Compensated Compactness
Interpolatory Estimates
Riesz Transforms, Wavelet- and Haar Projections

Paul F.X. Müller
JKU Linz

Helsinki 2016
Content

1. The Result

2. Compensated Compactness: Origin and Background
 - Weak Convergence
 - Weak semi-continuity
 - Quasi-Convexity and the Specialisation of Ball-Murat.

3. Tartar’s Conjecture and its Proof
 - The Haar system
 - Riesz Transforms and Interpolatory Estimates

4. Induced Questions
 - UMD Spaces and Rademacher Type
 - Wavelet Projections and Riesz Transforms
Primary Sources

- J. Lee, S. Müller and PFXM, Compensated Compactness, separately convex Functions and interpolatory estimates between Riesz transforms and Haar projections.
Primary Sources

Fourier- and Riesz Transforms

\[\mathcal{F}(u) (\tau) = \frac{1}{p} (2\pi)^{-n/2} \int_{\mathbb{R}^n} u(x) e^{i x \cdot \tau} \, dx \]

The Riesz transformation as Fourier multiplier

\[\mathcal{F}(R_j(u)) (\tau) = \frac{1}{\mathcal{F}(u) (\tau)} \tau_j |\tau| \text{ with } 1 \leq j \leq n, \tau = (\tau_1, \ldots, \tau_n). \]

\(R_j \) is \(L^p(\mathbb{R}^n) \) bounded

\[k_{R_j} \leq C p^{-2/(p-1)}, 1 < p < 1. \]
Fourier- and Riesz Transforms

Fourier Transformation

\[\mathcal{F}(u)(\xi) = \frac{1}{\sqrt{(2\pi)^n}} \int_{\mathbb{R}^n} u(x) e^{-ix\cdot \xi} \, dx \]
Fourier- and Riesz Transforms

Fourier Transformation

\[\mathcal{F}(u)(\xi) = \frac{1}{\sqrt{(2\pi)^n}} \int_{\mathbb{R}^n} u(x)e^{-ix\cdot\xi} \, dx \]

The Riesz transformation as Fourier multiplier

\[\mathcal{F}(R_j(u))(\xi) = -\sqrt{-1} \frac{\xi_i}{|\xi|} \mathcal{F}(u)(\xi) \quad \text{with} \quad 1 \leq i \leq n, \quad \xi = (\xi_1, \ldots, \xi_n). \]
Fourier- and Riesz Transforms

Fourier Transformation

\[\mathcal{F}(u)(\xi) = \frac{1}{\sqrt{(2\pi)^n}} \int_{\mathbb{R}^n} u(x) e^{-ix \cdot \xi} dx \]

The Riesz transformation as Fourier multiplier

\[\mathcal{F}(R_j(u))(\xi) = -\sqrt{-1} \frac{\xi_i}{|\xi|} \mathcal{F}(u)(\xi) \quad \text{with} \quad 1 \leq i \leq n, \quad \xi = (\xi_1, \ldots, \xi_n). \]

\(R_j \) is \(L^p(\mathbb{R}^n) \)-bounded

\[\| R_j \|_p \leq C p^2 / (p - 1), \quad 1 < p < \infty. \]
Lower Semi-continuity

Theorem (J. Lee, S. Müller, P.F.X.M.)

Let $f : \mathbb{R}^n \to \mathbb{R}^+$ be separately convex and polynomially bounded.
The Result

Lower Semi-continuity

Theorem (J. Lee, S. Müller, P.F.X.M.)

Let $f : \mathbb{R}^n \to \mathbb{R}^+$ be separately convex and polynomially bounded. If $(v_r : \mathbb{R}^n \to \mathbb{R}^n)$ is weakly convergent

$v_r \rightharpoonup v$ weakly in $L^p(\mathbb{R}^n, \mathbb{R}^n)$,

then we have lower semi-continuity:

$$
\int_{\mathbb{R}^n} f(v(x)) \, dx \leq \liminf_{r \to 0} \int_{\mathbb{R}^n} f(v_r(x)) \, dx,
$$

provided that $\sum_{i \neq j \neq k} R_i(v_j(r)) k \to 0$.
Lower Semi-continuity

Theorem (J. Lee, S. Müller, P.F.X.M.)

Let \(f : \mathbb{R}^n \to \mathbb{R}^+ \) be separately convex and polynomially bounded. If \((v_r : \mathbb{R}^n \to \mathbb{R}^n) \) is weakly convergent

\[
v_r \rightharpoonup v \text{ weakly in } L^p(\mathbb{R}^n, \mathbb{R}^n),
\]

then we have lower semi-continuity: \(\forall \varphi \geq 0, \)

\[
\int_{\mathbb{R}^n} f(v(x))\varphi(x)dx \leq \liminf_{r \to \infty} \int_{\mathbb{R}^n} f(v_r(x))\varphi(x)dx,
\]
The Result

Lower Semi-continuity

Theorem (J. Lee, S. Müller, P.F.X.M.)

Let \(f : \mathbb{R}^n \to \mathbb{R}^+ \) be **separately convex** and polynomially bounded. If \((v_r : \mathbb{R}^n \to \mathbb{R}^n) \) is weakly convergent

\[v_r \rightharpoonup v \text{ weakly in } L^p(\mathbb{R}^n, \mathbb{R}^n), \]

then we have **lower semi-continuity**: \(\forall \varphi \geq 0, \)

\[\int_{\mathbb{R}^n} f(v(x)) \varphi(x) \, dx \leq \liminf_{r \to \infty} \int_{\mathbb{R}^n} f(v_r(x)) \varphi(x) \, dx, \]

provided that

\[\sum_{i \neq j \neq k} R_i(v_j(r)) k \to 0. \]
Lower Semi-continuity

Theorem (J. Lee, S. Müller, P.F.X.M.)

Let \(f : \mathbb{R}^n \to \mathbb{R}^+ \) be separately convex and polynomially bounded. If \((v_r : \mathbb{R}^n \to \mathbb{R}^n) \) is weakly convergent

\[
v_r \rightharpoonup v \text{ weakly in } L^p(\mathbb{R}^n, \mathbb{R}^n),
\]

then we have **lower semi-continuity**: \(\forall \varphi \geq 0, \)

\[
\int_{\mathbb{R}^n} f(v(x))\varphi(x)dx \leq \liminf_{r \to \infty} \int_{\mathbb{R}^n} f(v_r(x))\varphi(x)dx,
\]

provided that

\[
\forall i \neq j \quad \|R_i(v_r^{(j)})\|_{L^p(\mathbb{R}^n)} \to 0.
\]
Compensated Compactness

Compensated Compactness obtains

- weak continuity results for non linear functionals,
Compensated Compactness obtains

- weak continuity results for non linear functionals,
- and weak lower semicontinuity of non convex Lagrangians.
Compensated Compactness obtains

- weak continuity results for non linear functionals,
- and weak lower semicontinuity of non convex Lagrangians.

