Математика

Е. А. И. А. С. Академик МГУ СССР В. С. КОРОЛЯК

СТАЦИОНАРНОЕ ФАЗОВОЕ УКРУПНЕНИЕ
МАРКОВСКИХ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ

Для описания функционирования различных сложных стохастических систем целесообразно применить развитую теорию марковских процессов восстановления (МПВ) ([1, 2]). Однако даже для сравнительно простых систем фазовое пространство (а с ним и аналитические характеристики) МПВ, описывающих функционирование систем, оказывается довольно сложным.

Естественным методом, широко применяется сложных МПВ, является метод фазового укрупнения сложных систем [2, 3], алгоритмы которого эффективны для систем, близких к эргодическим решаемым.

Оказывается, что алгоритмы фазового укрупнения имеют еще и другие следствия: он определяет фазовое укрупнение эргодических МПВ в установившемся режиме. Сформулированная выше теорема обосновывает применимость формул фазового укрупнения при произвольном распределении фазового пространства состояний.

Марковским процессом восстановления (МПВ) называется десперсионная цепь Маркова \((\xi_n, \theta_n, n \geq 0)\) со значениями в \(E \times [1, \infty)\), переходные вероятности которой задаются полумарковским ядром [2].

\[
Q(t, x, A) = P(\xi_{n+1} \in A, \theta_{n+1} \leq t/\theta_n = x).
\]

Первые компоненты МПВ \((\xi_n, n \geq 0)\) образуют вложенную цепь Маркова в измеримом фазовом пространстве \((E, \xi)\) с переходными вероятностями

\[
P(x, A) = P(\xi_{n+1} \in A/\theta_n = x) = Q(+\infty, x, A).
\]

Неотрицательные случайные величины \(\theta_n, n \geq 1, (\theta_0 = 0)\) определяют время восстановления (интервалы между моментами восстановления), имеющие функцию распределения

\[
G_n(t) = P(\theta_{n+1} \leq t/\theta_n = x) = Q(t, x, E).
\]

Удобно время восстановления с функцией распределения \(G_n(t)\) обозначать \(\theta_n: P(0, \infty) = G_n(t)\).

Будем предполагать эргодичность вложенной цепи Маркова \((\xi_n, n \geq 0)\) в следующем смысле:

\[
\lim_{n \to \infty} P(\xi_n \in A) = p(A), \forall x \in E, A \in \xi.
\]

Пусть задано распределение фазового пространства \(E = \bigcup E_n, E_1, \ldots, E_k\), \(k \neq r\), такое, что стационарное распределение \((\rho(A), A \in \xi)\) цепи

\[
\text{формула теоремы предложена В. С. Королюком, ее доказательство — Е. Арклем.}
\]
Маркова \((\xi_n, n \geq 0)\) обладает свойством
\[p(E_k) > 0, \quad \forall k \in \Gamma, N. \quad (5) \]

Введем укрупненный МПВ \((\hat{\xi}_n, \hat{\theta}_n, n \geq 0)\) со значениями в
\[\hat{E} \times \{0, \ldots, \infty\}, \hat{E} = \{1, 2, \ldots, N\}, \] переходные вероятности которого задаются полумарковской матрицей
\[\hat{Q}_{\hat{\theta}}(t) = \hat{A}_{\hat{\theta}}(t). \quad (6) \]

Переходные вероятности цепи Маркова \((\xi_n, n \geq 0)\) задаются формулой фазового укрупнения [3]
\[\hat{p}_{\hat{\theta}} = \int p(dx)P(x, E_k)/p(E_k); \quad k, r = 1, N. \quad (7) \]

Функции распределения \(\hat{Q}_{\hat{\theta}}(t)\) временногоVOKE \(\hat{\theta}_n\) задаются формулой
\[\hat{Q}_{\hat{\theta}}(t) = \int p(dx)Q(t, x, E_k)/p(E_k); \quad k, r = 1, N. \quad (8) \]

Определем моменты входа исходной цепи Маркова \((\xi_n, n \geq 0)\) в подмножество \(E_k\)
\[v_0^{\xi_n} = \inf \{n > m_{-1}: \xi_n \in E_k\}, \quad v_0 = 0, m_{\geq 1}. \quad (9) \]

Теорема. В предположении эргодичности вложенной цепи марковской (4) и условия (5) имеет место следующий предельный результат:
\[\lim_{n \to \infty} P(\xi_{0}^{m_{-1}} \in E_k) = \hat{p}_{\hat{\theta}}; \quad k, r = 1, N. \quad (10) \]

\[\lim_{n \to \infty} P(\xi_{0}^{m_{-1}} \in E_k) = \hat{Q}_{\hat{\theta}}(t). \quad (11) \]

Доказательство основано на рассмотрении двумерной цепи Маркова \((\xi_n, \xi_{n+1}), n \geq 0\) в пространстве \(E \times E\) со стационарным распределением [5]
\[\hat{p}(dx, dx) = \rho(dx)P(x, dx). \quad (12) \]

Рассмотрим множество \(A_k = E_k \times E\). Моменты входа \(v_0^{\xi_n}\) цепи \(\xi_n\) в \(E_k\) являются моментами входа цепи \(\xi_n\) в множество \(A_k\). Цепь Маркова \((\xi_n, m \geq 1)\) эргодическая на множестве \(A_k\) со стационарной мерой [5]
\[p_k(dx, dx) = \rho(dx, dx)/p(A_k). \quad (13) \]

Из (12) и (13), очевидно, имеем
\[p_0(dx, dx) = \rho(dx)P(x, dx)/p(E_k). \quad (14) \]

