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Fluctuation relations are identities, holding in non-equilibrium systems, that have attracted a lot of
interest in the last 18 years. This is a series of 4 lectures discussing various aspects of such relations
for stochastic equations modeling non-equilibrium processes.

Lecture 1: Transient fluctuation relations for Markov processes

- Maes’ view of fluctuation relations
- Jarzynski-Crooks-Hatano-Sasa relations for nonstationary Markov chains
- Case of continuous time Markov processes

Lecture 2: 2nd Law of Stochastic Thermodynamics

- Work, heat and entropy in stochastic thermodynamics
- Fluctuation relations and the 2nd Law of Stochastic Thermodynamics
- Finite time refinement of the 2nd Law and Landauer principle

Lecture 3: Fluctuation-dissipation relations

- Jarzynski-Hatano-Sasa relation near stationary state
- General Fluctuation-Dissipation Theorem
- Green-Kubo formula for diffusions

Lecture 4: Large deviations and stationary fluctuation relations

- Gallavotti-Cohen type fluctuation relations
- Macroscopic fluctuation theory
- A non-trivial example

I. TRANSIENT FLUCTUATION RELATIONS FOR MARKOV PROCESSES

A. A bit of history

The history of fluctuation relations may be traced back to the late seventies/early eighties papers by
Bochkov-Kuzovlev [BK77, BK79, BK81] that were not remarked at the time. In the next development,
in 1993 Evans-Cohen-Morriss observed in [ECM93] a symmetry in the distribution of fluctuations of
microscopic pressure in a thermostatted particle system driven by external shear. Attempts to explain
this symmetry on the theoretical ground led to the formulation of the Evans-Searles transient fluctua-
tion relation [ES94] and of the Gallavotti-Cohen stationary fluctuation relation [GC95a, GC95b]. On
the other hand, Jarzynski in 1997 proved in [J97a] a simple equality, which appeared to be closely re-
lated to the Bochkov-Kuzovlev one, see [J07a]. Originally formulated for deterministic non-equilibrium
evolutions, the fluctuation relations were quickly extended to stochastic dynamics in [J97b, K98, LS99].
All these works attracted in late nineties and afterwards a widespread interest and led to an avalanche
of papers. For reviews see [ES02, G08, M03, J11, SF12]. In these lectures, which are neither an
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exhaustive review of the subject, nor follow the thread of history, I shall discuss some topics related
to fluctuation relations in which I was involved myself.

B. Few trivial identities

As observed by Maes in [M99], in the stochastic setup, the fluctuation relations have their root in
trivial identities comparing two probability measures P(dx) and P!(dx" ) absolutely continuous with
respect to each other, where x !" x" is a, possibly trivial, involution. We shall denote by E and

E! the expectations with respect to P(dx) and P!(dx), respectively. If e#W (x) = P ! (dx" )
P (dx) is the

Radon-Nikodym derivative of P!(dx" ) with respect to P(dx) then, trivially,

E e#W (x) = 1 (1.1)

and, more generally,

E F (x) e#W (x) = E! F (x" ) . (1.2)

In particular, taking F (x) = f (W (x)), we obtain

E f (W (x)) e#W (x) = E! f (#W !(x)) (1.3)

where W !(x) = #W (x" ) so that e#W ! (x) = P (dx" )
P ! (dx) . Eq. (1.3) implies the following relation between

the probability distribution ! (W )dW of the random variable W (x) with respect to P(dx) and
! !(W )dW of the random variable W !(x) with respect to P!(dx):

e#W ! (W ) = ! !(#W ) . (1.4)

C. Application to Markov chains

We shall first apply the above tautological relations to discrete-time (nonstationary) Markov chain
(xn)

N+1
n=0 with space of states X . Let us denote by Pn(x, dy) the transition probabilities for the

process and by µ0(dx) the distribution of x0. The probability space of the process may be taken as
XN = X N+2 with the probability measure

Pµ0 [dx ] = µ0(dx0)P0(x0, dx1) á á áPN (xN , dxN+1 ) , (1.5)

where x $ (x0, . . . , xN+1 ) (we shall denote the trajectorial or functional dependence by square brack-
ets). Suppose that (x!

n)
N+1
n=0 is another Markov chain with the same space of states X corresponding

to transition probabilities P!
n(x, dy) and the initial measure µ!

0(dx). It corresponds to the measure

P!
µ!

0
[dx ] = µ!

0(dx0)P!
0(x0, dx1) á á áP!

N (xN , dxN+1 ) , (1.6)

Let us now consider an involution %: X " X and let us extend it to X N+1 by combining it with the
time reflection, so that for x = (x0, . . . , xN+1 ),

x " = (x"
N+1 , . . . , x"

0) . (1.7)

We may apply the scheme described at the beginning of the lecture to the case at hand defining

e#W N [x ] =
P!
µ!

0
[dx " ]

Pµ0 [dx ]
=

µ!
0(dx"

N+1 )P!
0(x

"
N+1 , dx"

N ) á á áP!
N (x"

1, dx"
0)

µ0(dx0)P0(x0, dx1) á á áPN (xN , dxN+1 )
= eW !

N [x " ] , (1.8)

inferring immediately that

Eµ0 e
#W N [x ] = 1 , (1.9)

where Eµ0 stands for the expectation with respect to Pµ0 (dx ) and that

e#W ! N (W ) = ! !
N (#W ) , (1.10)

where ! N (W ) and ! !
N (W ) is the probability density of WN [x ] and W !

N [x ] with respect to the
probability measure Pµ0 [dx ] and P!

µ!
0
(dx ), respectively. Of course, we have to assume that the

relative absolute continuity of Pµ0 [dx ] and P!
µ!

0
[dx " ] but this is assured if all initial and transition

probability measures have positive densities with respect to a fixed measure " (dx) on X that we shall
take to be the counting measure if X is discrete and the Lebesgue measure if X = Rd.
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D. Hatano-Sasa fluctuation relations for Markov chains

Suppose that #n(dx) = e# ϕn (x) " (dx) are probability measures left invariant under transition proba-
bilities Pn(x, dy):

!

X

#n(dx)Pn(x, dy) = #n(dy) . (1.11)

Take

P!
n(x, dy) =

Pn" (y" , dx" )

#n" (dx" )
#n" (dy" ) (1.12)

for n" $ N # n, assuming again that the Radon-Nikodym derivative exists. P!
n(x, dy) are Markov

transition probabilities and, for #!
n(dx) = #n" (dx" ),

!

X

#!
n(dx)P!

n(x, dy) =

!

X

#n" (dx" )
Pn" (y" , dx" )

#n" (dx" )
#n" (dy" ) = #n" (dy" ) = #!

n(dy) (1.13)

(the integration is over x), so that the measures #!
n(dx) = e# ϕ!

n (x) " (dx" ) with $!
n(x) = $n" (x" ) are

left invariant under the transition probabilities P!
n(x, dy). The process (x!

n) has the interpretation of
a specific time-reversal of the original process (xn). The Radon-Nikodym derivative (1.8) takes now
the form

e#W N [x ] =
µ!

0(dx"
N+1 )

#N (dxN+1 )

#N (dxN )

#N# 1(dxN )
á á á

#1(dx1)

#0(dx1)

#0(dx0)

µ0(dx0)
= eW !

N (x " ] (1.14)

and the identities (1.9) and (1.10) hold for any choice of the initial measures µ0 and µ!
0 with densities

µ0(dx) = %0(x)d" (dx) , µ!
0(dx) = %!

0(x) " (dx" ) . (1.15)

Explicitly,

WN [x ] = # ln%!
0(x

"
N+1 ) # $N (xN+1 ) +

N"

n=1

#
$n(xn) # $n# 1(xn)

$
+ ln%0(x0) + $0(x0) . (1.16)

In the particular case with the initial measures µ0 = #0 and µ!
0 = #!

0, the boundary contributions
vanish so that

WN [x ] =
N"

n=1

#
$n(xn) # $n# 1(xn)

$
(1.17)

and we obtain the relation

Eν0 e
#

N!

n =1
(ϕn (xn )# ϕn # 1 (xn ))

= 1 (1.18)

which is the Markov chain version of the Hatano-Sasa relation [HS01]. Note that in special
situations when the time reversed and the original process have the same law, relation (1.10) reduces
to the property of the probability density ! (W ):

e#W ! N (W ) = ! N (#W ) . (1.19)

E. Jarzynski and Crooks relations

Consider the special case when the transition probabilities satisfy the detailed balance relation with
respect to Hamiltonians Hn(x) for inverse temperature & = 1

kB T , i.e. when

" (dx)Pn(x, dy) = " (dy)Pn(y, dx) e# β(Hn (y)# Hn (x)) . (1.20)
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In that case, assuming that the partition functions

Zn =

!

X

e# βHn (x) " (dx) (1.21)

are finite, the Gibbs states corresponding to Hamiltonians Hn,

#n(dx) = Z # 1
n e# βHn (x) , (1.22)

are left invariant under the transition probabilities Pn(x, dx) and

$n(x) = & (Hn(x) # Fn) , (1.23)

where Fn = # &# 1 lnZn are the free energies. The Hatano-Sasa relation (1.18) reduces in this case to
the Markov-chain version of the Jarzynski equality [J97a]:

Eν0 e# βWN [x ] = e# β! N F (1.24)

for ∆NF = FN # F0 and

WN [x ] =
N"

n=1

#
Hn(xn) # Hn# 1(xn)

$
. (1.25)

The quantity WN may be interpreted as the work performed on the system, see more on that in the
next lecture. By the Jensen inequality, identity (1.24) implies that

Eν0 WN [x ] & ∆NF (1.26)

i.e. that the average work is bounded below by the change of the free energy between the initial
and final times. The Jarzynski equality (1.24) contains, however, more information. For example, it
implies that the probability of observing the trajectories with WN [x ] ' ∆NF # a for positive a is
exponentially small. Indeed,

eβa Eν0 1{ W! [x ]$ ! N F# a} = eβ! N F Eν0 e# β(! N F# a) 1{ WN [x ]$ ! N F# a}

' eβ! N F Eν0 e# βWN [q] 1{ WN [x ]$ ! N F# a} ' 1 . (1.27)

In the case with detailed balance, the time reversed transition probabilities are

P!
n(x, dy) = Pn" (x" , dy" ) . (1.28)

They preserve the Gibbs measures

#!
n(dx) = Z !

n
# 1

e# βH !
n (x) " (dx" ) (1.29)

for H !
n(x) = Hn" (x" ) and Z !

n = Zn" . If

W !
N [x ] =

N"

n=1

(H !
n(xn) # H !

n# 1(xn)) = # WN [x " ] , (1.30)

and pN (W ) (p!
N (W )) denotes the probability density of WN [x ] (W !

N [x ]) with respect to PN [dx ]
(P!

N [dx ]) then relation (1.10) implies the Markov chain version of the Crooks relation [C99]

e# βW pN (W ) = e# β ! N F p!
N (# W ) . (1.31)

The distribution function p!
N on the right hand side may be replaced by pN for time-reversible processes

with P!
n(x, dx) = Pn(x, dx).

The utility of Eq. (1.24) and (1.31) is that it permits to extract the free energy difference between
initial and final Gibbs states in a nonstationary Markov chain with instantaneous detailed balance
from the statistics of the work WN performed on the system. Usually in thermodynamics, the free
energy difference is equal to the work performed in a quasi-stationary process between the initial and
final Gibbs state that requires long times. Note that here there is no assumption that the process has
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to be close to stationary and although the initial state µ0 was assumed to be equal to the Gibbs one
#0, the final state µN (the distribution of xN ) is, as a rule different from #N . Hence the interest
of the above Jarzynski and Crooks identities for numerical calculations of the free energy differences
of mesoscopic systems in different states, e.g. of DNA/RNA-hairpin stretching experiments and
simulations, see FIG. 1. In particular, Eq. (1.31) shows that ∆NF may be found as the value of W
for which p(W ) = p!(# W ).

FIG. 1: Work statistics in RNA stretching, from [R06]

F. Continuous time limit

Similar considerations apply to nonstationary continuous-time Markov processes. On the formal
level, they may be obtained by taking the limit of discrete-time Markov processes when with the time-
step ' tending to zero, with the total time interval N' = ( kept constant, the transition probabilities
for n such that n' = t is fixed have the behavior

Pn(x, dy) = 'w t(x, dy) +
#
1 # '

!

X

wt(x, dz)
$

)x(dy) + o(' ) . (1.32)

The limiting continuous-time Markov process (xt) for t ( [0, ( ] has the initial distribution µ0(dx).
Quantities w(x, dy), that are defined modulo signed measures concentrated on the diagonal, may be
distributional but are positive measures away from the diagonal and give there the transition rates of
the continuous time Markov process. The backward generators of the limiting process defined by the
identity

d
dt

Eµ0 f (xt) = Eµ0 (L tf )(xt) (1.33)

are given by the formula

(L tf )(x) =

!

X

wt(x, dy) f (y) #
%!