This is possible only when weakly converging testing functions satisfy additional constrains.
Compensated Compactness obtains

- weak continuity results for non linear functionals,
- and weak lower semicontinuity of non convex Lagrangians.

This is possible only when weakly converging testing functions satisfy additional constrains.

First order systems of Electrostatics

\[E_k(x) = -\operatorname{grad}V_k(x), \quad D_k(x) = \epsilon_k(x)E_k(x), \quad \operatorname{div}D_k(x) = \rho_k(x) \]
Departure

Theorem (Murat Tartar):

Weak convergence of the vector fields

\[E_k \rightharpoonup E, \quad D_k \rightharpoonup D, \quad \text{in} \quad L^2_{\text{lok}}(\mathbb{R}^3) \]
Departure

Theorem (Murat Tartar):

Weak convergence of the vector fields

\[E_k \rightharpoonup E, \quad D_k \rightharpoonup D, \quad \text{in} \quad L^2_{\text{loc}}(\mathbb{R}^3) \]

and weak convergence of the charge densities

\[\rho_k \rightharpoonup \rho \quad \text{in} \quad L^2_{\text{loc}}(\mathbb{R}^3), \]
Theorem (Murat Tartar):

Weak convergence of the vector fields

\[E_k \rightharpoonup E, \quad D_k \rightharpoonup D, \quad \text{in} \quad L^2_{\text{loc}}(\mathbb{R}^3) \]

and weak convergence of the charge densities

\[\rho_k \rightharpoonup \rho \quad \text{in} \quad L^2_{\text{loc}}(\mathbb{R}^3), \]

implies weak convergence of the products (the energy densities)

\[D_k \cdot E_k \rightharpoonup D \cdot E \quad \text{in} \quad L^1_{\text{loc}}(\mathbb{R}^3). \]

Theorem (Murat Tartar):

Weak convergence of the vector fields

\[E_k \rightharpoonup E, \quad D_k \rightharpoonup D, \quad \text{in} \quad L^2_{\text{loc}}(\mathbb{R}^3) \]

and weak convergence of the charge densities

\[\rho_k \rightharpoonup \rho \quad \text{in} \quad L^2_{\text{loc}}(\mathbb{R}^3), \]

implies weak convergence of the products (the energy densities)

\[D_k \cdot E_k \rightharpoonup D \cdot E \quad \text{in} \quad L^1_{\text{loc}}(\mathbb{R}^3). \]

Compare:

\[\sin(kx) \rightharpoonup 0, \quad \sin(kx) \cdot \sin(kx) \rightharpoonup \frac{1}{2} > 0. \]
What is special about

\[E_k(x) = -\nabla V_k(x), \quad D_k(x) = \varepsilon_k(x) E_k(x), \quad \text{div} D_k(x) = \rho_k(x)? \]
What is special about

\[E_k(x) = -\nabla V_k(x), \quad D_k(x) = \epsilon_k(x)E_k(x), \quad \text{div}D_k(x) = \rho_k(x) ? \]
What is special about

$$E_k(x) = -\operatorname{grad} V_k(x), \quad D_k(x) = \epsilon_k(x)E_k(x), \quad \operatorname{div} D_k(x) = \rho_k(x)?$$

Gradients are curl-free

$$\operatorname{curl} E = (\partial_i E^j - \partial_j E^i)_{i,j=1}^3 = 0.$$
What is special about

\[E_k(x) = -\nabla V_k(x), \quad D_k(x) = \epsilon_k(x)E_k(x), \quad \text{div} D_k(x) = \rho_k(x)? \]

Gradients are curl-free

\[\text{curl} E = (\partial_i E_j - \partial_j E_i)_{i,j=1}^3 = 0. \]

Compactness of Sobolev embedding:

\[\|f\|_{W^{-1,p}(\mathbb{R}^n)} = \|\mathcal{F}^{-1}\{\mathcal{F} f(\xi)(1 + |\xi|^2)^{-1/2}\}\|_{L^p(\mathbb{R}^n)}. \]

\(\text{Id} : L^2 \to W^{-1,2} \) maps weak convergence to norm convergence, hence: \(\text{div} D_k \) is \(W^{-1,2} \) convergent.
What is special about

\[E_k(x) = -\text{grad} V_k(x), \quad D_k(x) = \epsilon_k(x)E_k(x), \quad \text{div} D_k(x) = \rho_k(x)? \]

Gradients are curl-free

\[\text{curl} E = (\partial_i E^j - \partial_j E^i)^3_{i,j=1} = 0. \]

Compactness of Sobolev embedding:

\[\|f\|_{W^{-1,p}(\mathbb{R}^n)} = \|F^{-1}\{Ff(\xi)(1 + |\xi|^2)^{-1/2}\}\|_{L^p(\mathbb{R}^n)} : \]

Id : \(L^2 \rightarrow W^{-1,2}\) maps weak convergence to norm convergence, hence:

\(\text{div} D_k\) is \(W^{-1,2}\) convergent.

Orthogonality

\(\text{curl} X = 0, \quad \text{div} Y = 0\) implies \(\int X \cdot Y dx = 0.\)
Hodge Decomposition

The Riesz transform

\[R_j(f)(x) = i \mathcal{F}^{-1}(y_j/|y| \cdot \mathcal{F}(f))(x) \]
The Riesz transform

\[R_j(f)(x) = i \mathcal{F}^{-1}(y_j / |y| \cdot \mathcal{F}(f))(x) \]

Projections onto divergence free and curl free vector fields.

If \(w = (w^1, \ldots, w^n) : \mathbb{R}^n \to \mathbb{R}^n \) and

\[P(w) = (R_i \otimes R_j)(w) = (R_i(\sum_{j=1}^{n} R_j w^{(j)}))_{i=1}^{n} \]

then
Hodge Decomposition

The Riesz transform
\[R_j(f)(x) = iF^{-1}\left(y_j/|y| \cdot F(f)(x)\right) \]

Projections onto divergence free and curl free vector fields.
If \(w = (w^1, \ldots, w^n) : \mathbb{R}^n \to \mathbb{R}^n \) and
\[P(w) = (R_i \otimes R_j)(w) = (R_i(\sum_{j=1}^{n} R_j w^{(j)}))_{i=1}^{n} \]
then
\[\text{curl}(Pw) = 0, \quad P^2 = P, \quad \text{div}(w - P(w)) = 0. \]
The div-curl Lemma (Murat-Tartar):