Теперь условие эргодичности дают
\[\lim_{n \to \infty} P(\xi_{0}^{m_{-1}} \in E_k) = \lim_{n \to \infty} P(\xi_{0}^{m_{-1}} \in E_k \times E_k) = \int p(dx)P(x, E_k)/p(E_k), \quad \text{т. е. (10) (см. (7))}. \]

Далее, в силу марковского свойства момент входа \(v_0^{\xi_n}\) имеем
\[P(\theta_{0}^{m_{-1}} \in E_k \cap E_{k} = x)P(v_0^\xi_a \in E_k \cap E_{k} = x)P(v_0^\xi_a \in E_k \cap E_{k} = x)P(v_0^\xi_a \in E_k \cap E_{k} = x) = \int Q(t, x, E_k)P(v_0^\xi_a \in E_k \cap E_{k} = x) \quad P(v_0^\xi_a \in E_k \cap E_{k} = x), \quad (15) \]
где
\[P(v_0^\xi_a \in E_k \cap E_{k} = x) = P(\xi_{0}^{m_{-1}} \in E_k \cap E_{k} = x). \]

Так как цепь Маркова \((\xi_n, m \geq 1)\) эргодическая на множестве \(E_k\) со стационарным распределением \(p(dx)/p(E_k)\), то, переходя к пределу в (15), получим соотношение (11) с учетом (8). Из сформулированной теоремы следует важные для приложений рекомендации.

Марковский процесс восстановления с эргодической вложенной цепью Маркова может быть укрупнен с помощью расширения фазового пространства состояний, удовлетворяющего условию (5). В результате укрупненный процесс (на укрупненном фазовом пространстве состояний) снова будет марковским процессом восстановления, характеристики которого вычисляются по формулам (7) и (8).

Практические рекомендации по стационарному фазовому укрупнению МПВ выглядят следующим образом:
1. Выбирается расширение фазового пространства состояний \(E = \bigcup_{k=1}^{N} E_k, E_k \cap E_r = \emptyset, k \neq r. \quad (16) \)

Обычно выбор расширения (16) определяется техническими рекомендациями объединения однотипных (в определенном смысле) фазовых систем. Разбивка (16) может производиться также по физическим свойствам фазовых состояний. Например, при построении исходного МПВ, описывающего функционирование данной системы, возникает необходимость расширения полумарковского свойства. В этом случае физические состояния системы задают естественное расширение фазового пространства состояний, моделирующего МПВ.
2. Выбивается функция укрупнения, соответствующая расширению (16):
\[u(x) = k, \quad x \in E_k, \quad \forall k = 1, N. \]

3. Рассматривается укрупненный МПВ \((\xi_n, \theta_n, n \geq 0)\) с характеристиками (6) и (7) в качестве модели исходного процесса, начиная с некоторого момента времени \(T\):
\[\hat{\xi}_n = u(\xi_{T+n}, \theta_{T+n}), \quad n \geq 0. \]

Время \(T\) выбирается таким образом, чтобы можно было считать искомый процесс после момента \(T\) находящийся в устанавливающемся режиме.

Заметим, что вложенная цепь Маркова \((\xi_n, n \geq 0)\) укрупненного МПВ имеет виртуальные переходы, которые при желании могут быть устранены известным приемом. Переходные вероятности вложенной цепи без виртуальных переходов имеют вид
\[\hat{p}_{\hat{\theta}}(x, dx) = \int p(dx)P(x, E_k)/p(E_k)P(dx). \quad (17) \]

Здесь
\[\hat{E}_k = E \setminus E_k. \]

4
А. В. Бондарь

ОБ ОТОБРАЖЕНИЯХ, ОБЛАДАЮЩИХ ПОСТОЯННЫМ ОПЕРАТОРОМ РАСТЯЖЕНИЯ ВДОЛЬ КОНУСОВ

(Совместно с академиком АН УССР И. А. Титаренко)

Пусть D — область в C^n, $f : D \rightarrow C^n$ — отображение и пусть $\vec{E} = \{\{z_1\}^\infty_{k=1}, \ldots, \{z_n\}^\infty_{k=1}\} = \text{репер последовательностей в точке } z \in D$ с касательным репером $\vec{E} = (e_1, \ldots, e_n)$, то есть $\lim_{k \rightarrow \infty} z^j = z$ и $\lim_{k \rightarrow \infty} \frac{\|z^j - z\|}{\|z^k - z\|} = e_j$, $j = 1, 2, \ldots, n$. Примем пусть $z^j \in D, j, k$. Для любого $k = 1, 2, \ldots$ определим C — линейный оператор $A_k : C^n \rightarrow C^n$, действующий на базисные векторы $e_j \in \vec{E}$ по формуле

$$A_k e_j = \frac{f(z^j) - f(z)}{\|z^j - z\|}.$$

Пусть $R_k = (A_k \cdot A_k)^{1/2}$ — операторный модуль оператора A_k.

Определение 1. Будем говорить, что отображение f обладает в точке z ограниченным постоянным оператором растяжения R вдоль репера последовательностей \vec{E}, если последовательность $\{R_k\}$ сходится в пространстве $L(C^n)$ линейных операторов к оператору R. Скажем, далее, что f обладает в точке z ограниченным постоянным оператором растяжения R_{1M} вдоль множества $M \subseteq D$, если для любого репера последовательностей $\vec{E} = \{\{z_1\}^\infty_{k=1}, \ldots, \{z_n\}^\infty_{k=1}\} \in z$ к точке z, что $z^j \in M \subseteq D$, f обладает в точке z постоянным оператором растяжения R вдоль \vec{E} и $R_{1M} = R_{1M} \vec{E}$.

$\vec{E} = M$.