X

wt(x, dz)
&

f (x) . (1.34)

The transition probabilities Ps,t(x, dy) of the process (xt) for s & t evolve in time according to the
equations

* sPs,t(x, dy) = # L s(x)Ps,t(x, dy) , * tPs,t(x, dy) = L "
t (y)Ps,t(x, dy) , (1.35)

where L "
t is the adjoint operator acting on measures, with the condition Pt,t(x, dy) = )x(dy). In the

operator notation,

Ps,t = #"exp
' t!

s

L σ d+
(

. (1.36)
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The time t probability distributions µt(dx) of the process defined by

Eµ0 f (xt) =

!

X

f (y)µt(dy) (1.37)

are given by the relation

µt(dy) =

!

X

µ0(dx)P0,t(x, dy) (1.38)

and evolve according to the equation

* tµt = L "
tµt . (1.39)

On the other hand, the instantaneously invariant measures #t(dx) satisfy

L "
t#t = 0 . (1.40)

If the state space X is discrete, a continuous time Markov process jumps from x(t) = x to x(t+dt) =
y )= x with probability w(x, dy)dt and otherwise stays at x. If X = Rd, the process is a diffusion
with a drift or a jump process or a combination of both.

Examples 1. General diffusion process.

Consider a stochastic differential equation in Rd

dx = X 0t(x)dt + X αt(x) * dWα(t) , (1.41)

written with the Stratonovich convention indicated by symbol * , with arbitrary time-dependent
vector fields X 0t, X αt, , = 1, . . . , A and independent standard one-dimensional Wiener processes
Wα(t). Eq. (1.41), together with the initial distribution, defines a continuous-time Markov process
with transition rates

wt(x, dy) =
#
X 0t(x) á +x + 1

2 (X αt(x) á +x)
2$

) (x # y)dy (1.42)

and the backward generator

L t = X 0t á + + 1
2 (X αt á +)2 . (1.43)

The densities of the time t measures µt(dx) = %t(x) " (dx) of the process evolve according to the
Fokker-Planck equation

* t%t(x) = L  
t%t(x) = #+ á j t(x) , (1.44)

where L  
t is the formal adjoint of L t with respect to the Lebesgue measure " (dx) and

j t(x) =
%

%t X 0t # 1
2

#
+ á (%tX αt)

$
X αt

&
(x) =

#
%t

)X 0t # D t+ %t

$
(x) $ j ρt (x) (1.45)

is the probability current, where

)X 0t = X 0t # 1
2 (+ á X αt)X αt , Dt = 1

2 X αt , X αt (1.46)

(we employ the summation convention so , is summed over in the above formulas). If, following
[N67], we introduce the current velocity vt(x) by the relation

j t(x) = %t(x) vt(x) (1.47)

then the Fokker-Planck equation (1.44) may be rewritten as the advection equation

* t%t(x) + + (%tvt)(x) = 0 , (1.48)

which will be used a lot below. Note, nevertheless, that

vt(x) =
# )X 0t # D t+ ln%t

$
(x) (1.49)
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depends on %t.

Examples 2. Langevin process.

A particular diffusion process in Rd is given by the Langevin equation

dx = M
#

# (+ H t)(x) + f t(x)
$

dt + (2D)1/2dW(t) (1.50)

where M (the mobility) is a matrix with nonnegative symmetric part, and D (the diffusivity) is a
nonnegative matrix, H t(x) is the time-dependent Hamiltonian, f t(x) is a nonconservative force and
W (t) the standard d-dimensional Wiener process. For simplicity, we shall take matrices M and D
t- and x-independent here. The Markov process corresponding to Eq. (1.50) has the transition rates

w(x, dy) =
#

# M (+ H t)(x) + M f t(x) + D+ x

$
á +x) (x # y)dy (1.51)

and the backward generator

L t =
#

# M (+ H t) + M f t(x) + D+
$

á + . (1.52)

The probability current takes in this case the form

j t(x) =
#

# M (+ H t)(x) + M f t(x) # D+
$
%t(x) (1.53)

and the current velocity is

vt(x) = #M (+ H t)(x) + M f t(x) # D+ ln%t(x) . (1.54)

One says that M and D satisfy the Einstein relation if

M + M t = 2&D . (1.55)

If this is the case and the nonconservative force f t vanishes then the Gibbs measures

#t(dx) = Z # 1
t e# βHt (x) " (dx) (1.56)

are instantaneously invariant.

Examples 3. (Einstein’s) Brownian motion.

In the even dimensional case set x = (q, p), where q is the position and p the momentum. Let

M =
%0 # I

I M # 1

&
, D =

%0 0
0 M # 2D

&
,

H t(q, p) = 1
2 p ám# 1p+ Vt(x) , f t(q, p) = (- t(x), 0) , (1.57)

where M, D, m are half-dimension positive matrices, the first two commuting. Then the Langevin
stochastic equation takes the form

dq = m# 1p dt , dp =
%

# M # 1m# 1p # (+ V )(q) + - t(q)
&

dt + M # 1(2D )1/2 dW(t) (1.58)

which is the underdamped Langevin equation with the Hamiltonian dynamics accompanied by a
friction and a random force. In this example, one uses the involution (q, p)" = (q,# p) for the time
reversal. The Einstein relation reads here

M = &D (1.59)

aligning the friction coefficient M # 1 with the diffusivity D (physically, they come from the same
source: the interaction with the thermal environment). The case with Vt = 0, - t = 0 describes the
Einstein-Smoluchowski Brownian motion. In the limit m " 0, the underdamped Langevin equation
reduces to the overdamped one for q(t) which reads:

dq = M (#+ Vt(q) + - t)dt + (2D )1/2dW(t) (1.60)

which has again the form of Eq. (1.50) with x = q = x" , M = M = M t and D = D .

Examples 4. Lévy process.
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The Lévy jump process in Rd corresponds to

wt(x, dy) = wt(d(y # x)) (1.61)

where wt(dy) is a positive measure.

For the nonstationary continuous-time Markov process, the time-reversed process defined by analogy
to the one for the discrete-time process corresponds to the transition rates

w!
t(x, dy) =

wt" (y" , dx%)
#t" (dx" )

#t" (dy" ) , (1.62)

where t " $ ( # t and to an initial measure µ!
0. By a limiting argument, we may infer that the

fluctuation relation carry over to the case of continuous-time Markov processes. In particular, writing

µ0(dx)%0(x) " (dx) , µ!
0(dx) = %!

0(x) " (dx" ) , (1.63)

#t(dx) = e# ϕt (x) " (dx) , #!
t(dx) = e# ϕ!

t (x) " (dx" ) (1.64)

for $!
t(x) = $ t" (x" ) and

Wτ [x ] = # ln%!
0(x

"
τ ) # $τ (xτ ) +

τ!

0

* t$ t(x(t))dt + ln(%0(x0) + $0(x0) = #W τ [x " ] , (1.65)

where (x " )t = x"
t" for x = (xt), we obtain the relations

Eµ0 e#W ! [x ] = 1 (1.66)

and

e#W ! τ (W ) = ! !
τ (#W ) , (1.67)

the continuous-time counterparts of Eqs. (1.9) and (1.10). In the particular case when µ0 = #0 and
µ!

0 = #!
0, the expression (1.65) reduces to

Wτ [x ] =

τ!

0

(* t$ t)(xt)dt (1.68)

and we obtain the Hatano-Sasa equality [HS01]

Eν0 e
#

!"

0
(∂t ϕt )( xt ) dt

= 1 , (1.69)

see Eq. (1.18), and, if the direct and the reversed process have the same law, also the identity

e#W ! ! τ (W ) = ! τ (#W ) (1.70)

that is the continuous-time version of the Eq. (1.19).

The detailed balance condition for the continuous-time Markov process is defined similarly as for
the discrete time and takes the form

" (dx)wt(x, dy) = " (dy)wt(y, dx) e# β(Ht (y)# Ht (x)) , (1.71)

compare to Eq. (1.20). It implies again the instantaneous invariance of Gibbs measures

#t(dx) = Z # 1
t e# βHt (x) " (dx) . (1.72)

The transition rates for the time-reversed process take then the form

w!
t(x, dy) = wt" (x" , dy" ) . (1.73)
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One obtains the continuum time versions of the Jarzynski equality (1.24) and the Crooks identity
(1.31)

Eν0 e# βW! [x ] = e# β! ! F , e# βW pτ (W ) = e# β! ! F p!
τ (# W ) (1.74)

where

Wτ [x ] =

τ!

0

(* tH t)(xt)dt (1.75)

and W !
τ (x ) is given by the similar formula with H t(x) replaced by H !

t(x) = H t" (x" ) and where
pτ (W )dW (p!

τ (W )dW) the probability density function of Wτ [x ] (Wτ [x ]) in the direct (reversed)
process, respectively.

G. Fluctuation relations for general diffusion processes

In [CG08], we proved general fluctuation relations for diffusion processes solving stochastic equations
(1.41) on the time interval [0, ( ]. Upon a division of the drift field

X 0t(x) = X +
0t(x) + X #

0t(x) , (1.76)

we defined the time-reversed process as the one corresponding to the drift and diffusion vector fields

X !
0t = (X +

0t" )" # (X #
0t" )" , X !

αt = (X αt" )" , (1.77)

where X " is the push forward of the vector field X by an involution x !" x" , i.e.

(X " )i(x" ) =
*x " i

*x j
X j(x) . (1.78)

In other words, X +
0 was chosen to transform by the pseudo-vector and X #

0 by the vector rule under
the time reversal. The choice of the rule for X α is immaterial. We showed, combining the Girsanov
and Feynman-Kac formulas, that in this case

P!
µ!

0
[dx " ]

Pµ0 [dx ]
= e#W ! [x ] (1.79)

for

Wτ [x ] = # ln%!
0(x

"
τ ) +

τ!

0

J t dt + ln%0(x0) = #W !
τ [x

" ] , (1.80)

where

J t = )X +
0t(xt) á D# 1

t (xt)
%

*
dxt

dt
# X #

0t(xt)
&

# + á X #
0t(xt) , (1.81)

in the notations of (1.46). For the sake of illustration, let us consider three particular time reversals.

1. Case (a)

First, we shall show that the case studied before is, indeed, a particular instance of such a general
scheme. Upon taking

)X +
0t(x) = # D t(x)+ $ t(x) (1.82)

for e# ϕt such that L  
te

# ϕt = 0, we obtain

J t = # + $ t(xt) á
%

*
dxt

dt
# X #

0t(xt)
&

# + á X #
0t(xt) = # + $ t(xt) á *

dxt

dt
. (1.83)
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The last equality holds because

0 = eϕt L  
te

# ϕt = eϕt * i

%
# X i

0te
# ϕt + 1

2 X i
αt* j

#
X j

αte
# ϕt

$&

= eϕt + á
%

# X 0te
# ϕt + X +

0te
# ϕt

&
= # eϕt + á

%
X #

0t e
# ϕt

&
= (+ $ t) áX #

0t # + á X #
0t . (1.84)

Now, since

#

τ!

0

+ $ t(xt) á *
dxt

dt
= # $τ (xτ ) + $0(x0) +

τ!

0

(* t$ t)(xt)dt , (1.85)

functional (1.80) reduces in this case to expression (1.65).

2. Case (b)

In another important example that will be used below, let us take X 0t = X 0 + Yt with X 0 and X α

time independent. Let d#(dx) = e# ϕ(x) " (dx) be the invariant measure for Yt = 0. Taking

)X +
0t = # D (x)+ $(x) (1.86)

and proceeding as before, we obtain

J t = #+ $(xt) á
%

*
dxt

dt
# Yt(xt)

&
# + á Yt(xt) . (1.87)

3. Case (c)

Finally, suppose that we split the drift vector field taking

)X +
0t(x) = 0 . (1.88)

In this case,

J t = # + á X #
0t(xt) . (1.89)

The latter expression makes sense also in the limit of deterministic dynamical processes with X a = 0
when X +

0t = 0 and when J t becomes the phase-space contraction rate, giving rise in this case to the
Evans-Searles fluctuation relation [ES94, ES02].

