〉 = B(t − ti )Ê i
a + A(tf − t)Ê f

b,

where A(0) = 1, B(0) = 0, A(t) = B(t)→ 0 for t → +∞.
For the entropy,

Ṡ = A(t − ti )(Ê i
a)2 − A(tf − t)(Ê f

b)2. (4)

No contribution to entropy dynamics from the mutual interaction of
the atoms.
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Heat fluxes

It is not clear if heat
should flow from a to b
or vice versa.

E (t )=Eb b
f

f

Φa b=?

Eb TEaT
Γ ΓΓg

a a
i

iE (t )=E

Ea
Eb

Calculation in large deviation regime

Heat flux dominated by the
noise component in the SDE,
that steers Eb(t) towards E f

b.

Φa→b = gΓ[Ê i
ae−(1+2g)Γ(t−ti )

+ Ê f
be−(1+2g)Γ(tf−t)].

No contribution to Φa→b from
Ea − Eb.
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Summarizing:

Near the boundaries, the dynamics is dominated by relaxation of the
conditioned systems towards equilibrium: system a in the future;
system b in the past.
For large tf − ti , near ti , b is enslaved to a; near tf , a is enslaved to
b.
The interaction of a and b cannot be described as a relaxation
dynamics.

We wonder whether a SDE description of the stochastic dynamics
exists.
The answer is yes (see e.g. Ma and Yong, Springer 2007), but we
lose the symmetric description of boundary conditions afforded by
the Schrödinger bridge approach.
What is the physical meaning of the choice of time direction implicit
in a SDE approach?
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Small philosophical aside

We can see a stochastic process as a tool to generate trajectories
distributed with a given statistics.
Different stochastic processes can generate the same trajectory
statistics. In particular, we can generate a given statistics both from
stochastic processes that evolve forward, and from stochastic
processes that evolve backward in time.
A causal response can be defined as a response that does not require
sampling in order to be detected in a (forward) experiment.
Obviously, a causal response is more naturally described in a forward
picture.
A causal response and a forward description are more natural both
from the point of experiment and of theoretical picture if the system
is conditioned in the past. Things are less clear if the system is
conditioned in the future.
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The problem from the point of view of experiments

Suppose that the system is perturbed at time t = 0 by a Dirac delta
forcing. Identify with tilde perturbed quantities. The system has
boundary condition x(tf ) = xf , tf > 0.
Response of the system to external perturbation more easily
detected by first perturbing the system and then sampling
trajectories. Not vice versa.
Schrödinger bridge representation:

P̃(x , t < 0|xf , tf ) = P̃(xf , tf |x , t)P̃(x , t < 0)
P̃(xf , tf )

= P̃(xf , tf |x , t)P̄(x)
P̃(xf , tf )

,

P̃(x , t > 0|xf , tf ) = P̃(xf , tf |x , t > 0)P̃(x , t)
P̃(xf , tf )

= P(xf , tf |x , t)P̃(x , t)
P̃(xf , tf )

.

The probability receives an anticipating correction from the
perturbation through the factor P̃(xf , tf |x , t)P̄(x)/P̃(xf , tf ).
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The problem from the point of view of theory

We have seen that, in the presence of conditioning in the future, the
kind of response that is experimentally easier to detect, has some
non-causal features.
From the point of view of theory, a simpler physical picture is
obtained by means of a fully backward description and a fully
anticausal response.
We wonder what would be the most natural description (at least
from the point of theory) in the case of a system with mixed
boundary conditions in time.
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Possibility of a mixed forward-backward description

Main motivation:
If a and b are decoupled, the most natural description of the
dynamics is forward in time for a and backward in time for b.
We wonder whether the description could be adapted, with some sort
of perturbation expansion around the uncoupled case, to the case a
and b are weakly coupled.

Main difficulty:
A stochastic process cannot simultaneously evolve (be “adapted”)
forward and backward in time.
The interaction of a and b seem to require precisely such property:

Eb TEaT
Γ ΓΓg

?Forward Backward

Possible solution: to treat the interaction alternatively forward and
backward in time in the perturbation expansion, depending on the
need.
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Application: Response to a delta function forcing

We have the system of equation for the moments of E(t), after
normalizing t and E in appropriate way and subtracting equilibrium
values:

〈Ėa(t)〉 = −〈Ea(t)〉+ g [〈Eb(t)〉 − 〈Ea(t)〉];
〈Ėb(t)〉 = 〈Eb(t)〉+ g [〈Eb(t)〉 − 〈Ẽa(t)〉].

Force Ea at time t = 0 with a Dirac delta of amplitude ξ and
perturbatively evaluate the response, 〈E〉 =

∑
〈E〉(n)gn. At O(g0) we

solve for 〈Ea〉 forward in time to get

〈Ea(t)〉(0) = ξθ(t) exp(−t)

At the next two orders, solve for 〈Eb〉 and 〈Ea〉 backward and
forward in time, respectively:

〈Eb(t)〉(1) = (ξ/2) exp(−|t|);
〈Ea(t)〉(2) = (ξ/4)[1 + (2 + t)tθ(t)] exp(−|t|).

The backward response of Eb induces an anticipatory response for a.
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Timemachine paradox

A timemachine “paradox” is generated if the anticipatory response is
observed, but the perturbation is not enacted.

Of course no paradox is generated in the stochastic case: the system
is simply pushed on a less probable trajectory.
We can define a probability cost of “solving the paradox” as the
probability that the system response is generated without
perturbation.
This quantity can be calculated in the case a and b are each
composed of N � 1 atoms, in such a way to work in a large
deviation regime. In this case the probability cost is just the
equilibrium probability of observing the value of the anticipatory
response at t = 0:

Pcost ∼ exp
(
− Ng4ξ2

32

)
.

Helskinki 2019, Stochastic systems with mixed boundary conditions in time 18/20



Timemachine paradox

A timemachine “paradox” is generated if the anticipatory response is
observed, but the perturbation is not enacted.
Of course no paradox is generated in the stochastic case: the system
is simply pushed on a less probable trajectory.
We can define a probability cost of “solving the paradox” as the
probability that the system response is generated without
perturbation.
This quantity can be calculated in the case a and b are each
composed of N � 1 atoms, in such a way to work in a large
deviation regime. In this case the probability cost is just the
equilibrium probability of observing the value of the anticipatory
response at t = 0:

Pcost ∼ exp
(
− Ng4ξ2

32

)
.

Helskinki 2019, Stochastic systems with mixed boundary conditions in time 18/20



Application: temperature shift

Changing the temperature influences the noise part of the dynamics.
The mixed forward-backward response generates nonlinear feedback
on the drift. Suppose we increase linearly the temperature of
thermostat a from T to T + δT in the interval [0, δt]. The
perturbation on Ea at time t = δt is

∆Ea = δT
2

√
Ea(0)

2 ∆Wat(0).

We can calculate again the O(g2) component of the perturbation to
Ea at time t = 0,

〈Ea(0)〉(2) = g2

4 δT
√

2Ea(0)∆Wat(0),

∆Ea contains through Ea(0) the anticipary component of the
perturbation. We have therefore to take into account a Zakai-Wong
kind of correction, which leads to a rectifying effect on the response:

〈Ėa〉 '
g2Ṫ

4 .
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Conclusion

Work in progress

Extension of the stochastic atom model to include a dynamical
variable (variables) with mechanical interpretation (analog of volume
in a thermodynamical system).
To look for applications in stochastic thermodynamics.
Possible experimental tests.
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