For sequences \((v_k : \mathbb{R}^n \to \mathbb{R}^n)\) and \((w_k : \mathbb{R}^n \to \mathbb{R}^n)\) satisfying

\[
\begin{align*}
w_k &\rightharpoonup 0 \text{ weakly in } L^p_{\text{lok}}(\mathbb{R}^n, \mathbb{R}^n), \\
v_k &\rightharpoonup 0 \text{ weakly in } L^q_{\text{lok}}(\mathbb{R}^n, \mathbb{R}^n),
\end{align*}
\]
The div-curl Lemma (Murat-Tartar):

For sequences \((v_k : \mathbb{R}^n \to \mathbb{R}^n)\) and \((w_k : \mathbb{R}^n \to \mathbb{R}^n)\) satisfying

\[w_k \rightharpoonup 0 \text{ weakly in } L^p_{\text{loc}}(\mathbb{R}^n, \mathbb{R}^n), \quad v_k \rightharpoonup 0 \text{ weakly in } L^q_{\text{loc}}(\mathbb{R}^n, \mathbb{R}^n), \]

and

\[\|\text{curl}w_k\|_{W^{(-1,p)}} \to 0, \quad \|\text{div}v_k\|_{W^{(-1,q)}} \to 0, \]

there exist decompositions
The div-curl Lemma (Murat-Tartar):

For sequences \((v_k : \mathbb{R}^n \to \mathbb{R}^n)\) and \((w_k : \mathbb{R}^n \to \mathbb{R}^n)\) satisfying

\[w_k \rightharpoonup 0 \quad \text{weakly in} \quad L^p_{\text{lok}}(\mathbb{R}^n, \mathbb{R}^n), \quad v_k \rightharpoonup 0 \quad \text{weakly in} \quad L^q_{\text{lok}}(\mathbb{R}^n, \mathbb{R}^n), \]

and \(\|\text{curl}w_k\|_{W(-1,p)} \to 0, \quad \|\text{div}v_k\|_{W(-1,q)} \to 0,\)

there exist decompositions

\[w_k = z_k + r_k, \quad v_k = z'_k + r'_k, \quad \text{so that} \]

\[\|\text{curl}w_k\|_{W(-1,p)} \to 0, \quad \|\text{div}v_k\|_{W(-1,q)} \to 0, \]
The div-curl Lemma (Murat-Tartar):

For sequences \((v_k : \mathbb{R}^n \to \mathbb{R}^n)\) and \((w_k : \mathbb{R}^n \to \mathbb{R}^n)\) satisfying

\[w_k \rightharpoonup 0 \text{ weakly in } L^p_{\text{lok}}(\mathbb{R}^n, \mathbb{R}^n), \quad v_k \rightharpoonup 0 \text{ weakly in } L^q_{\text{lok}}(\mathbb{R}^n, \mathbb{R}^n), \]

and

\[\|\text{curl} w_k\|_{W(-1,p)} \to 0, \quad \|\text{div} v_k\|_{W(-1,q)} \to 0, \]

there exist decompositions

\[w_k = z_k + r_k, \quad v_k = z_k' + r_k', \quad \text{so that} \]

\[\text{curl} z_k = 0, \quad \text{div} z_k' = 0, \quad \|r_k\|_{L^p} \to 0, \quad \text{and} \quad \|r_k'\|_{L^p} \to 0. \]
The div-curl Lemma (Murat-Tartar):

For sequences \((v_k : \mathbb{R}^n \to \mathbb{R}^n)\) and \((w_k : \mathbb{R}^n \to \mathbb{R}^n)\) satisfying
\[
w_k \rightharpoonup 0 \quad \text{weakly in } L^p_{\text{lok}}(\mathbb{R}^n, \mathbb{R}^n), \quad v_k \rightharpoonup 0 \quad \text{weakly in } L^q_{\text{lok}}(\mathbb{R}^n, \mathbb{R}^n),
\]
and
\[
\|\text{curl} w_k\|_{W^{(-1,p)}} \to 0, \quad \|\text{div} v_k\|_{W^{(-1,q)}} \to 0,
\]
there exist decompositions
\[
w_k = z_k + r_k, \quad v_k = z_k' + r_k',
\]
so that
\[
\text{curl} z_k = 0, \quad \text{div} z_k' = 0, \quad \|r_k\|_{L^p} \to 0, \quad \text{and} \quad \|r_k'\|_{L^p} \to 0.
\]
By orthogonality and
\[
(z_k + r_k)(z_k' + r_k') = (z_k z_k' + z_k r_k' + z_k' r_k + r_k r_k'),
\]
\[
\int v_k \cdot w_k \to 0.
\]
Proof of Div-curl Lemma

\[
\frac{\dot{\zeta}_i}{|\zeta|} = \frac{\dot{\zeta}_i}{1 + |\zeta|} + \frac{\dot{\zeta}_i}{|\zeta|(1 + |\zeta|)}
\]
implies

\[
||\nabla_j \mathbf{w}||_p \leq ||\partial_j \mathbf{w}||_{W^{-1,p}} + ||T(\mathbf{w})||_p.
\]

where T is a compact operator.
Proof of Div-curl Lemma

\[\frac{\zeta_i}{|\zeta|} = \frac{\zeta_i}{1 + |\zeta|} + \frac{\zeta_i}{|\zeta|(1 + |\zeta|)} \]

implies \[||R_j w||_p \leq ||\partial_j w||_{W^{-1,p}} + ||T(w)||_p. \]

where \(T \) is a compact operator. Hence with

\[
(\text{Id} - P)w = ((\sum_{j=1}^{n} R_j(R_j w^{(i)} - R_i w^{(j)})))_{i=1}^{n},
\]

\[||(\text{Id} - P)w||_p \leq ||\text{curl}w||_{W^{-1,p}} + ||\text{compact}(w)||_p. \]
Proof of Div-curl Lemma

\[\frac{\zeta_i}{|\zeta|} = \frac{\zeta_i}{1 + |\zeta|} + \frac{\zeta_i}{|\zeta|(1 + |\zeta|)} \]

implies

\[\| R_j w \|_p \leq \| \partial_j w \|_{W^{-1,p}} + \| T(w) \|_p. \]

where \(T \) is a compact operator. Hence with

\[(\text{Id} - P)w = (\sum_{j=1}^{n} R_j(R_j w^{(i)} - R_i w^{(j)}))_{i=1}^{n}, \]

\[\|(\text{Id} - P)w\|_p \leq \|\text{curl}w\|_{W^{-1,p}} + \|\text{compact}(w)\|_p. \]

If \(w_k \rightharpoonup w \) weakly in \(L^p \) and \(\|\text{curl}w_k\|_{W^{-1,p}} \to 0 \) then decompose

\[w_k = P w_k + (\text{Id} - P)w_k, \]

to obtain

\[\text{curl}Pw_k = 0, \quad \|(\text{Id} - P)w_k\|_p \to 0. \]

Same for \(Q = (\text{Id} - P) \) and divergence.
Semi continuity and convexity.