Example 5. Consider the underdamped Langevin dynamics of an anharmonic chain, with phase-
space points x = (q0, p0, . . . , qL, pL), qi, pi ( Rd, that is governed by the stochastic equations

dqi = m# 1pi dt , dpi =
%
# M # 1

i m# 1pi # + qi V (q)
&
+ (2&# 1

i M # 1
i )1/2dWi(t) (1.90)

with scalar m, M i, &i > 0 and with the potential

V (q) =
k
2

L"

i=1

(qi # qi# 1)
2 +

L"

i=0

#r
2

q2
i +

g
4
(q2

i )
2$

(1.91)

for k, r, g > 0. The backward generator of the corresponding Markov process is

L =
L"

i=0

%
m# 1pi á +qi # (+ qi V )(q) á +pi # M # 1

i m# 1pi á +pi + &# 1
i M # 1

i + 2
pi

&
. (1.92)

If &i $ & then the dynamics (1.90) has the Gibbs state #(dx) = Z # 1 e# βH(x) " (dx) as an invariant
measure, where

H (x) =
L"

i=0

p2
i

2m
+ V (q) (1.93)
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is the Hamiltonian of the chain. We shall be mostly interested in the case when the dynamics inside
the chain is Hamiltonian, that is when M # 1

i = 0 for i )= 0, L . In that situation, the coefficients &i for
i )= 0, L disappear from the stochastic equations (1.90). Dividing the drift X 0 into the pseudo-vector
and vector parts so that

X +
0 (x) =

#
0, # M # 1

i m# 1pi
$

, X #
0 (x) =

#
m# 1pi, #+ qi V (q)

$
(1.94)

one infers from Eq. (1.81) that

J t = #
L"

i=0

&im# 1pit á
#

*
dpit
dt

+ + qi V (q
t
)
$

(1.95)

for such a choice. Note that the friction coefficients M # 1
i do not enter into the latter expression which

also does not depend on the choice of interpolating &i, i )= 0, L , if M # 1
i = 0 for i )= 9, L . A simple

calculation shows that

J t =
d
dt

ln%0(xt) +
L"

i=1

(&i # &i# 1) j (i# 1,i) (xt) , (1.96)

where

µ0(dx) = %0(x) " (dx)

= Z # 1
0 exp

' L"

i=0

&i

# p2
i

2m
+

r
2

q2
i +

g
4N

(q2
i )

2$
+

L"

i=1

&i# 1 + &i

2

k
2
(qi# 1 # qi)2

(
(1.97)

is the a local equilibrium measure and

j (i# 1,i) (x) =
k
2m

(pi# 1 + pi) á(qi# 1 # qi) (1.98)

is the energy (or heat) flux from site i # 1 to site i . Taking µ!
0 = µ0, we obtain from Eq. (1.80)

the quantity

Wτ (x ) =
L"

i=1

(&i # &i# 1)

τ!

0

j (i# i,i) (xt)dt (1.99)

for which the transient fluctuation relations (1.66) and (1.67) hold with all the implications, e.g. the
inequality

Eµ0 Wτ (x ) & 0 . (1.100)

If the dynamics inside the chain is Hamiltonian, then different choices of &i for i )= 0, L lead to
different fluctuation relations for the same system. E.g. for a linear interpolation between &0 and &L,

Wτ (x ) = (&L # &0)
1

L

L"

i=1

τ!

0

j (i# i,i) (xt)dt , (1.101)

whether for the piecewise constant interpolation with a jump between sites i # 1 and i ,

Wτ (x ) = (&L # &0)

τ!

0

j (i# i,i) (xt)dt , (1.102)

Different choices correspond to different local equilibrium measures µ0(dx) none of which is a station-
ary state if &0 )= &L because

L   %0 =
L"

i=1

(&i # &i# 1)j (i# 1,i) )$ 0 . (1.103)

it was shown in refs. [JP99a, JP99b] that in the stationary state with an invariant measure #(dx)
(that in fact has not been proven to exist for the version of the model that we consider, see however
[JP99a]),

Eν Wτ (x ) & 0 (1.104)

with the sharp inequality (for ( > 0 ) if and only if &0 = &N (the expectation on the right hand side of
inequality (1.104), unlike the one in (1.100), is independent on the choice of interpolating &i - why?).
Taking Wτ in the form (1.102), the latter result shows that, in the (putative) stationary state, the
heat flows in average from the hot to the cold end of the chain, a reassuring result.
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II. 2nd LAW OF STOCHASTIC THERMODYNAMICS

Although of tautological origin, the fluctuation relations considered in the previous section have im-
portant consequences that permit to make contact with the thermodynamical concepts in simple
nonequilibrium situations relevant for modelisation of the dynamics of mesoscopic systems, like col-
loids, polymers, or bio-molecules, in contact with heat bath(s).

A. Work and heat in overdamped Langevin dynamics

We shall consider a system described by a an overdamped Langevin equation in Rd

dq = # M (+ Ut)(q)dt + (2D )1/2dW(t) , (2.1)

with the positive mobility and diffusivity matrices M and D related by the Einstein relation

M = &D . (2.2)

Stochastic equation (2.1), together with the initial distribution µ0(dq), defines a nonstationary
continuous-time Markov process with transition rates

wt(q, dq!) =
#

# M (+ U)t(q) + D+ q

$
á +q) (q # q!) " (dq!) (2.3)

satisfying the detailed balance relations

" (dq)wt(q, dq!) = " (dq!)wt(q!, dq) e# β
#
Ut (q! )# U(q)

$
(2.4)

(check it!). Consequently, the Gibbs measures

#t(dq) = Z # 1
t e# βUt (q) " (dq) (2.5)

are instantaneously invariant, i.e. satisfy the relation L "
t#t = 0 for the backward generators

L t =
#

# M (+ Ut) + D+ ) á + . (2.6)

On the other hand, the time t probability distributions µt(dq) = %t(q)" (dq) evolve according to the
advection equation

* t%t + + (%tvt) = 0 (2.7)

with the current velocity

vt(q) = # M (+ Ut)(q) # D+ ln%t(q) , (2.8)

see Eqs. (1.48) and (1.54). The quantity

Wτ [q] =

τ!

0

(* tUt)(qt)dt (2.9)

has the interpretation of the work done over the system during time interval [0, ( ]. The white noise in
the Langevin equation simulates the effect of thermal environment with which the system exchanges
the heat. The heat dissipated in time interval [0, ( ] is given by the formula

Qτ [q] = #

τ!

0

(+ Ut)(qt) * dq(t) . (2.10)

Note that Wτ and Qτ defined this way depend on the trajectory process. We shall call such quantities
fluctuating. The assignment of the names may seem somewhat arbitrary and counterintuitive (it is
the right-hand-side of (2.10) that looks as the work of the gradient force). For the rational behind the
employed terminology, see [J07b]. Subtracting Qτ from Wτ , we obtain the relation

Wτ [q] # Qτ [q] =

! τ

0

#
(* tUt)(qt)dt + (+ Ut)(qt) * dqt

$
=

! τ

0

d
dt

U(qt)dt
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= Uτ (qτ ) # U0(q0) $ ∆τ U[q] . (2.11)

This is the 1st Law of Stochastic Thermodynamics expressing the conservation of the energy for
each realization of the process. The Jarzynski equality that we demonstrated in the previous lecture,
takes now the form

Eν0 e# βW! [q] = e# β! ! F , (2.12)

where the initial measure is taken as the Gibbs one. By Jensen inequality, it implies that

Eν0 Wτ [q] & ∆τ F (2.13)

i.e. that the average work is bounded below by the change of the free energy between the initial
and final times. The Jarzynski equality (2.12) contains, however, more information, implying the
exponential suppression of the probability of the events for which Wτ [q] ' ∆τ F # a, as we discussed
in Sec. I E.

B. Entropy, entropy production, and the 2nd Law

The Jarzynski equality (and the Crooks relation) extends to the case of the processes with arbitrary
initial probability measures µ0(dq) = %0(q) " (dq) and µ!

0(dq) = %!
0(q) " (dq) and takes then the form

Eµ0 e#W ! [q] = 1 , (2.14)

where

Wτ [q] = # ln%!
0(qτ ) # &Uτ (q0) + &Wτ [q] + ln%0(q0) + &U0(x0) = # W ![q" ] (2.15)

for (q" )t = qt" , see Eqs. (1.65) and (1.66), (1.67). The use of this freedom allows to obtain fluctuation
relations for other physically important quantities. We shall take below µ!

0 = µτ , where measure
µt(dq) = %t(q) " (dq) describes the time t distribution of the process. In other words, we assume that
the reversed process starts from the time ( distribution of the initial one. In this case,

# ln%!
0(qτ ) + ln%0(q0) = # ln%τ (qτ ) + ln%0(q0) $ # (∆τ ln%)[q] . (2.16)

Let us define the time t fluctuating entropy of the system as

Ssys
t (q) = # ln%t(qt) (2.17)

so that

Eµ0 Ssys
t (q) = #

!
ln%t(q)µt(dq) $ S[µt] (2.18)

is the Gibbs-Shannon entropy of the measure µt, motivating the above definition (we set to 1 the
Boltzmann constant kB). Note that

# (∆τ ln%)[q] = Sτ [q] # S0[q] $ ∆τ Ssys[q] (2.19)

and that

Eµ0 ∆τ Ssys
t [q] = S[µτ ] # S[µ0] . (2.20)

The change of the entropy of the system in interaction with the heat bath is accompanied by
the change of the entropy of the thermal environment. Assuming that the relaxation times in the
environment are much faster then that of the system (this assumption is inherent in the modelisation
of the effect of the heat bath by the white noise), all processes in the environment may be considered
quasi-stationary on the times scales relevant for the evolution of the systems and the change of the
entropy of the environment may be related to the heat dissipation by the Clausius formula

∆τ Senv[q] = &Qτ [q] . (2.21)
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(extended to fluctuating quantities). Summing up the changes of the system and environment en-
tropies, we obtain the total entropy production:

∆τ Stot[q] = ∆τ Ssys[q] + ∆τ Senv[q] = # (∆τ ln%)[q] + &Qτ

= # (∆τ ln%)[q] # &
#
∆τ U[q] # Wτ [q]

$
= Wτ [q] , (2.22)

where Wτ is given by Eq. (2.15) and in the last line we used the 1st Law of Stochastic Thermodynamics
(2.11). The last identity permits to rewrite Eq. (2.14) in the form

Eµ0 e
# ! ! S

tot [q] = 1 (2.23)

first stated in this context in [S05]. The fluctuation relation (2.23) implies by the Jensen inequality
the 2nd Law of Stochastic Thermodynamics:

Eµ0 ∆τ Stot[q] & 0 (2.24)

Again, Eq. (2.23), or its Crooks’ extension

e# ! S pτ (∆S) = p!
τ (# ∆S) (2.25)

contains more information than the 2nd Law, implying e.g. that the probability of fluctuations leading
to total entropy production ' # s are exponentially suppressed:

Eµ0 1{ ! ! Stot [q]$# s} ' e# s . (2.26)

Note that if µ0 is equal to the Gibbs measure #0 then inequality 2.24) reduces to

Eν0

%
&W[q] # &∆τF # S[µt- #τ ]

&
& 0 , (2.27)

where

S[µt- #τ ] =

!
ln

#µτ (dq)
#τ (dq

$
µτ (dq) & 0 (2.28)

is the entropy of the time ( distribution of the process relative to the time ( Gibbs measure. Hence
the 2nd Law (2.24) implies a stronger version of inequality (2.13).

C. Landauer Principle

The 2nd Law (2.24) may be also written as the inequality

Eµ0 Qτ [q] & # &# 1 Eµ0 ∆τ Ssys[q] = # &# 1#
S[µτ ] # S[µ0]

$
(2.29)

for the mean dissipated heat in terms of the change of the Gibbs-Shannon entropy between the initial
and final statistical state of the system. In this form, the 2nd Law is closely related to the principle
formulated by Landauer in 1961 [L61], see also [B82], stating that the erasure of one bit of information
during a computation process conducted in thermal environment requires a release of heat equal to at
least &# 1 ln2 (in average). As an example, consider a bi-stable system that may be in two distinct
states and undergoes a process that at final time leaves it always in, say, the second of those states,
loosing the memory of the initial state. Such a device may be realized in the context of Stochastic
Thermodynamics by an appropriately designed Langevin evolution that starts from the Gibbs state
corresponding to a potential R0 = # &# 1 ln%0 with two symmetric wells separated by a high barrier
and ends in a Gibbs state corresponding to a potential Rτ = # &# 1 ln%τ with only one of those wells,
see FIG. 2. The change of system entropy in such a process is approximately

S[µτ ] # S[µ0] . # ln1 + 2(ln 1
2 )

1
2 = # ln2 , (2.30)

with better and better approximation the deeper the wells or the lower the temperature, and Landauer’s
lower bound for average heat release follows from inequality (2.29).
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FIG. 2: Initial and final Gibbs potentials in a memory erasure process

D. Means of work, heat and total entropy production

It is well known that the 2nd Law bound can be saturated for quasi-static processes that move infinitely
slowly so that at intermediate times the instantaneous measures µt are (almost) equal to the Gibbs
measures #t. Suppose however, that we cannot afford to go too slowly. Indeed, in computational
devices, we are interested in fast dynamics that arrives at the final state quickly but produces as little
heat as possible. We are therefore naturally led to two questions:

¥ What is the lower bound for the total entropy production or the average heat release in the
process that interpolates between given states in a time interval of fixed length?

¥ What is the dynamical protocol that leads to such a minimal total entropy production or heat
release?

These questions make sense in a variety of setups. They are among the core ones of the so called
Finite-Time Thermodynamics [A11] that was developed during last decades mostly with an eye on
technological applications. Here we shall study them in the framework of Stochastic Thermodynamics
of processes described by the overdamped Langevin equation (2.1) following [AM11, AG12].

First, note using the advection equation (2.7), that

Eµ0 ∆τ Ssys[q] = S[µτ ] # S[µ0] = #

τ!

0

d
dt

!
ln%t(q)%t(q) " (dq)

=

τ!

0

dt
! *

+ á (%tvt)(q) + ln%t(q)+ á (%tvt)(q)
+

"dq = #

τ!

0

dt
!

+ (ln%t)(q) (%tvt)(q) " (dq) (2.31)

assuming that there are no boundary contributions from the integration by parts. On the other hand,
using the 1st Law, we infer that

Eµ0 &Qτ [q] = # &Eµ0

#
∆τ U[q] # Wτ [q]

$
= # &

τ!

0

dt
' d

dt

!
Ut(q)µt(dq) #

!
(* tU)(q)µt(dq)

(

= # &

τ!

0

dt
!

Ut(q) * t%t(q) " (dq) = &

τ!

0

dt
!

Ut(q)+ (%tvt)(q) " (dq)

= # &

τ!

0

dt
!
(+ Ut)(q) (%tvt)(q) " (dq) . (2.32)

Summing the expectations (2.31) and (2.32), we obtain, employing the expression for the current
velocity vt from (2.8), the identity

Eµ0 ∆τ Stot[q] = &

τ!

0

dt
!

vt(q) áM # 1vt(q)%t(q) " (dq) (2.33)

15



from which 2nd Law inequality follows directly.

We would like to find the minimum of the right hand side over all control potentials Ut that lead
to the overdamped Langevin evolution (2.1) from the fixed initial density %0(q) to the fixed final one
%τ (q) in the fixed time interval [0, ( ].

E. Benamou-Brenier minimization and optimal mass transport

In [BB97, BB99], Benamou-Brenier solved a closely related problem of minimization of the right hand
side of Eq. (2.33) over velocity fields vt(q) constrained by the advection equation in (2.7), with the
densities %t fixed at the initial and final times but without imposing the special gradient form of vt.
This was done as follows. Introducing the Lagrangian flow qt(x ) for velocities vt satisfying the ODE

* tqt(q0) = vt(qt(q0)) , qt(q0)|t=0 = q0 , (2.34)

and writing the solution of the advection equation in the form

%t(q) =

!
)
#
q # qt(q0)

$
%0(q0) " (dq0) , (2.35)

one may rewrite the functional on the right hand side of Eq. (2.33):

τ!

0

dt
!

vt(q) áM # 1vt(q)%t(q) " (dq) =

τ!

0

dt
!

" (dq)
!

vt(q) áM # 1vt(q) ) (q # qt(q0) " (dq0)

=

τ!

0

dt
!
(* tqt)(q0) áM # 1(* tqt)(q0) %0(q0) " (dq0)

=

! % τ!

0

(* tqt)(q0) áM # 1(* tqt)(q0)dt
&

%0(q0) " (dq0) . (2.36)

In the first step, one minimizes the right hand side over the curves t !" qt(q0) with fixed endpoint
qτ (q0). The minima are realized on straight lines leading to the functional

1

(

! !
(qτ (q0) # q0) áM # 1(qτ (q0) # q0) %0(q0) " (dq0) (2.37)

that is the quadratic cost function of the map q0 !" qτ (q0). In the second step, one is left with
the celebrated optimal mass transport problem of Monge-Kantorovich [V03] consisting of the
minimization of the quadratic cost (2.37) over the diffeomorphisms q0 !" qτ (q0) under the constraint
that

! !
)
#
q # qτ (q0)

$
%0(q0) " (dq0) = %τ (q) , (2.38)

or, equivalently

%τ (qτ (q0))
* (qτ (q0))

* (q0)
= %0(q0) , (2.39)

i.e. that the map q0 !" qτ (q0) transports the density %0 to %τ . One of the results of the optimal
transport theory states that if %0 and %τ are smooth and have two moments then the minimal cost
is attained on a unique diffeomorphism that is a gradient of a smooth convex function

qτ (q0) = M + Ψ(q0) . (2.40)

The corresponding minimizing velocity vt with the linear Lagrangian flow qlint (q0) = tq0+(1# t)qτ (q0)
satisfies the inviscid Burgers equation

* tv + vt á +vt = 0 (2.41)

(which just says that the Lagrangian trajectories have no acceleration). Even more importantly for
us, as a consequence of Eq. (2.40), the minimizing velocity vt is also of a gradient type:

vt = M + . t = 0 (2.42)
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where

. t(q) =
1

2t
(q # q0) áM # 1(q # q0) #

1

2(
q0 áM # 1q0 +

1

(
F (q0) for q = qlint (q0) (2.43)

satisfies the Hamilton-Jacobi equation

* t. t + 1
2 (+ . t) áM (+ . t) = 0 . (2.44)

The corresponding interpolating densities %t are given by Eq. (2.35):

%t(q) =

!
)
#
q # qlint (q0)

$
%0(q0) " (dq0) , (2.45)

Relation (2.42) means that although the Benamou-Brenier minimization was over general velocities,
not necessarily of the gradient type, the minimizer vt is a current velocity for the overdamped Langevin
process with control potential Ut such that

+ Ut = #+
#
. t + &# 1 ln%t(q)

$
, (2.46)

which fixes Ut up to a time-dependent constant. In particular the Benamou-Brenier minimizer also
minimizes the right hand side of Eq. (2.33) over the current velocities of the Langevin processes (2.1).

F. Finite-time refinement of the 2nd Law and of the Landauer bound

We obtain this way

Theorem (Finite-time refinement of the 2nd Law). The mean total entropy production in an over-
damped Langevin evolution during time ( between the states with probability densities %0 and %τ

satisfies the bound

Eµ0 ∆τ Stot[q] &
&
(

K [%0, %τ ] (2.47)

where K [%0, %τ ] is the minimal quadratic cost (2.37) of transport of density %0 to %τ . The bound is
saturated by the optimal protocol with the control potential satisfying Eq .(2.46), where . t and %t

are given by Eqs. (2.43) and (2.35), respectively, in terms of the linear interpolation qlint (q0) between
q0 and its image qτ (q0) under the optimal transport map.

The above result has a geometric interpretation. The minimal quadratic cost K (%0, %τ ) is, by
definition, the square of the Wasserstein distance between the measures µ0 and µτ that, formally,
corresponds to the Riemannian metric on the space of probability densities [JKO98], with the square
of the tangent vectors given by

- * t%- 2
W =

! *
(* t%)(#+ á %+ )# 1(* t%)

+
(q) " (dq) . (2.48)

The Fokker-Planck equation for the (1.44) corresponds to the gradient flow in metric (2.48) for the
free energy functional

F t(%) =

! *
Ut + &# 1 ln%](q)%(q) " (dq) (2.49)

and one has

Eµ0 ∆τ Stot[q] =

τ!

0

- * t%t- 2
W dt & dW (µ0, µτ )

2 (2.50)

with the optimal protocol giving the (shortest) geodesic between %0 and %τ .

Corollary. Under the same assumptions, the mean heat release satisfies the bound

Eµ0 Qτ [q] & = # &# 1#
S[µτ ] # S[µ0]

$
+

1

(
K [%0, %τ ] , (2.51)

17



with the inequality saturated by the same optimal protocol.

The latter inequality providing a finite-time refinement of the bound (2.29), implies also a finite-time
refinement of the Landauer bound in the situation where the change of the mean system entropy is
given by Eq. (2.30). Such a refinement may be relevant in future computer designs [S11] (the present
day computers still dissipate much more heat than the minimum allowed by the thermodynamical
considerations). A recent experiment [B12] with a colloidal particle manipulated by laser tweezers
measured the heat released in a process of memory erasure interpolating at room temperature between
two states with Gibbs potential from FIG. 2, with the results plotted in FIG. 3.
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)
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FIG. 3: Mean heat release as a function of time in the memory erasure experiment of [B12]

The control potential used in the experiment did not follow the optimal protocol and, as a result, the
heat release in the 10s run exceeded 2.5 times the Landauer bound instead of the optimal 40%.

FIG. 4: Gibbs and control potentials Rt and Ut for optimal 10s (left) and 1s (right) runs

FIG. 5: Potentials Rt and Ut for times 3
4 ! and tau (left) and for 15

16 ! and ! (right) for 1s run

The optimal protocols for 10s and 1s runs (the latter releasing almost 4 times more heat than the
Landauer bound) are illustrated on FIG. 4 at initial, half- and final time. For 10s, the Gibbs potentials
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Rt = # &# 1 ln%t are very close to control potentials Ut so that the optimal protocol is almost quasi-
static. For 1s, the Rt differ considerable from Ut, also at the initial and final times, showing also
more intricate structure in late times, with the persistence of the barrier separating the two wells, see
FIG. 5. The initial and final jumps of the potential in the optimal protocol were first discovered in
the case with quadratic potentials by an explicit calculation in [SS07]. The optimal transport map
q0 !" qτ (q0) leading to the optimal protocol has in the problem in question a form of a kink on the
shifted identity map and the corresponding current velocities vt build in time an (almost) shock, see
FIG. 6.

FIG. 6: Optimal map q0 !" q! (q0) (left) and the corresponding current velocities (right)

In one dimensional problem as above, the optimal map q0 !" qτ (q0) may be found numerically by
sorting the points distributed with densities %0 and %τ in the increasing order. In more than one
dimension, finding such maps requires a more sophisticated Auction Algorithm, see [BF03].

Above, we dealt with nonstationary overdamped Langevin evolution without non-conservative forces.
Adding such forces - t as in Eq. (1.60) but keeping the Einstein relation (1.59) modifies the expression
(2.10) for the dissipated heat to

Qτ [q] = #

τ!

0

#
# + Ut + - t

$
(qt) * dq(t) . (2.52)

The Fokker-Planck equation takes still the form of the advection equation (2.7) but the expression for
the current velocity is modified by the addition of - t to

vt(q) = M
#

# + Ut + - t

$
(q) # D+ ln%t(q) (2.53)

and is no more of the gradient type. The mean total entropy production is still given by Eq. (2.33).
Since the Benamou-Brenier minimization held for arbitrary velocities, the bounds (2.47) and (2.51)
hold in this case as well, but are saturated by the protocol discussed above without a nonconservative
force.

More work on optimization in Stochastic Thermodynamics may be found in [GM08, EK10, AM12,
PM12]. One of the problems still open is the extension of the above analysis to general underdamped
Langevin evolutions whose relation to the overdamped limit contains some surprises [H80, SSD82,
CB12].

III. FLUCTUATION-DISSIPATION RELATIONS

This is a lecture devoted to the relation between the fluctuation relation and laws of the linear re-
sponse to perturbations around stationary states that, historically, were among the first results about
nonequilibrium dynamics.

A. Hatano-Sasa fluctuation relation and general Fluctuation-Dissipation Theorem

Recall that the Hatano-Sasa transient fluctuation relation (1.69) holds for arbitrary continuous time
nonstationary Markov process with backward generators L t and a family of measures #t(x) =
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e# ϕt (x) " (dx) such that L "
t#t = 0. Now, following [PJP09], see also [H78], let us consider a fam-

ily of stationary transition rates wε(x, dy) parametrized by ' = (' a) in a neighborhood of ' = 0,
corresponding to backward generators L ε with a family of invariant measures #ε(dx) = e# ϕ" (x) " (dx)
such that

L "
ε#ε = 0 . (3.1)

For each protocol t !" ' t such that ' t = 0 for t ' 0, we shall consider for t & 0 the nonstationary
Markov process with backward generators L εt that starts from the measure # $ #0. For each of those
protocols ! = (' t), we have the Hatano-Sasa relation

E!
ν e

#
!"

0

d" a
t

dt ∂" a ϕ" t (xt ) dt
= 1 . (3.2)

Expanded up to the second order in ! , this gives

#

τ!

0

d' at
dt

Eν * εa $(xt)dt #

τ!

0

d' at
dt

' bt Eν * εb * εa $(xt)dt

#

τ!

0

d' at
dt

dt

τ!

0

' bs
)

)' b
s

,
,
,
! = 0

E!
ν * εa $(xt) ds

+ 1
2

τ!

0

d' at
dt

dt

τ!

0

d' bs
dt

Eν * εb $(xs) * εa $(xt) ds = 0 , (3.3)

where $ $ $0 and Eν $ E0
ν . Note that by normalization,

!
e# ϕ" (x) " (dx) = 1 (3.4)

for all ' . Expanding the latter relation to the second order, we obtain
! %

# ' a * εa $(x) # 1
2 ' a' b * εb * εa $(x) + 1

2 ' a' b * εb $(x) * εa $(x)
&
e# ϕ(x) " (dx) = 0 . (3.5)

The last identity implies that

Eν * εa $(xt) =

!
* εa $(xt) e

# ϕ(x) " (dx) = 0 (3.6)

and that

Eν * εb * εa $(xt) =

!
* εb * εa $(x) e# ϕ(x) " (dx) =

!
* εb $(x) * εa $(x) e# ϕ(x) " (dx)

= Eν * εb $(xt) * εa $(xt) , (3.7)

where the right hand side is t-independent. Substituting these identities to Eq. (3.3), we obtain:

# 1
2

τ!

0

d' at
dt

dt

τ!

0

d' bs
ds

ds Eν * εb $(xt) * εa $(xt)

#

τ!

0

d' at
dt

dt

τ!

0

' bs
)

)' b
s

,
,
,
! = 0

E!
ν * εa $(xt) ds

+
1
2

τ!

0

d' at
dt

dt

τ!