Let $1 < p < \infty$, $f : \mathbb{R}^n \to \mathbb{R}^+$, $0 < f(x) \leq C(1 + |x|^p)$.
Semi continuity and convexity.

Let $1 < p < \infty$, $f : \mathbb{R}^n \to \mathbb{R}^+$, $0 < f(x) \leq C(1 + |x|^p)$.

A) Fatou on lower semi continuity

If f is continuous and $w_j \to w$ in L^p norm convergent, then

$$\int_{[0,1]^n} f(w(x))dx \leq \liminf_{j \to \infty} \int_{[0,1]^n} f(w_j(x))dx.$$
Semi continuity and convexity.

Let $1 < p < \infty$, $f : \mathbb{R}^n \to \mathbb{R}^+$, $0 < f(x) \leq C(1 + |x|^p)$.

A) Fatou on lower semi continuity
If f is continuous and $w_j \to w$ in L^p norm convergent, then

$$\int_{[0,1]^n} f(w(x)) \, dx \leq \liminf_{j \to \infty} \int_{[0,1]^n} f(w_j(x)) \, dx.$$

B) Hahn-Banach on lower semi continuity
If f is convex and $w_j \rightharpoonup w$ in L^p weakly convergent then again

$$\int_{[0,1]^n} f(w(x)) \, dx \leq \liminf_{j \to \infty} \int_{[0,1]^n} f(w_j(x)) \, dx,$$

and conversely.
Weak lower semi continuity implies convexity

Let \(h : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be bounded and \([0, 1]^n\) periodic. We prove

\[
f(\int_{[0,1]^n} h(x)dx) \leq \int_{[0,1]^n} f(h(x))dx.
\]
Weak lower semi continuity implies convexity

Let \(h : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be bounded and \([0,1]^n\) periodic. We prove

\[
 f\left(\int_{[0,1]^n} h(x) \, dx \right) \leq \int_{[0,1]^n} f(h(x)) \, dx.
\]

Form highly oscillatory and hence weakly convergent, \(w_j(x) = h(jx) \),

\[
 w_j \rightarrow \int_{[0,1]^n} h(x) \, dx.
\]
Weak lower semi continuity implies convexity

Let $h : \mathbb{R}^n \to \mathbb{R}^n$ be bounded and $[0,1]^n$ periodic. We prove

$$f\left(\int_{[0,1]^n} h(x) \, dx\right) \leq \int_{[0,1]^n} f(h(x)) \, dx.$$

Form highly oscillatory and hence weakly convergent, $w_j(x) = h(jx)$,

$$w_j \rightarrow \int_{[0,1]^n} h(x) \, dx.$$

Weak lower semi continuity implies Jensen’s Inequality

$$f\left(\int_{[0,1]^n} h(x) \, dx\right) \leq \liminf_{j \to \infty} \int_{[0,1]^n} f(w_j(x)) \, dx = \int_{[0,1]^n} f(h(x)) \, dx.$$
Interpretation

Comparison of A and B:

Extending the class of admissible testing sequences from norm-converging to weakly converging **is compensated by restricting** the class of admissible integrands f from continuous to convex.
Interpretation

Comparison of A and B:

Extending the class of admissible testing sequences from norm-converging to weakly converging is compensated by restricting the class of admissible integrands f from continuous to convex.

Emphasize

The weakly convergent sequence satisfies Jensen’s inequality with respect to f.
Quasi-Convexity

Gradients are curl-free

\[w : \mathbb{R}^n \rightarrow \mathbb{R}^{n \times n}. \]

\[\text{curl} w = (\partial_i w^{(m,j)} - \partial_j w^{(m,i)})_{i,j=1}^n; \quad m \leq n. \]
Quasi-Convexity

Gradients are curl-free

\[w : \mathbb{R}^n \rightarrow \mathbb{R}^{n \times n} \]

\[\text{curl} w = (\partial_i w^{(m,i)} - \partial_j w^{(m,i)})_{i,j=1}^n, \quad m \leq n. \]

If \(v : \mathbb{R}^n \rightarrow \mathbb{R}^n \) and \(\partial_i v^{(m)} = w^{(m,i)} \) then \(\text{curl} w = 0. \)
Quasi-Convexity

Gradients are curl-free

\[w : \mathbb{R}^n \to \mathbb{R}^{n \times n}. \]

\[
\text{curl} w = (\partial_i w^{(m,j)} - \partial_j w^{(m,i)})_{i,j=1}^n, \quad m \leq n.
\]

If \(v : \mathbb{R}^n \to \mathbb{R}^n \) and \(\partial_i v^{(m)} = w^{(m,i)} \) then \(\text{curl} w = 0. \)

Jensen’s inequality for gradients = quasi convex.

If \(L : \mathbb{R}^{n \times n} \to \mathbb{R}^+ \), \(L(x) \leq (1 + |x|^p) \) satisfies Jensen’s inequality for gradients,

\[
\int_{[0,1]^n} L(a + w) \geq L(a), \quad \int_{[0,1]^n} w = 0, \quad \text{curl} w = 0.
\]

then \(L : \mathbb{R}^{n \times n} \to \mathbb{R}^+ \) is called quasi convex.
Morrey’s Theorem

Assume quasi convexity, $L: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$, and $Z[0,1]^n \subseteq L(a+w)$ and $Z[0,1]^n w = 0$, $\nabla w = 0$.

If $(w_r v)$ weakly in $L^p(\mathbb{R}^n, \mathbb{R}^n)$, $\nabla (w_r v) = 0$, then $Z L(w) dx \leq \lim \inf Z L(w_k) dx$, and conversely.
Morrey’s Theorem

Assume quasi convexity, $L : \mathbb{R}^{n \times n} \to \mathbb{R}^+$, $L(x) \leq (1 + |x|^p)$ and

$$\int_{[0,1]^n} L(a + w) \geq L(a), \quad \int_{[0,1]^n} w = 0, \quad \text{curl} w = 0.$$
Morrey’s Theorem

Assume quasi convexity, \(L : \mathbb{R}^{n \times n} \to \mathbb{R}^+ \), \(L(x) \leq (1 + |x|^p) \) and

\[
\int_{[0,1]^n} L(a + w) \geq L(a), \quad \int_{[0,1]^n} w = 0, \quad \text{curl} w = 0.
\]

If

\[
\begin{align*}
&\{ w_r \rightharpoonup v \text{ weakly in } L^p(\mathbb{R}^n, \mathbb{R}^{n \times n}), \\
&\text{curl}(w_r) = 0,
\end{align*}
\]

then

\[
\int_{[0,1]^n} L(a + w) \geq L(a), \quad \int_{[0,1]^n} w = 0, \quad \text{curl} w = 0.
\]
Morrey’s Theorem

Assume quasi convexity, $L : \mathbb{R}^{n \times n} \to \mathbb{R}^+$, $L(x) \leq (1 + |x|^p)$ and

$$\int_{[0,1]^n} L(a + w) \geq L(a), \quad \int_{[0,1]^n} w = 0, \quad \text{curl} w = 0.$$

If

$$\begin{cases}
w_r \rightharpoonup v \quad \text{weakly in} \quad L^p(\mathbb{R}^n, \mathbb{R}^{n \times n}), \\
\text{curl}(w_r) = 0,
\end{cases}$$

then

$$\int L(w) dx \leq \lim \inf \int L(w_k) dx,$$

and conversely.
Morrey's Theorem extended by Murat and Tartar.