0

d' bs
dt

Eν * εb $(xs) * εa $(xt) ds

= # 1
2

τ!

0

d' at
dt

dt

τ!

0

d' bs
ds

Eν * εa $(xt) * εb $(xt) ds

#

τ!

0

d' at
dt

dt

τ!

0

d' bs
ds

ds

τ!

s

)
)' b

σ

,
,
,
! = 0

E!
ν * εa $(xt) d+
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+ 1
2

τ!

0

d' at
dt

dt

τ!

0

d' bs
dt

Eν * εb $(xs) * εa $(xt) ds = 0 . (3.8)

Upon stripping of the arbitrary functions dεt
dt , the last equation is equivalent to the identity

Eν * εb $(xs) * εa $(xt) # Eν * εb $(xt) * εa $(xt)

=

τ!

s

)
)' b

σ

,
,
,
! = 0

E!
ν * εa $(xt)d+ +

τ!

t

)
)' a

σ

,
,
,
! = 0

E!
ν * εb $(xs)d+ (3.9)

Because, by causality,

)
)' a

σ

,
,
,
! = 0

E!
ν * εb $(xs) = 0 (3.10)

for s ' +, Eq. (3.9) reduces upon taking s ' t to

Eν * εb $(xs) * εa $(xt) # Eν * εb $(xt) * εa $(xt) =

t!

s

)
)' b

σ

,
,
,
! = 0

E!
ν * εa $(xt)d+ , (3.11)

or, in the differential form, to

* s Eν * εb $(xs) * εa $(xt) = #
)

)' b
s

,
,
,
! = 0

E!
ν * εa $(xt) . (3.12)

This a one of general forms of the Fluctuation-Dissipation Theorem (FDT) [H78, PJP09]. The
left hand side is the time derivative of the dynamical correlation function of observables * εa $(x)
in the stationary state, whereas the quantity on the right hand side is the response function mea-
suring the change of the dynamical one point function of * εa $(x) under a small perturbation of '
concentrated around an earlier time that makes the dynamics nonstationary. The entry * εa $(xt)
plays a passive role in the identity (3.12) and could be replaced by an arbitrary function Oa(xt). On
the other hand, for a general stationary dynamical correlation function with s ' t one has

* t Eν Ob(s)Oa(t) =

!
#(dx)Ob(x)

!
* tPs,t(x, dy)Oa(y) = Eν Ob(s) (LOa)(t) ,

* s Eν Ob(s)Oa(t) =

!
#(dx)Ob(x)

!
* sPs,t(x, dy)Oa(y) = # Eν (L !Ob)(s) (LOa)(t) , (3.13)

where

L ! = eϕ L   e# ϕ (3.14)

is the adjoint of L with respect to the invariant measure #(dx). We infer that the FDT (3.12) may
be rewritten in the form

Eν L !#* εb $(xs)
$

Oa(xt) =
)

)' b
s

,
,
,
! = 0

E!
ν Oa(xt) . (3.15)

B. Other forms of the Fluctuation-Dissipation Theorem

Let us consider a particular family of transition rates of the form

wε(x, dy) = e# #
2 εa Oa (x) w(x, dy) e

#
2 εa (Oa (y)) (3.16)

for a family of functions Oa(x), corresponding to the perturbed backward generators

L ε = e# #
2 εa Oa (x)L e

#
2 εa Oa (x) # e# #

2 εa Oa (x) #L e
#
2 εa Oa (x) $

= β
2 ' a

%
[L, Oa] # (LOa)

&
+ o(' ) . (3.17)
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Above, & is introduced just for dimensional reason, see however below. The invariance condition (3.1)
for the measures #ε(dx) gives now to the 1st order in ' the condition

' a L   #
e# ϕ * εa $

$
+ β

2 ' a
%
[L, Oa] # (LOa)

&  #
e# ϕ

$
= 0 , (3.18)

i.e.

L !#* εa $
$
=

β
2

#
L !Oa + LOa

$
. (3.19)

Plugging this expression into Eq. (3.15), we may rewrite it in the form

* s Eν Ob(xs)Oa(xt) # Eν(LOb)(xs)Oa(xt) =
2

&
)

)' b
s

,
,
,
! = 0

E!
ν Oa(xt) . (3.20)

This is another form of the general FDT [CKP94, LCZ05, BMW09]. It does not require the knowledge
of the invariant states, but involves explicitly the generator of the stationary process.

We may also rewrite the right hand side of Eq. (3.19) as &L!Oa + #
2 (L # L !)Oa. This results in yet

another form of the general FDT:

* s Eν Ob(xs)Oa(xt) # Eν

#1
2 (L # L !)Ob

$
(xs)Oa(xt)

&
=

1

&
)

)' b
s

,
,
,
! = 0

E!
ν Oa(xt) . (3.21)

The latter form is useful for the Langevin process were

L =
#

# M (+ H ) + M f + D+
$

á + (3.22)

and were

L ! = eϕ L   e# ϕ =
#
M (+ H ) # M f

$
á + + 2 eϕ (+ á e# ϕ)D+ + + á D+ (3.23)

since L   (e# ϕ) = 0. Hence in this case,

1
2 (L # L !) =

#
# M (+ H ) + M f # eϕD(+ e# ϕ)

$
á + = v á + , (3.24)

where v(x) is the current velocity, see Eq. (1.54), in the stationary state. Using the the latter relation,
we obtain the general FDT for the Langevin dynamics [CFG08]:

* s Eν Ob(xs)Oa(xt) # Eν

#
v á +Ob

$
(xs)Oa(xt)

&
=

1

&
)

)' b
s

,
,
,
! = 0

E!
ν Oa(xt) . (3.25)

Note that for the stationary Langevin process with M = M t = &D, the perturbation (3.16) corre-
sponds to the change of the Hamiltonian H (x) " H (x) # ' aOa(x).

In the situation with detailed balance for the stationary process with ' = 0, see Eq. (1.71), one the
generators L and L ! coincide and $ε(x) = &

#
H (x) # ' aOa(x) # Fε

$
, where Fε is a constant. As a

result, all three forms of the FDT reduce to the relation

* sCab(t # s) $ * s Eν Ob(xs)Oa(xt) =
1

&
)

)' b
s

,
,
,
! = 0

E!
ν Oa(xt) $

1

&
Rab(t # s) (3.26)

which is the classic equilibrium FDT [K57] relating the equilibrium dynamical correlation function
Cab(t # s) to the response function Rab(t # s) of the equilibrium state to small perturbations.

Example 6. For the Einstein-Smoluchowski Brownian motion of Example 3 with scalar mass matrix
m, Oa(q, p) = pa and Ob(q, p) = qb, the stationary form of the dynamical correlation function is

Cab(t # s) = mD ) ab e# t # s
mM (3.27)

(there is no complete stationary state in that case since the expectation value of q2
t diverges linearly

in time), and the response function takes the form

Rab(t # s) = ) ab e# t # s
mM . (3.28)
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Relation (3.26) reduces then to the Einstein relation (1.59), a prototype of the equilibrium FDT.

The possible usage of the FDT (3.26) is for extracting the response function, more difficult to mea-
sure, from the stationary dynamical correlation, more easily accessible, or for inferring the temperature
&# 1 of a system in thermal equilibrium if both the response function and the dynamical correlation
are accessible. Although near a nonequilibrium stationary states (NESS), the FDT does not have such
a simple form, the ratio of the dynamical correlation to the response function is often used out of
equilibrium to define effective temperatures, in particular in glassy systems [C11].

It was observed in [CFG08]), see also [SS06], that the form (3.25) of the FDT for Langevin systems
implies that one recovers the equilibrium form of the FDT in Lagrangian frame of the current velocity.
It was shown subsequently in [CG09]) that any nonequilibrium Langevin diffusion rewritten in the
Lagrangian frame of its current velocity recovers the detailed balance property.

C. Relation of the response function to dissipation

The original name of the Fluctuation-Dissipation Theorem for the identity (3.26) comes from the fact
that the dynamical 2-time function describes the correlation of fluctuations of the random variables
O(xt) whereas the response function is related to dissipation of energy or heat. To understand the
latter connection, let us consider the case of periodic a perturbation of the stationary equilibrium
dynamics by taking ' t = ' 0 cos(/t ) so that H t(x) = H (x) # ' 0 sin(/t )O(x). For such a system, the
average expectation of the work

Wτ [x ] =

τ!

0

(* tH t)(xt)dt, = ' 0 /

τ!

0

sin(/t )O(xt)dt (3.29)

considered per unit time:
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τ%&
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(
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(
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sin(/t )E!
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(
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0

sin(/t )
%

E0
ν O(xt) + ' 0

t!

0

cos(/s )
)

)' s
Eν O(xt)ds + o(' 0)

&
dt . (3.30)

The stationary contribution vanishes in the long time limit, so that denoting

)
)' s

Eν O(xt) $ R(t # s) (3.31)

we obtain
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(
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τ%&
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(
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0)

= lim
τ%&

' 2
0/
(

τ!

0

cos(/s )ds
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0

sin(/ (s+ +))R(+)d+ + o(' 2
0)
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' 2
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(
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0

sin(/s ) cos(/s )ds

τ# s!

0

cos(/+ ))R(+)d+

+
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0

cos2(/s )ds

τ# s!

0

sin(/+ ))R(+)d+
&

+ o(' 2
0)

=
%

lim
τ%&

' 2
0/
(
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cos2(/s )ds
& &!

0

sin(/+ )R(+)d+ + o(' 2
0)

=
' 2

0/
2

Im )R(/ ) + o(' 2
0) , (3.32)
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assuming the integrable decay of R(+) when + " / , where

)R(/ ) =

&!

0

eiωσ R(+)d+ (3.33)

is the Fourier transform of the response function. In experiments, often the dissipation rate is directly
measured, giving access to the imaginary part of the Fourier-space response function )R(/ ). The real
part of )R(/ ) may then be obtained from the imaginary part by the Kramers-Kronig dispersion relation

Re )R(/ ) = 1

!
P

!
Im )R(/ !)

/ ! # /
d/ ! (3.34)

holding for Fourier transforms of function vanishing at negative times.

D. A simple one-dimensional example

Let us consider an overdamped Langevin dynamics of a particle moving on a circle, given by the
stochastic equation

d0 = M
#
# U!(0) + F

$
dt +

0
2D dW (t) , (3.35)

where 0 is the angle modulo 2! parametrizing the position of the particle, M is the mobility and
D = &# 1M is the diffusivity. Periodic function U(0) gives the potential and F is a constant part
of the force (any nonconservative force may be separated into a constant plus a potential part in that
situation). Eq. (3.35) models the dynamics of a colloidal particle of the radius 1µm manipulated on a
circle of radius 4.12µm by a laser tweezer in an experiment performed at ENS Lyon [GP09]), in which
case,

MU (0) = H0 sin(0) for H0 = 0.87 rad s# 1, (3.36)

MF = 0.85 rad s# 1 , D = 1.26 1 10# 2 rad2 s# 1 . (3.37)

The diffusion (3.35) has the backward generator

L = M
#
# U! + F

$
* θ + D* 2

θ (3.38)

and a NESS with the invariant measure #(0) = %(0)d0 for

%(0) = Z # 1 e# β(U(θ)# Fθ)

θ+2 π!

θ

eβ(U(ϑ)# Fϑ) d1 $ e# ϕ(θ) (3.39)

that corresponds to the constant probability current

j =
%

M (# U!(0) + F ) # D* θ

&
e# ϕ(θ) = DZ # 1

%
1 # e# 2πβF

&
(3.40)

and to the current velocity

v(0) = j %(0)# 1 =
D (1 # e# 2πβF )

e# β(U(θ)# Fθ)
θ+2 π-

θ

eβ(U(ϑ)# Fϑ) d1

. (3.41)

The generator adjoint to L with respect to the invariant measure # is

L ! = eϕL   e# ϕ =
#
M (# U! + F ) # 2v

$
* θ + D* 2

θ . (3.42)

It is the backward generator of the time-reversed process (0!
t) defined with the rule of case (a) of

Sec. IG (with 0" = 0) which satisfies the overdamped Langevin equation

d0! =
#
M (# U!(0!) + F ) # 2v(0!)

$
dt +

0
2D dW (t) . (3.43)

The three different forms of the FDT for this system (3.25), (3.20) and (3.12) were checked by
comparing with the experimental measurements of the correlation and response functions, with similar
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results confirming the theoretical predictions for times up to few seconds [GP09, GP11]), see FIG. 7
for the case of Eq. (3.25). For the system in question, the anomalous term on the fluctuation side
(B (t) on FIG. 7) dominates the equilibrium term (C(0)# C(t) on FIG. 7) so that the equilibrium form
(3.26) of the FDT is grossly violated and has to be replaced by one of the nonequilibrium versions.
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FIG. 7: Experimental verification of the time-integrated form of the FDT (3.25), different terms (left), error
brackets (right), from [GP09]

E. Green-Kubo formula for diffusions

Let us consider the diffusion process given by the stochastic equation (1.41) with X 0t = X 0 + ' at Ya

and X 0, Ya, and X α time independent. Let #(dx) = e# ϕ(x) " (dx) be the invariant measure when
! = 0. As was discussed in Lecture 1 in Sec. IG, a fluctuation relation

E!
µ0

e#W ! [x ] = 1 (3.44)

holds in this case for Wτ given by Eqs. (1.80) and (1.87) with Yt(x) = ' at Ya. In particular, the choice
%0(x) = e# ϕ(x) = %!

0(x
" ) results in the expression

Wτ [x ] =

τ!

0

' at
#
(* i$)Y i

a # * iY i
a

$
(xt)dt $

τ!

0

' at J a(xt)dt . (3.45)

Expanding Eq. (3.44) to the second order in ! around ! = 0, we obtain the relation

#

τ!

0

' at Eν J a(xt)dt #

τ!

0

' at dt

t!

0

' bs
)

)' b
s

,
,
,
! = 0

E!
ν J a(xt)ds

+ 1
2

τ!

0

' at

τ!

0

' bs Eν J b(xs) J a(xt)ds = 0 (3.46)

or, stripping it from the arbitrary functions ! and taking s ' t ,

Eν J a(xt) = 0 , (3.47)

Eν J b(xs) J a(xt) =
)

)' b
s

,
,
,
! = 0

E!
ν J a(xt) . (3.48)

The first equation states that the stationary expectation of J a vanishes. The integration of the second
equation over s from zero to t gives

t!

0

Eν J b(xs) J a(xt)ds = * εb |ε=0 Eε
ν J a(xt) , (3.49)

where on the right hand side ' = (' a) is taken time independent. Assuming that for t " / the
expectation

Eε
ν J a(xt) #"

t%&

!
J a(x)#ε(dx) , (3.50)
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where #ε is the invariant measure of the stationary process with constant ' and using the time-
translation invariance of right hand side, we obtain from Eq. (3.49) the relation

t!

#&

Eν J b(xs) J a(xt) = * εb |ε=0

!
J a(x) #ε(dx) . (3.51)

This is the Green-Kubo formula [G54, K57] that permits to extract the linear-regime change of
the stationary expectation value of observables J a(x) under a perturbation of the dynamics, from
their unperturbed dynamical correlation.

If the unperturbed process was time-reversible, i.e. if L = eϕL   e# ϕ, then

Eν J b(xs) J a(xt) = Eν J a(x# t) J b(x# s) = Eν J a(xs) J b(xt) , (3.52)

and we may infer from the Eq. (3.51) the Onsager reciprocity relations

* εb |ε=0

!
J a(x) #ε(dx) = * εa |ε=0

!
J b(x) #ε(dx) . (3.53)

The Green-Kubo formula itself may be rewritten in this case in the symmetrized form

1
2

&!

#&

J b(xs) J a(xt)ds = * εb |ε=0

!
J a(x)#ε(dx) . (3.54)

The last three relations also hold if the unperturbed process is time-reversible only relative to an
involution x " x" but the observables J a have are all either even or odd under it: J a(x" ) = ± J a(x)
with the same sign for all a.

Example 7. Above, we considered for simplicity only perturbations of the drift term in the diffusions,
but similar strategy may be applied to perturbations involving also the pure diffusion part of the
dynamics. For concreteness, let us consider the anharmonic chain (1.90) of Example 5 in Sec. IG
with M # 1

i = 0 for i )= 0, L and with &0 = & # 1
2 ' and &L = &+ 1

2 ' so that the functional (1.102)
corresponding to the piecewise constant interpolation of &i is equal to

Wτ (x ) = '

τ!

0

j (i# 1,i) (xt)dt . (3.55)

Expanding the Jarzynski equality (1.66) to the second order in ' and proceeding as before, one arrives
at the identity

!
j (i# 1,i) (x) #(dx) = 0 , (3.56)

where #(dx) is the Gibbs measure at inverse temperature & for the chain, and at the Green-Kubo
relation

1
2

&!

#&

Eν j (i# 1,i) (xs) j (i# 1,i) (xt) ds = * ε|ε=0

!
j (i# 1,i) (x)#ε(dx) , (3.57)

where #ε(dx) is the invariant nonequilibrium measure for the perturbed boundary temperatures (the
equilibrium underdamped ' = 0 dynamics is time-reversible under the involution that reverses the
sign of momenta and the heat flux j (i# 1,i) is odd under it). One of the outstanding open problems of
mathematical physics is the control of the large L behavior of the thermal conductivity

2(L, &) = L&2 * ε|ε=0

!
j (i# 1,i) (x)#ε(dx) (3.58)

giving the proportionality constant between the heat flux and the (infinitesimally small) temperature
gradient imposed at the boundary. In particular, one would like to establish the conjectured Fourier law
which (in a weak form) states that the limit lim

L%&
2(L, &) exists and is strictly positive [BL00, BK07].
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IV. LARGE DEVIATIONS AND STATIONARY FLUCTUATION RELATIONS

In the presence of a small parameter ' , a family µε(dX ) of measures may exhibit a large deviations
regime in which it takes an exponential form, with the inverse of the small parameter as the prefactor
in front of the negative exponent. This is often formulated as the existence of a rate function I (X )
such that

# inf
X ' Ao

I (X ) ' lim inf
ε% 0

' ln µε(A) ' lim sup
ε% 0

' ln µε(A) & # inf
X ' øA

I (X ) , (4.1)

where Ao is the interior and Ā the closure of set A. In less formal, terms, this may be stated as the
property

µε(dX ) 2
ε% 0

e# 1
" I(X) " (dX ) (4.2)

or, if µε(dX ) = %ε(X ) " (dX ), as the existence in a sufficiently weak form of the limit

lim
ε% 0

' ln%ε(X ) = # I (X ) . (4.3)

The history of the large deviations theory is long and overlaps the works of the founding fathers of
statistical mechanics. On the probability theory side, it goes back to contributions of the Swedish
mathematician Harald Cramér from the thirties of the last century. In application to stochastic pro-
cesses, small parameters may have different origin. One possibility is a small noise in the stochastic
differential equations (e.g. low temperature in the Langevin equations). This is the domain of appli-
cation of Freidlin-Wentzell theory of large deviations [FW84]. We shall encounter it below on a formal
level of diffusions in a functional space. Another possibility, developed first by Donsker-Varadhan
[DV75], is the long-time asymptotics of the solutions of stochastic equations, see also the textbooks
[DS89, DZ98]. We shall need its version that, to my knowledge, was not explicitly considered in
mathematical texts but appeared in the papers of physicists [CC07, MNW08].

A. Large deviations at long times

For a stationary diffusion Markov process (xt) solving the stationary version of Eq. (1.41), define the
empirical density and empirical current by the formulas

%τ (x) = ( # 1

τ!

0

) (x # xt)dt , j τ (x) = ( # 1

τ!

0

) (x # xt) * dx(t) , (4.4)

where, as before, “*” signifies the Stratonovich convention. Assuming the ergodicity of the process,
when ( " / , %τ converges (in a weak sense) to the density % of the invariant measure #(dx) =
%(x) " (dx), and j τ converges to the probability current j given by

j (x) =
# )X 0(x) # D (x)+

$
%(x) $ j ρ(x) . (4.5)

see Eq. (1.45, which is conserved:

+ á j (x) = 0 . (4.6)

We would like to inquire about the asymptotics of that convergence. The answer is provided by the
large deviations form of the joint distribution function of the empirical density %τ and current j τ :

Eν ) [3 # %τ ] ) [4# j τ ] 2
τ%&

e# τ I [.,] , (4.7)

with the rate function

I [3, 4] =

.
/0

/1

/ if + á 4)= 0 ,

1
4

- *#
4# j .

$
á(3D)# 1

#
4# j .

$+
(x) " (dx) if + á 4= 0 ,

(4.8)

where j . is given by Eqs. (4.5) with % replaced by 3. The large-deviations asymtotics for empirical
densities or empirical currents only is then obtained by the “contraction principle”:

Eν ) [3 # %τ ] 2
τ%&

e# τ I [.] , Eν ) [4# j τ ] 2
τ%&

e# τ I [] (4.9)

27



with

I [3] = min


I [3, 4] , I [4] = min
.

I [3, 4] (4.10)

in a slightly abusive notations. The first minimum may be rewritten (why?) in terms of a maximum
over Lagrange multipliers f (x):

I [3] = # min
f

!
(+ f )(x) á

*
3D(+ f ) + j .

+
(x) " (dx)

= # 1
4

! *
(+ á j .)(+ á 3D+ )# 1(+ á j .)

+
(x)dx . (4.11)

Note that I [3] is nonnegative and attains its vanishing minimum on the density % of the invariant
measure such that + á j ρ = 0. The first line of Eq. (4.11) may be also rewritten as

I [3] = # min
f

! *
(+ f ) á3D(+ f ) + f L   3

+
(x) " (dx)

= # min
u>0

! #
u# 1Lu

$
(x) " (dx) , (4.12)

where the last minimum is over positive functions u(x) = ef (x) . In the last form, the formula for the
rate function I [3] holds for general continuous-time stationary Markov processes [DV75].

As for the rate function I (4), note that I [3, 4] is a local non-linear functional of the density 3 > 0
constrained to be normalized, quadratic in its first derivatives, leading to the 2nd -order differential
equation for the extrema. Even in one dimension where the latter equation reduces to an ODE and
+ á 4= 0 means that 4= const., the minimization over 3 cannot be explicitly solved. Nevertheless,
for weak noise, one may resort to semiclassical instanton-gas type expansions which go back to ideas of
Kramers from the 40’s of the last century and to Freidlin-Wentzell large deviations theory, and which
are still being actively developed, see e.g. [E06, CC09].

Example 8. For the one-dimensional diffusion defined by Eqs. (3.35), (3.36) and (3.37), the drift has
two zeros, one unstable at 0u . 0.214 rad and one stable at 0s = 2! # 0u. One obtains in this case
[CC09]

I (4) . # 4 ln

2
42 + 42+ 2# # 4

22#
#

2
42 + 42+ 2# + 2+ + 2# (4.13)

for 2+ = A0 exp[D # 1 A# ], 2# = A0 exp[# D # 1A+ ] where A# is the (tiny negative) area under the
negative part of the drift graph, A+ is the one under the positive part of the graph, see the left
plot in FIG. 8, and A0 = M

2
|U!! (0s)U!! (0u)|/ (2! ). The most probable value of j τ for small D is

j = 2+ # 2# . The same large deviation function (4.13) may be obtained from a jump process with
plus or minus jumps occurring with rates 2± by looking at the statistics of the large sums of jumps
[LS99]. Those jumps correspond in the diffusion to the tunneling to the right and to the left through
the barriers separating the stable and unstable points of the drift.

FIG. 8: Drift in Eq. (3.35) (left) and the comparison of numerical and theoretical rate functions for the empirical
current (right)

The large deviations statistics of the empirical current j τ , that is 0-independent in this regime, may
be extracted from the one of its spatial mean

1
2π

2π!

0

j τ (0)d0 =
1

2π

τ!

0

d0t (4.14)
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The numerical simulation of the minus logarithm of its distribution function of the latter divided by
( = 4167 s is shown on the right plot in FIG. 8. Note its oscillatory character (with the period 1/( ).
Its plot averaged over these oscillations compares well on the interval with sufficient number of events

with the semiclassical formula (4.13) shifted by # (2( )# 1 ln
#I !! (j)

2π

$
to include the one-loop correction.

I do not know whether the convergence (4.3) (for X = 4 and ' = ( # 1) holds here pointwise or only
after smearing with a test functions.

B. Gallavotti-Cohen type fluctuation relation

Defining the time-reversed diffusion process (x!
t) the way described in Sec. IG and using relation

(1.79), we obtain the identity

Eν e#W ! F (%τ , j τ ) = E!
ν ! F (%!"

τ , # j !"
τ ) , (4.15)

where, by definition,

%!"
τ [x ] = %!

τ [x
" ] , j !"

τ [x ] = # j !
τ [x

" ] (4.16)

(the minus sign in the transformation of the current comes from the change of the sign of the time
derivative of the process under the time reversal). An easy calculation shows that in their dependence
on points in space, %!"

τ and j !"
τ are related to %!

τ and j !
τ by the geometric transformation rule for

densities and currents:

3" (x" )
* (x" )

* (x)
= 3(x) , 4" (x" )

* (x" )

* (x)
=

*x "

*x
4(x) , (4.17)

with ∂x"

∂x denoting the Jacobi matrix and ∂(x" )
∂(x) the Jacobian of the involution x !" x" . On the other

hand, by Eq. (1.80) and (1.81),

Wτ = # ln%!(x"
τ ) + ( / [%τ , j τ ] + ln%0(x0) , (4.18)

where

/ [3, 4] =
! '

)X +
0 á D# 1#

4# X #
0 3

$
# (+ á X #

0 )3
(
(x) " (dx) (4.19)

so that

τ!