Assume quasi convexity, \(L : \mathbb{R}^{n \times n} \to \mathbb{R}^+ \), \(L(x) \leq (1 + |x|^p) \) and

\[
\int_{[0,1]^n} L(a + w) \geq L(a), \quad \int_{[0,1]^n} w = 0, \quad \text{curl}w = 0.
\]

If

\[
\begin{align*}
\{ w_r \rightharpoonup v \quad \text{weakly in} \quad & L^p(\mathbb{R}^n, \mathbb{R}^{n \times n}), \\
\text{curl}(w_r) \quad & \text{pre-compact in} \quad W^{-1,p}(\mathbb{R}^n, \mathbb{R}^{n \times n}),
\end{align*}
\]

then

\[
\int L(w) dx \leq \liminf \int L(w_k) dx.
\]
Morrey’s Theorem extended by Murat and Tartar.

Assume quasi convexity, \(L : \mathbb{R}^{n \times n} \to \mathbb{R}^+ \), \(L(x) \leq (1 + |x|^p) \) and

\[
\int_{[0,1]^n} L(a + w) \geq L(a), \quad \int_{[0,1]^n} w = 0, \quad \text{curl} w = 0.
\]

If

\[
\begin{cases}
 w_r \to v \quad \text{weakly in} \quad L^p(\mathbb{R}^n, \mathbb{R}^{n \times n}), \\
 \text{curl}(w_r) \quad \text{pre-compact in} \quad W^{-1,p}(\mathbb{R}^n, \mathbb{R}^{n \times n}),
\end{cases}
\]

then

\[
\int L(w)dx \leq \liminf \int L(w_k)dx.
\]

Note: \(w_k(x) \) are weakly converging \(n \times n \) matrices.
Recall Decomposition Principle for curl.

For sequences \((v_r : \mathbb{R}^n \to \mathbb{R}^n)\) satisfying

\[v_r \to 0 \text{ weakly in } L^p, \quad \text{curl}v_k \to 0 \text{ in } W^{-1,p} \]
Recall Decomposition Principle for curl.

For sequences \((v_r : \mathbb{R}^n \to \mathbb{R}^n)\) satisfying

\[
v_r \rightharpoonup 0 \quad \text{weakly in } L^p, \quad \text{curl}v_k \to 0 \quad \text{in } W^{-1,p}
\]

there exists a decomposition \(v_r = u_r + w_r\), so that:

\[
\text{curl}w_k = 0, \quad \left(\implies \int_{[0,1]^n} L(a + w_k) \geq L(a), \right)
\]
Recall Decomposition Principle for \(\text{curl} \).

For sequences \((v_r : \mathbb{R}^n \to \mathbb{R}^n) \) satisfying

\[
v_r \to 0 \quad \text{weakly in } \quad L^p, \quad \text{curl} v_k \to 0 \quad \text{in } \quad W^{-1,p}
\]

there exists a decomposition \(v_r = u_r + w_r \), so that:

\[
\text{curl} w_k = 0, \quad \left(\implies \int_{[0,1]^n} L(a + w_k) \geq L(a), \right)
\]

and

\[
\|u_k\|_{L^p} \to 0.
\]
Murat’s Constant Rank Hypothesis

The decomposition lemma holds true for CR systems:

\[A(v) = \sum_{i=1}^{n} A^{(i)}(\partial_i v), \quad v : \mathbb{R}^n \to \mathbb{R}^d, \quad A^{(i)} \in \mathbb{R}^{p \times d}. \]
Murat’s Constant Rank Hypothesis

The decomposition lemma holds true for CR systems:

\[A(v) = \sum_{i=1}^{n} A^{(i)}(\partial_{i} v), \quad v : \mathbb{R}^n \rightarrow \mathbb{R}^d, \quad A^{(i)} \in \mathbb{R}^{p \times d}. \]

whenever the symbol

\[A(\xi) = \sum_{i=1}^{n} \xi_{i} A^{(i)} \]

satisfies CRH \(\exists C \forall \xi \in S^{n-1} \text{ rk} A(\xi) = C. \)
Murat’s Constant Rank Hypothesis

The decomposition lemma holds true for CR systems:

\[A(v) = \sum_{i=1}^{n} A^{(i)}(\partial_i v), \quad v : \mathbb{R}^n \to \mathbb{R}^d, \quad A^{(i)} \in \mathbb{R}^{p \times d}. \]

whenever the symbol

\[A(\xi) = \sum_{i=1}^{n} \xi_i A^{(i)} \text{ satisfies CRH} \quad \exists C \forall \xi \in S^{n-1} \text{ rk}(A(\xi)) = C. \]

The decomposition lemma is false for the following system

\[A_0(v) = \text{grad}(v) - \text{diag}(\partial_1 v_1, \ldots, \partial_n v_n), \quad v = (v_1, \ldots, v_n), \quad v_i : \mathbb{R}^n \to \mathbb{R}. \]

Note: \(A_0(v) = 0 \implies v_i(x) = v_i(x_i). \)
And now....something completely different....

Following Ball-Murat we specialize Morrey’s theorem to **diagonal** matrices

\[w(x) = \sum_{m=1}^{n} v^{(m)}(x)e_m \otimes e_m, \quad \text{and} \quad L(w) = f(v^{(1)}, \ldots, v^{(n)}). \]
And now....something completely different....

Following Ball-Murat we specialize Morrey’s theorem to **diagonal** matrices

$$w(x) = \sum_{m=1}^{n} v^{(m)}(x)e_m \otimes e_m, \quad \text{and} \quad L(w) = f(v^{(1)}, \ldots, v^{(n)}).$$

The **curl for diagonal** matrices $w : \text{curl}(w) \iff \mathcal{A}_0(v)$.
Following Ball-Murat we specialize Morrey’s theorem to *diagonal* matrices

\[w(x) = \sum_{m=1}^{n} v^{(m)}(x)e_m \otimes e_m, \quad \text{and} \quad L(w) = f(v^{(1)}, \ldots, v^{(n)}). \]

The **curl for diagonal** martices \(w : \text{curl}(w) \iff A_0(v). \)

Theorem of Tartar:
Weak lower semicontinuity of

\[\int f(v_T(x))dx, \quad A_0(v_T) \text{ pre-compact in } W^{-1,p} \]

implies that \(f \) is separately convex.
And now....something completely different....

Following Ball-Murat we specialize Morrey’s theorem to **diagonal** matrices

\[\mathbf{w}(x) = \sum_{m=1}^{n} v^{(m)}(x) e_m \otimes e_m, \quad \text{and} \quad L(\mathbf{w}) = f(v^{(1)}, \ldots, v^{(n)}). \]

The **curl for diagonal** matrices \(\mathbf{w} : \text{curl}(\mathbf{w}) \iff A_0(v). \)

Theorem of Tartar:
Weak lower semicontinuity of

\[\int f(v_{\tau}(x))dx, \quad A_0(v_{\tau}) \text{ pre – compact in } W^{-1,p} \]

implies that \(f \) is separately convex.

Problem of Tartar

Does separate convexity imply weak lower semicontinuity?
Tartar’s Conjecture and its Proof

Theorem (J. Lee, S. Müller, P.F.X.M.)

Let \(f : \mathbb{R}^n \to \mathbb{R}^+ \), separately convex, with, \(0 \leq f(x) \leq (1 + |x|^p) \).
Theorem (J. Lee, S. Müller, P.F.X.M.)

Let $f : \mathbb{R}^n \to \mathbb{R}^+$, separately convex, with, $0 \leq f(x) \leq (1 + |x|^p)$.

$v_r \rightharpoonup v$ in L^p, and $A_0(v_r)$ pre-compact in $W^{-1,p}$.
Theorem (J. Lee, S. Müller, P.F.X.M.)

Let \(f : \mathbb{R}^n \to \mathbb{R}^+ \), separately convex, with, \(0 \leq f(x) \leq (1 + |x|^p) \).

\[v_r \to v \text{ in } L^p, \quad \text{and} \quad A_0(v_r) \text{ pre-compact in } W^{-1,p} \]

implies that for each non-negative testing function \(\varphi \),

\[\int_{\mathbb{R}^n} f(v(x)) \varphi(x) dx \leq \liminf_{r \to \infty} \int_{\mathbb{R}^n} f(v_r(x)) \varphi(x) dx. \]

Recall. \(A_0(u) = \text{grad}(v) - \text{diag}(\partial_1 v_1, \ldots, \partial_n v_n) \),

\(v = (v_1, \ldots, v_n), \quad v_i : \mathbb{R}^n \to \mathbb{R} \).
The decomposition. (J. Lee, S. Müller, P.F.X.M.)

For sequences \((v_r : \mathbb{R}^n \to \mathbb{R}^n)\) with support in the unit cube satisfying

\[v_r \rightharpoonup 0 \quad \text{weakly in} \quad L^p, \quad A_0(v_r) \to 0 \quad \text{in} \quad W^{-1,p} \]

there exists a decomposition \(v_r = u_r + w_r\), so that:

1. For each separately convex \(f\) we have Jensen’s Inequality

 \[\int_{[0,1]} f(a + u_r(x)) \, dx \leq f(a). \]

2. \(k w_r \rightharpoonup 0 \quad \text{in} \quad L^p.\)
The decomposition. (J. Lee, S. Müller, P.F.X.M.)

For sequences \((v_r : \mathbb{R}^n \to \mathbb{R}^n)\) with support in the unit cube satisfying

\[v_r \rightharpoonup 0 \quad \text{weakly in} \quad L^p, \quad A_0(v_r) \to 0 \quad \text{in} \quad W^{-1,p} \]

there exists a decomposition \(v_r = u_r + w_r\), so that:

1. For each separately convex \(f\) we have Jensen’s Inequality

\[
\int_{[0,1]^n} f(a + u_r(x)) dx \geq f(a).
\]
The decomposition. (J. Lee, S. Müller, P.F.X.M.)

For sequences \((v_r : \mathbb{R}^n \to \mathbb{R}^n) \) with support in the unit cube satisfying

\[
v_r \rightharpoonup 0 \quad \text{weakly in } \mathbb{L}^p, \quad A_0(v_r) \to 0 \quad \text{in } W^{-1,p}
\]

there exists a decomposition \(v_r = u_r + w_r \), so that:

1. For each separately convex \(f \) we have Jensen’s Inequality

\[
\int_{[0,1]^n} f(a + u_r(x)) dx \geq f(a).
\]

2. \(\|w_r\|_{\mathbb{L}^p} \to 0. \)
The Haar System

Dyadic intervals \mathcal{D} in \mathbb{R} are $[k2^{-n}, (k+1)2^{-n}]$. A Haar function h_I is supported on $I \in \mathcal{D}$ and $h_I = 1$ on the left half of I and $h_I = -1$ on the right half of I.
The Haar System

Dyadic intervals \mathcal{D} in \mathbb{R} are $[k2^{-n}, (k+1)2^{-n}]$. A Haar function h_I is supported on $I \in \mathcal{D}$ and $h_I = 1$ on the left half of I and $h_I = -1$ on the right half of I.

Isotropic Haar basis in $L^2(\mathbb{R}^n)$:

$x = (x_1, \ldots, x_n), \quad |I_1| = \cdots = |I_n|, \quad \mathcal{A} = \{0, 1\}^n \setminus \{0\}$.

$$h_{I_1 \times \cdots \times I_n}^{(\varepsilon)}(x) = h_{I_1}^{\varepsilon_1}(x_1) \cdots h_{I_n}^{\varepsilon_n}(x_n), \quad \varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \mathcal{A}. $$
Subsystems of the Haar system

The j–th unit vector: $e_j \in \mathbb{R}^n$.

$$\mathcal{H}^j = \{ h^{(e_j)}_{I_1 \times \cdots \times I_n} : |I_1| = \cdots = |I_n| \}.$$
Subsystems of the Haar system

The j–th unit vector: \(e_j \in \mathbb{R}^n \).

\[
\mathcal{H}^j = \{ h_1^{(e_j)}(I_1, \ldots, I_n) \mid |I_1| = \cdots = |I_n| \}.
\]

\(P(e_j) \) is the orthogonal projection onto \(\text{span}\mathcal{H}^{(i)} \).
Subsystems of the Haar system

The j–th unit vector: \(e_j \in \mathbb{R}^n \).

\[
\mathcal{H}^j = \{ h_{I_1 \times \ldots \times I_n}^{(e_j)} : |I_1| = \cdots = |I_n| \}.
\]

\(P(e_j) \) is the orthogonal projection onto \(\text{span}\mathcal{H}^{(i)} \).

\[
P(v) = (P^{(e_1)}(v_1), \ldots, P^{(e_n)}(v_n)) \quad v = (v_1, \ldots, v_n)
\]
Subsystems of the Haar system

The j-th unit vector: $e_j \in \mathbb{R}^n$.