0

J t dt = ( / [%τ , j τ ] . (4.20)

Comparing the large ( asymptotics on both sides of identity (4.15) we infer the identity

I [3, 4] + / [3, 4] = I ![3" , # 4" ] (4.21)

where 3" and 4" are defined by the relations (4.17). This is the stationary fluctuation relation for
rate functions describing the large deviations of empirical density and current. A simple exercise using
Eqs. (4.8) and the identity

j !"
." = j . # 2X #

0 3 = # j . + 2 )X +
0 3 # 2D+ 3 . (4.22)

permits to verify Eq. (4.21) directly. The probability distribution of quantity (4.20) has also the large
deviations regime with the rate function given by the contraction

I (5 ) = min
ω[.,]= 0

I [3, 4] . (4.23)

From Eq. (4.21), using also the relation

/ ![%" , # 4" ] = # / [3, 4] , (4.24)

a consequence of the second equality in (1.80), we obtain immediately the fluctuation relation

I (5 ) + 5 = I !(# 5 ) . (4.25)
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The latter identity holds, in particular, for the time reversal with )X +
0 = 0 considered in the case (c)

of Sec. IG. In this instance,

/ [%τ , j τ ] = #
!
(+ á X #

0 )(x)%τ (x) " (dx) = # ( # 1

τ!

0

(+ á X #
0 )(xt)dt $ / [%τ ] , (4.26)

which reduces to the phase-space contraction rate in the deterministic case with X α $ 0 and
X #

0 = X 0. The stationary fluctuation relation (4.25) for uniformly hyperbolic deterministic dynamical
systems (in the case when the time-reversed dynamics coincides with the direct one) was proven in
[GC95a, GC95b]) as the Fluctuation Theorem. The existence of large deviations regime for the
quantity ( / [%τ ] representing the phase-space contraction followed in that case from the thermody-
namical formalism for such dynamical systems so that the Fluctuation Theorem of Gallavotti-Cohen
is not a direct consequence of the relation (4.25) for the stochastic diffusions. In the latter case, we
could obtain (4.25) from the transient fluctuation relation (4.15) holding for the stationary dynamics
on any time interval, whereas there is no such relation for the general stationary deterministic systems
that typically have singular invariant measures. The transient Evans-Searles relation for such systems
employs the non-invariant smooth initial measures and a non-trivial work using the thermodynamical
formalism would be needed to show that they lead for long times to the Gallavotti-Cohen relation.

The fluctuation relation (4.25) with I ! = I should also hold for the large-deviations rate function of
the cumulated heat flux Wτ given by Eqs. (1.99), (1.101) or (1.102) in the non-equilibrium stationary
state of the anharmonic chain with Hamiltonian dynamics in the interior that we discussed in Example
5 in Sec. IG), see [RBT02] for a proof of this fact for a closely related model.

C. Large deviations for replicated diffusions

The final part of these lectures is based on a joint work in progress with F. Bouchet et C. Nardini
[BGN]. The first half concerning the large deviations for independent replicated systems is rather
well known, but we present it the spirit of the macroscopic fluctuation theory developed for the
dynamics of boundary driven lattice gases in a series of papers of the Rome group, see e.g. [B06]. The
second half that develops the macroscopic fluctuation theory for a non-equilibrium system of replicated
diffusions with a mean-field interaction seems original.

Let us consider N independent copies (xn
t ), n = 1, . . . , N , of identical diffusions satisfying stochas-

tic equation (1.41). For such replicated system, we may define the dynamical empirical density and
empirical current by the formulas

" N (t, x ) =
1

N

N"

n=1

) (x # xn
t ) , j N (t, x ) =

1

N

N"

n=1

) (x # xn
t ) *

dxn
t

dt
. (4.27)

Here and below, use bold letters for the quantities that depend on time and space. We shall also
employ the notation %Nt(x) and j Nt(x) whenever we consider only the x-dependence for fixed t .
Note the continuity equation

* t" N + + á j N = 0 . (4.28)

Let 6 [3] be a functional of (possibly distributional) densities of the cylindrical form:

6 [3] = f
%!

h1(x1)%(x1) " (dx1), á á á,
!

hk(xk)3(xk) " (dxk)
&

. (4.29)

In its t-dependence, random variable 6(%Nt) satisfies the stochastic equation

d6[%Nt] =

!
)6 [%Nt]

)3(x)

%
#

1

N

"

n

(+ ) )(x # xn
t ))

#
X 0t(xn

t )dt + X αt(xn
t ) * dWn

α (t)
&

" (dx)

=

! %
%Nt X 0t+

)6 [%Nt]

)3

&
(x) " (dx)dt +

1

N

"

n

X α(xn
t )

%
+

)6 [%Nt]

)3

&
(xn

t ) * dWn
α (t) (4.30)

which implies that

d
dt

Eν 6 [%Nt] = Eν

! %
j ρNt +

)6 [%Nt]

)3

&
(x) " (dx)
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+ Eν
1

N

!
%Nt(x)Dij

t (x) ) (x # y)+ xi + yj
) 26 [%Nt]

)3(x) )3(y)
" (dx) " (dy) $ Eν

#
LNt6

$
[%Nt] , (4.31)

where Eν denotes the expectation value over the replicated processes and j ρt is given by Eq. (1.45).

Note that the 2nd -order term in the functional operator LNt is proportional to 1
N . Formally, this

is the same equation as the one for the expectation of the diffusion process in the space of densities
solving the stochastic PDE

* t" + + á j " ,# = 0 (4.32)

where

j " ,# = j " + (2N # 1" D )1/2# (4.33)

with the space-time white noise #,

E #i(t, x ) = 0 , E #i(t, x )#j(s, y) = ) ij ) (t # s) ) (x # y) . (4.34)

Compare Eq. (4.32) to the continuity equation (4.28). In the limit N " / , Eq. (4.32) reduces to the
standard Fokker-Plank equation

* t" + + á j " = 0 , (4.35)

for the instantaneous probability densities of a single copy of the process, see Eqs. (1.44) and (1.45).

D. Hamilton-Jacobi equation and Sanov Theorem

The probability distributions of the the empirical densities %Nt evolve by the adjoint operator L "
Nt

and their hypothetical densities by the formal adjoint L  
Nt built with the use of the rule

%)
)3

& 
= #

)
)3

. (4.36)

In particular, assuming that those densities have the large-deviation form e# NF t [.] , we obtain in the
leading order the Hamilton-Jacobi equation for F t:

* tF t[3] +
! 3 %

+
) F t[3]

)3

&
á3Dt

%
+

) F t[3]
)3

&
+ j .t á +

) F t[3]
)3

4
(x) " (dx) = 0 (4.37)

We shall call F t[%] the free energy of the replicated system. Eq. (4.37) is solved by the the relative
entropy functional

F t[3] =
! %

3 ln
# 3

%t

$&
(x) " (dx) $ S[3- %t] (4.38)

where %t solves the Fokker-Planck equation (4.35).

Theorem (Dynamical version of the Sanov Theorem).

The solution (4.38) of the Hamilton-Jacobi equation (4.37) describes the time evolution of the rate
function describing large deviations regime of the distribution of the empirical density %Nt if the initial
points xn

0 of the replicated processes are distributed (independently) with the probability density %0.

Corollary. In the particular case of the replicated stationary diffusion process, the distribution of
the empirical densities %Nt stays time independent and for large N it takes the large deviations form
with the rate function

F [3] = S[3- %] (4.39)

where % is the density of the invariant measure of the process. F [3] solves the stationary Hamilton-
Jacobi equation

! 3 %
+

) F [3]
)3

&
á3D

%
+

) F [3]
)3

&
+ j . á +

) F [3]
)3

4
(x) " (dx) = 0 . (4.40)
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Introducing the stationary current velocity in the space of densities by the formula

V[3] = #+ á
%

j . + 3D+
) F [3]

)3

&
, (4.41)

the stationary Hamiltonian-Jacobi equation (4.40) may be rewritten as the orthogonality condition

!
) F [3]
)3(x)

V[3](x) " (dx) = 0 . (4.42)

For the time reversal corresponding of case (a) in Sec. IG, one obtains from Eq. (4.22) the relation

j !"
." = # j . # 23D+ $ # 2D+ 3 (4.43)

which may be rewritten in the form

j !"
." = # j . # 2%D+

) F [3]
)3

. (4.44)

A comparison with Eq. (4.41) yields the relations:

V[3] = + á
%

j !"
." + 3D+

) F [3]
)3

&
(4.45)

and

V[3] = 1
2

#
+ á j !"

." # + á j .

$
. (4.46)

Example 9. For the diffusion on a circle (3.35),

F [3] =

2π!

0

3(1)
#
ln 3(1) + $(1)

$
d1 (4.47)

with $(0) given by Eq. (3.39). In particular, in the equilibrium case with F = 0,

F [3] =

2π!

0

3(0)
%
ln 3(0) + &U(0)

&
d0 + const. (4.48)

so that F is equal in this instance to &1 the free energy of the gas of noninteracting particles in the
thermal equilibrium at temperature &# 1. Quantity 3 is the density of the gas and U is the external
potential. For the Langevin equation (3.35) (with any F ),

j .(0) = M
#

# U!(0) + F
$
3 # D3!(0) , (4.49)

and for the time reversed one of Eq. (3.43),

j !"
." (0) = j !

.(0) =
#
M (# U!(0) + F ) # 2v(0)

$
3 # D3!(0) , (4.50)

where the current velocity v(0) is given by Eq. (3.41). In this case

V[3](0) = # * θ

#
3 v

$
(0) . (4.51)

E. Dynamical large deviations for the replicated process

One can show, at least formally, that the joint distribution of the dynamical empirical density " N

and current j N show for large N the large-deviations regime with the rate function

I [$, %] =

.
/0

/1

/ if * t$ + + á %)= 0 ,

1
4

- *
(%# j $ á($D )# 1(%# j $ )

+
(t, x )dtdx if * t$ + + á %= 0 .

(4.52)
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Note the similarities and the differences with the long-time rate function (4.8). In the formal argument
using functional integrals, we shall replace " N and j N that satisfy Eq. (4.28) by " and j " ,# connected
by Eq. (4.32). Thus

E 7 [" N , j N ] = E
!

7 [$, j $ ,#] ) [* t$ + + á j $ ,#] det
%) (* t$ + + á j $ ,#)

) $

&
D$

= E
!

7 [$, %] e i
"

a á(%# j! , " ) ) [* t$ + + á %] det
%) (* t$ + + á %)

) $

&
Da D$ D%. (4.53)

Averaging over the white noise #, we obtain:

E 7 [" N , j N ]

=

!
7 [$, %] e i

"
a á(%# j ! )# 1

N

"
a á$D a ) [* t$ + + á j ] det

%) (* t$ + + á %)
) $

&
Da D$ D%

=

!
7 [$, %] e# N

4

"
(%# j ! )á($D )# 1 (%# j ! ) ) [* t$ + + á j ] det

%) (* t$ + + á %)
) $

&
D$ D%. (4.54)

From the last functional integral expression, we read off the large deviations rate function (4.52) to
which the determinant does not contribute (a similar functional-integration argument may be used to
obtain formula (4.8)).

The rate functions for the dynamical large deviations of solely the empirical density " N or solely
the empirical current %N are given by the contraction:

I [$] = min
%

I [$, %] = 1
4

! ' #
* t$ + + á j $

$#
# + á D +

$# 1#
* t$ + + á j $

$(
(t, x )dt " (dx) , (4.55)

I [%] = min
$

I [$, %] (4.56)

with no closed expression in the latter case.

We shall denote by I A[$, %] the rate functions given by Eq. (4.52) with the time-integral restricted
to the interval A. The functionals I [0,τ ]($, %) and I !

[0,τ ][$
!, %! ] for the replicated direct and time

reversed process, the latter obtained with the use of rules of Sec. IG, satisfy the stationary fluctuation
relation

I [0,τ ][$, %] + / [0,τ ][$, %] = I !
[0,τ ][$

" , # %" ] (4.57)

where

$" (t, x ) = $(t " , x" )
* (x" )

* (x)
, %" (t, x ) =

*x
*x " 4(t " , x" )

* (x" )

* (x)
, (4.58)

and

/ [0,τ ][$, %] =

τ!

0

dt
! '

)X +
0t á D# 1

t

#
4t # X #

0t3t

$
# (+ á X #

0t)3t

(
(x) " (dx)

#
!

3t(x) ln 3t(x) " (dx)

,
,
,
,

τ

0
, (4.59)

compare to relations (4.21), (4.17) and (4.19). The identities (4.58), (4.59) follow in a straightforward
way from the relations

j !"
$ " = j $ # 2X #

0 $ = # j $ + 25X +
0 $ # 2D + $ (4.60)

that generalize Eqs. (4.22). In the particular case of the stationary process and the time reversal
corresponding of case (a) in Sec. IG,

/ [0,τ ][$, %] = F [30] # F [3τ ] . (4.61)

By contraction, we infer then from relation (4.58) the identity

I [0,τ ][$] + F [30] # F [3τ ] = I !
[0,τ ][$

" ] (4.62)
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Let 30 = %, where %= e# ϕ is the invariant density of the single process, so that F [30] = 0. Take
( " / . Then the minimum of the right hand side over $" with 30 and 3& fixed is realized by the
trajectory $! solving the reversed process Fokker-Planck equation

* t$! + + á j !
$ ! = 0 (4.63)

that relaxes from (3& )" to the invariant density %" and I !
[0,& [($

!) vanishes for such a trajectory. This

is an expression of the (generalized) Onsager-Machlup principle: the most probable trajectory
that describes the creation of the spontaneous fluctuation 3& from the vacuum configuration % is
the time reversal of the trajectory that describes the the most probable relaxation of the spontaneous
fluctuation 3"

& to the vacuum %" in the time-reversed dynamics. Taking the minima on the both
hand sides of Eq. (4.62), we obtain the identity

F [3] = min
!