$$\mathcal{H}^j = \{ h_{I_1 \times \ldots \times I_n}^{(e_j)} : |I_1| = \cdots = |I_n| \}.$$

$P(e_j)$ is the orthogonal projection onto $\text{span}\mathcal{H}^j$.

$$P(v) = (P^{(e_1)}(v_1), \ldots, P^{(e_n)}(v_n)) \quad v = (v_1, \ldots, v_n)$$

If f is separately convex then we get Jensen’s inequality on the range of P.
We show: \[
 f \left(\int_{[0,1]^n} P(v)(x) \, dx \right) \leq \int_{[0,1]^n} f(P(v(x))) \, dx.
\]
We show: \[f \left(\int_{[0,1]^n} P(v)(x) \, dx \right) \leq \int_{[0,1]^n} f(P(v(x))) \, dx. \]

Since: \[h_Q^{(e_j)}(x) = h_I(x_j), \quad x \in Q = I_1 \times \cdots \times I_n \]
We show: \[f \left(\int_{[0,1]^n} P(\nu)(x) \, dx \right) \leq \int_{[0,1]^n} f(P(\nu(x))) \, dx. \]

Since: \[h_Q^{(e_j)}(x) = h_{l_j}(x_j), \quad x \in Q = l_1 \times \cdots \times l_n \]
Jensen in each variable separately gives
\[
\int_Q f(a_1 + c_1 h_Q^{(e_1)}(x), \ldots, a_n + c_n h_Q^{(e_n)}(x)) \, dx \\
= \int_Q f(a_1 + c_1 h_{l_1}(x_1), \ldots, a_n + c_n h_{l_n}(x_n)) \, dx \geq |Q| f(a).
\]
Separately convex f

We show: \[f \left(\int_{[0,1]^n} P(v)(x) \, dx \right) \leq \int_{[0,1]^n} f(P(v(x))) \, dx. \]

Since: \[h_Q^{(e_j)}(x) = h_{l_j}(x), \quad x \in Q = l_1 \times \cdots \times l_n \]
Jensen in each variable separately gives

\[
\int_Q f(a_1 + c_1 h_Q^{(e_1)}(x), \ldots, a_n + c_n h_Q^{(e_n)}(x)) \, dx \\
= \int_Q f(a_1 + c_1 h_1(x_1), \ldots, a_n + c_n h_n(x_n)) \, dx \geq |Q| f(a).
\]

The supports of Haar functions are nested. We may hence iterate.
Directional Haar projection:

For \(\varepsilon \in \mathcal{A} = \{0, 1\}^n \setminus \{0\} \) put

\[
P^{(\varepsilon)} u = \sum_Q \langle u, h_Q^{(\varepsilon)} \rangle h_Q^{(\varepsilon)} |Q|^{-1}.
\]
Directional Haar projection:

For $\varepsilon \in A = \{0, 1\}^n \setminus 0$ put

$$P(\varepsilon) u = \sum_Q \langle u, h_Q^{(\varepsilon)} h_Q^{(\varepsilon)} |Q|^{-1}. $$

Theorem: (J. Lee, S. Müller, P.F.X.M.)

If $\varepsilon = (\varepsilon_1, \ldots \varepsilon_n) \in A$ with $\varepsilon_{i_0} = 1$, then
Directional Haar projection:

For \(\varepsilon \in A = \{0, 1\}^n \setminus 0 \) put

\[
P^{(\varepsilon)} u = \sum_{Q} \langle u, h_{Q}^{(\varepsilon)} \rangle h_{Q}^{(\varepsilon)} |Q|^{-1}.
\]

Theorem: (J. Lee, S. Müller, P.F.X.M.)

If \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in A \) with \(\varepsilon_{i_0} = 1 \), then

\[\|P^{(\varepsilon)}(u)\|_p \leq A_p \|u\|_p^{1/2} \|R_{i_0}(u)\|_p^{1/2}, \quad 2 \leq p < \infty.\]

and
Directional Haar projection:

For $\varepsilon \in \mathcal{A} = \{0, 1\}^n \setminus 0$ put

$$P^{(\varepsilon)} u = \sum_Q \langle u, h^{(\varepsilon)}_Q \rangle h^{(\varepsilon)}_Q |Q|^{-1}.$$

Theorem: (J. Lee, S. Müller, P.F.X.M.)

If $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \mathcal{A}$ with $\varepsilon_{i_0} = 1$, then

$$\|P^{(\varepsilon)}(u)\|_p \leq A_p \|u\|_p^{1/2} \|R_{i_0}(u)\|_p^{1/2}, \quad 2 \leq p < \infty.$$

and

$$\|P^{(\varepsilon)}(u)\|_p \leq A_p \|u\|_p^{1/p} \|R_{i_0}(u)\|_p^{1-1/p}, \quad 1 < p \leq 2.$$
Directional Haar projection:

For $\varepsilon \in \mathcal{A} = \{0, 1\}^n \setminus \emptyset$ put $P^{(\varepsilon)} u = \sum_{Q} \langle u, h_Q^{(\varepsilon)} \rangle h_Q^{(\varepsilon)} |Q|^{-1}$.

Theorem: (J. Lee, S. Müller, P.F.X.M.)

If $\varepsilon = (\varepsilon_1, \ldots \varepsilon_n) \in \mathcal{A}$ with $\varepsilon_{i_0} = 1$, then

$$\|P^{(\varepsilon)}(u)\|_p \leq A_p \|u\|_p^{1/2} \|R_{i_0}(u)\|_p^{1/2}, \quad 2 \leq p < \infty.$$

and

$$\|P^{(\varepsilon)}(u)\|_p \leq A_p \|u\|_p^{1/p} \|R_{i_0}(u)\|_p^{1-1/p}, \quad 1 < p \leq 2.$$

Exponents are sharp! For instance,

$$\sup_{w \in L^p} \frac{\|P^{(\varepsilon)}w\|_p}{\|R_{i_0} w\|_p^{1/2+\delta} \|w\|_p^{1/2-\delta}} = \infty, \quad 2 \leq p < \infty.$$
Harvest: L^p Estimates for $(v - P(v))$.

If $v_r \rightarrow 0$ weakly in L^p \ $\mathcal{A}_0(v_r) \rightarrow 0$ in $W^{-1,p}$

then

$$\|v_r - P(v_r)\|_p \rightarrow 0.$$
Havest: L^p Estimates for $(v - P(v))$.

If $v_r \rightharpoonup 0$ weakly in L^p \hspace{1cm} A_0(v_r) \to 0$ in $W^{-1,p}$

then

$$\|v_r - P(v_r)\|_p \to 0.$$

Indeed

$$\|v - P(v)\|_p \leq C_p \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \|R_j v^{(i)}\|_p^{1/2} \|v^{(i)}\|_p^{1/2}.$$
Harvest: L^p Estimates for $(v - P(v))$.