$ 0 = %, $ $ = $

I [0,& [[$] = I [0,& [[$
!" ] . (4.64)

that connects the rate functions for the large deviations of the invariant distribution and for the
dynamical large deviations of the empirical density $N .

F. Replicated diffusions with mean-field coupling

One may perturb the N replicated diffusions (1.41) by introducing a mean-field type coupling
between the replicated processes by a pair potential 1

N Vt(xn # xm) , obtaining a coupled system of
stochastic equations

dx = X 0t(x)dt # 1
N

M t

N"

m=1

(+ V )t(xn # xm)dt + X αt(x) * dWα(t) , (4.65)

where M t(x) is a mobility matrix that we shall fix imposing the Einstein relation &M t = Dt with
Dt defined by Eq. (1.46). For simplicity, we assumed that Vt(x) = Vt(# x) so that the m = n term
does not contribute and may be included for free. One may still introduce the empirical dynamical
densities " N and currents j N by Eqs. (4.27). The discussion concerning the large deviations of " N

and %N for the replicated diffusions carries over to the interacting case after a modification of the
formula Eq. (1.45) for the current j ρt which becomes

j ρt (x) =
#
%t

)X 0t # %tM t+ (Vt %%t) # D t+ %t

$
(x) , (4.66)

picking up an additional term involving the effective mean field potential

Vt %%t(x) $
!

Vt(x # y)%t(y) " (dy) . (4.67)

After this modification, one still obtains the formal stochastic equation (4.32) reducing in the limit
N " / to Eq. (4.35). The latter becomes now a nonlinear Fokker-Planck equation due to
the presence of a quadratic term in %t in the expression for j ρt . The Hamilton-Jacobi equations
(4.37) and (4.40) have still the same form but the Sanov solutions (4.38) and (4.39) are no more valid.
Finding, in particular, the right solution of the free energy F [3] in the stationary case is a mayor
problem, see below, except of the special instance of equilibrium dynamics. The dynamical large
deviations rate functions I [$, %]), I [$] and I [%] are still given by Eqs. (4.52) and (4.55), (4.56). In
the stationary case, if one defines the time reversed process as corresponding to the formal stochastic
equation (4.32) with j " in relation (4.33) replaced by j !

" given by Eq. (4.44) and D ! defined as before
then the stationary fluctuation relation (4.57) still holds for / [$, %] given by Eq. (4.61) implying the
Onsager-Machlup-type relations (4.62) and (4.64).

G. Perturbative solution for free energy F [" ]

In the stationary case, we may search for the solution the Hamilton-Jacobi equation (4.40) for the
nonequilibrium free energy functional F [3] in the form of a formal power series

F [3] =
&"

n=0

Fn(3) , (4.68)
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in the interaction potential V treated as a perturbation, where the term Fn is of order n in V and
where

F0[3] =
! %

3 ln
# 3

%0

$&
(x) " (dx) (4.69)

is the Sanov solution (4.39) for V = 0 with %0(x) standing for the density of the invariant measure of
the diffusion (1.41). Inserting expansion (4.68) into the Hamilton-Jacobi equation (4.40) and gathering
terms of the same order in V , we obtain the relations

!
3(x)

63
L + 2

%
+

F0[3]
)3

&
á D+

4
Fn[3]

)3
#

#
&+ (V %3)

$
á D+

Fn# 1[3]
)3

+
n# 1"

m=1

%
+

Fm[3]
)3

&
á D

%
+

Fn# m[3]
)3

&7
(x) " (dx) = 0 , (4.70)

where L is the backward generator of the single unperturbed process. After a little algebra using
Eq. (4.69) and left as an exercise, one may rewrite the above identities in the form

!
3(x)L ! ) Fn[3]

)3(x)
" (dx)

=

!
3(x)

6
#

#
&+ (V %3)

$
á D+

Fn# 1[3]
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where
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is the backward generator of the single process time-reversed according to the rules of case (a) in
Sec. IG (with x" = x). We shall search for the solution of this equations assuming that, for n & 1,
Fn[%] is a polynomial of degree n + 1 in 3:
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with - n symmetric in its arguments. For the first order term, one obtains
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in the notation where

V(01) (x0, x1) = V (x0 # x1) , (v0)(0) (x0, x1) = v0(x0) , (v0)(1) (x0, x1) = v0(x1) ,
L !

(01) = L !
(0) + L !

(1) , (4.75)

v0(x) is the current velocity (1.49) of the stationary diffusion (1.41), and operator L !
(m) acts on the

mth variable. For the kernels - n with n & 2, Eqs. (4.71) imply the recursive relations
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The solvability of the latter equations requires the orthogonality of the right hand side to the unique
zero mode %0(x0)á á á%0(xn) of the operator adjoint to L !

(0ááán) . This condition is equivalent to the

vanishing of the right hand side of Eq. (4.71) for 3 = %0. We have checked that this holds for the
three first orders, but lack yet a general recursive proof. It is possible that one may obtain a closed
and not only the recursive expression for the kernels - n or the corresponding functionals Fn[3] and
that one may prove the convergence of the perturbative series in some neighborhood of %0. Global
convergence may be obstructed by phase transitions, see the next section. A perturbative solution for
F [3] necessarily has a perturbative stationary solution of the nonlinear Fokker-Planck equation

%(x) =
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35



verifying + á j ρv = 0 as an extremum since on such a configuration the Hamilton-Jacobi equation
reduces to the identity

! 6%
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implying that

+
) F [%]
)3(x)

= 0. (4.79)

In any case, replicated diffusions coupled in a mean-field way seem to be among a few non-equilibrium
systems, along with some special models of one-dimensional lattice gases, see [B06], where the nonequi-
librium free energy F [3] may be controlled analytically at least to some extent.

H. Diffusions on the circle with mean field coupling

Let us look more closely at the case when the original diffusion process is given by the stationary
overdamped Langevin equation (3.35) on a circle and when we take the coupling potential V time-
independent and M t = M , arriving at a system of stochastic equations
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#
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For F = 0, equations (4.80) describe an equilibrium dynamics with the invariant measure given by
the Gibbs state
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In this case, the large deviations rate function for the stationary distribution of empirical current
%Nt(0) is
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generalizing Eq. (4.48). It is a solution of the stationary Hamilton-Jacobi equation (4.40) with

j . = %
#

# U! + F # (V %%)!$# D%! (4.83)

for F = 0 and it is of the form (4.73) with

- 1(00, 01) = &V(00 # 01) (4.84)

(which agrees with expression (4.74) because v0 = 0 is this case) and with - n = 0 for n & 2. It is easy
that this, indeed, provides a solution of the recursion (4.76). Note that expression (4.82) is equal to
&1 the free energy of the gas of interacting particles in the thermal equilibrium at temperature &# 1.
For F > 0, stochastic equation (4.80) describes a nonequilibrium N -particle dynamics, generalizing
the single particle one (3.35).

Example 10. Consider the case when U(0) = # h cos(0) and V (0) = J (1 # cos(0)) with J > 0. In
this instance, one may also view the angles 0n as describing planar spin vectors 8+n = (cos0n, sin 0n)
in magnetic field h along the first axis, coupled with the ferromagnetic mean field coupling. For
F = 0, the Gibbs state (4.81) exhibits in the limit N " / a 2nd order phase transition for h = 0
from the disordered stationary phase with E 8+n = 0 for &J ' 2 to the mixture of ordered ones with
E 8+n )= 0 for &J > 2 [SFN72]. A pure ordered state is selected by turning on an infinitesimal magnetic
field h = +0 and the other pure states are obtained by a simultaneous rotation of all spins. The sharp
transition disappears for (non-infinitesimal) h )= 0. The F -term describes the effect of a constant
electric field perpendicular to the plane of spins, linearly growing with time. The model with F )= 0
was studied in [SK86] and it is also closely related to the Kuramoto model of synchronization [K75]
(that has drifts F dependent on n), a subject of rich mathematical literature, see e.g. [GLP11]. Ȧt
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N = / , the dynamics is described by the non-linear Fokker-Planck equation (4.35) whose stationary
solutions have the form
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compare to Eq. (3.39), where the coefficients
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have to be found self-consistently. The linearly stable solution solutions are then selected by the
analysis of the spectrum of the linearization of the non-linear Fokker-Plank operator. For F )= 0,
integrals in Eqs. (4.86) are expressible by Bessel functions, leading to the equations

x1

J
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I 1(&x(h))
I 0(&x(h))

,
x2
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I 1(&x(h))
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where x(h) =
2
(x1 + h)2 + x2

2. For h = +0, these equations are solved by x1 = 0 = x2 but
the corresponding stationary solution of the nonlinear Fokker-Planck equation becomes unstable for
&J > 2 where another stable solution with x1 > 0 and x2 = 0 (accompanied by the one reflected
in the x2 = 0 axes corresponding to h = # 0) appears by a supercritical pitchfork bifurcation, see
FIG. 9.

FIG. 9: Ratio of the Bessel functions and the curves y
"J for #J = 5

3 < 2 and #J = 5
2 > 2

For h )= 0 there is a single solution of Eqs. (4.87) with sgn(h) x1 > 0 and x2 = 0.

For F > 0 and h = +0, there is no stable stationary solution for &J > 2 but a stable periodic
solution of the nonlinear Fokker-Planck equation

%(t, 0) = %F=0 (0 # MF t ) , (4.88)

where %F=0 is the stable solution for F = 0, appears by a Hopf bifurcation: the phase transition
becomes dynamical. For h )= 0 but small in absolute value, two dynamical phase transitions occur,
with high and low temperature states stationary and the intermediate-temperature states periodic,
and, finally, for &|h| sufficiently large (in a &F- and &J-dependent way), there is a single stationary
state at N = / and the dynamical transitions disappear [SK86].

37



....

[BK77] G. N. Bochkov, Yu. E. Kuzovlev: On general theory of thermal ßuctuations in nonlinear systems.
Sov.Phys. JETP 45 (1977), 125-130 Zh. Eksp. Teor. Fiz. 72 (1977), 238-

[BK79] G. N. Bochkov, Yu. E. Kuzovlev: Fluctuation-dissipation relations for nonequilibrium pr ocesses in open
systems. Sov.Phys. JETP 49 (1979), 543- Zh. Eksp. Teor. Fiz. 76 (1979), 1071-

[BK81] G. N. Bochkov, Yu. E. Kuzovlev: Non-linear ßuctuation-dissipation relations and stochas tic models in
nonequilibrium thermodynamics. I and II . Physica A 106 (1981), 443-479 and 480-520

[ECM93] D. J. Evans, E. G. D. Cohen, G. P. Morriss: Probability of second law violations in shearing steady
states. Phys. Rev. Lett. 71 (1993), 2401-2404 and 3616

[ES94] D. J. Evans, D. J. Searles: Equlibrium microstates which generate the second law violating steady states.
Phys. Rev. E 50 (1994), 1645

[GC95a] G. Gallavotti, E. D. G. Cohen: Dynamical ensembles in non-equilibrium statistical mechanics. Phys.
Rev. Lett. 74 (1995), 2694-2697

[GC95b] G. Gallavotti, E. D. G. Cohen: Dynamical ensembles in stationary states. J. Stat. Phys. 80 (1995),
931-970

[J97a] C. Jarzynski: A nonequilibrium equality for free energy di!erences . Phys. Rev. Lett. 78 (1997), 2690-
2693

[J07a] C. Jarzynski: Comparison of far-from-equilibrium work relations , Comptes Rend. Phys. 8 (2007), 495506

[J97b] C. Jarzynski: Equilibrium free energy di!erences from nonequilibrium mea surements: a master equation
approach. Phys. Rev. E 56 (1997), 5018

[K98] J. Kurchan: Fluctuation theorem for stochastic dynamics . J. Phys. A 31 (1998), 3719-3729

[LS99] J. Lebowitz, H. Spohn: A Gallavotti-Cohen type symmetry in the large deviation fun ctional for stochas-
tic dynamics. J. Stat. Phys. 95 (1999), 333

[ES02] D. J. Evans, D. J. Searles: The ßuctuation theorem. Adv. in Phys., 51 (2002), 1529-1585

[G08] G. Gallavotti: Fluctuation Theorem and chaos, European Physical Journal B 64 (2008), 315-320

[J11] C. Jarzynski: Equalities and inequalities: irreversibility and the Second Law of Thermodynamics at the
nanoscale, Annu. Rev. Condens. Matter Phys. 2 (2011), 329-251

[M03] C. Maes: On the origin and the use of ßuctuation relations for the entr opy, Séminaire Poincaré 2 (2003),
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