If $v_r \rightharpoonup 0$ weakly in L^p, $A_0(v_r) \to 0$ in $W^{-1, p}$ then

$$\|v_r - P(v_r)\|_p \to 0.$$

Indeed

$$\|v - P(v)\|_p \leq C_p \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \|R_j v(i)\|_p^{1/2} \|v(i)\|_p^{1/2}. $$

Right hand side is bounded by

$$C_p \|A_0 v\|_{W^{-1, p}}^{1/2} \|v\|_p^{1/2} + \|T(v)\|_p, \quad \text{where } T \text{ is compact.}$$
Harvest: L^p Estimates for $(\nu - P(\nu))$.

If $\nu_r \rightharpoonup 0$ weakly in L^p, $\mathcal{A}_0(\nu_r) \to 0$ in $W^{-1,p}$
then
$$\|\nu_r - P(\nu_r)\|_p \to 0.$$ Indeed
$$\|\nu - P(\nu)\|_p \leq C_p \sum_{i=1}^n \sum_{j=1,j \neq i}^n \|R_j \nu^{(i)}\|^{1/2}_p \|\nu^{(i)}\|^{1/2}_p.$$

Right hand side is bounded by
$$C_p \|\mathcal{A}_0 \nu\|^{1/2}_{W^{-1,p}} \|\nu\|^{1/2}_p + \|T(\nu)\|_p,$$
where T is compact.

Riesz transforms satisfy
$$\|R_j w\|_p \leq C \|\partial_j w\|_{W^{-1,p}} + \|T w\|_p.$$
The decomposition made explicit

For sequences \((v_r : \mathbb{R}^n \to \mathbb{R}^n)\) with support in the unit cube satisfying

\[
v_r \to 0 \quad \text{weakly in } L^p, \quad A_0(v_r) \to 0 \quad \text{in } W^{-1,p}
\]
The decomposition made explicit

For sequences \((v_r : \mathbb{R}^n \rightarrow \mathbb{R}^n)\) with support in the unit cube satisfying

\[v_r \rightharpoonup 0 \quad \text{weakly in} \quad L^p, \quad A_0(v_r) \rightharpoonup 0 \quad \text{in} \quad W^{-1,p} \]

For each separately convex \(f\)

\[\int_{[0,1]^n} f(a + P(v_r(x))) \, dx \geq f(a). \]
The decomposition made explicit

For sequences \((v_r : \mathbb{R}^n \to \mathbb{R}^n) \) with support in the unit cube satisfying

\[
v_r \to 0 \quad \text{weakly in} \quad L^p, \quad A_0(v_r) \to 0 \quad \text{in} \quad W^{-1,p}
\]

1. For each separately convex \(f \)

\[
\int_{[0,1]^n} f(a + P(v_r(x))) \, dx \geq f(a).
\]

2. \[
\|v_r - P(v_r)\|_{L^p} \to 0.
\]
Induced Questions

Induced Questions

Directional projections ranging in UMD spaces. R. Lechner in his Ph. D. at J. Kepler University, Linz proved

\[T_{L^p}(\mathbb{R}^n, X) \leq \lambda_{k R}^0(u) + \lambda_{k A}^1 T_{L^p}(\mathbb{R}^n, X), \]

where \(T \) is the Rademacher Type of \(L^p(X) \) and \(A = A(p, UMD(X)) \).

The Rademacher Type of \(L^p(X) \) enters explicitly in the exponents.
Induced Questions

Directional projections ranging in UMD spaces.
Induced Questions

Directional projections ranging in UMD spaces.

R. Lechner in his Ph. D. at J. Kepler University, Linz proved

$$\| P^{(\varepsilon)}(u) \|_{L^p(\mathbb{R}^n, X)} \leq A \| u \|_{L^p(\mathbb{R}^n, X)} \left(\frac{1}{T} \right)^{1 - \frac{1}{T}} \| R_{i_0}(u) \|_{L^p(\mathbb{R}^n, X)},$$

where $T =$ Rademacher Type of $L^p(X)$ and $A = A(p, \text{UMD}(X))$. The Rademacher Type of $L^p(X)$ enters explicitly in the exponents.
Induced Questions

Directional projections ranging in UMD spaces.

R. Lechner in his Ph. D. at J. Kepler University, Linz proved

\[
\|P^{(e)}(u)\|_{L^p(\mathbb{R}^n, X)} \leq A \|u\|_{L^p(\mathbb{R}^n, X)} \frac{1}{T} \|R_{i0}(u)\|_{L^p(\mathbb{R}^n, X)},
\]

where \(T = \text{Rademacher Type of } L^p(X) \) and \(A = A(p, \text{UMD}(X)) \).

The Rademacher Type of \(L^p(X) \) enters explicitly in the exponents.

Replace the Haar system by Hölder smooth wavelets (A. Kamont, S. Müller, PFXM).
Induced Questions

Directional projections ranging in **UMD spaces**.

R. Lechner in his Ph. D. at J. Kepler University, Linz proved

\[
\|P(\varepsilon)(u)\|_{L^p(\mathbb{R}^n, X)} \leq A \|u\|_{L^p(\mathbb{R}^n, X)} \left(\frac{1}{T} \right) \left(\frac{1}{R_{i0}(u)} \right)^{1 - \frac{1}{T}},
\]

where \(T = \text{Rademacher Type of } L^p(X) \) and \(A = A(p, \text{UMD}(X)) \).

The Rademacher Type of \(L^p(X) \) enters explicitly in the exponents.

Replace the Haar system by **Hölder smooth wavelets** (A. Kamont, S. Müller, PFXM).
Admissible wavelet systems (1).

S is the collection of all dyadic cubes in \mathbb{R}^n and
$A = \{ \varepsilon \in \{0,1\}^n : \varepsilon \neq (0, \ldots, 0) \}.$
Admissible wavelet systems (1).

\mathcal{S} is the collection of all dyadic cubes in \mathbb{R}^n and

$\mathcal{A} = \{ \varepsilon \in \{0,1\}^n : \varepsilon \neq (0, \ldots, 0) \}$. Fix an orthonormal basis in $L^2(\mathbb{R}^n)$

$$\{ \varphi_Q^{(\varepsilon)}/\sqrt{|Q|} : Q \in \mathcal{S}, \varepsilon \in \mathcal{A} \}$$
Admissible wavelet systems (1).

S is the collection of all dyadic cubes in \mathbb{R}^n and
$\mathcal{A} = \{ \varepsilon \in \{0,1\}^n : \varepsilon \neq (0,\ldots,0) \}$. Fix an orthonormal basis in $L^2(\mathbb{R}^n)$

$$\{ \varphi_Q^{(\varepsilon)} / \sqrt{|Q|} : Q \in S, \varepsilon \in \mathcal{A} \}$$

We assume that $\varphi_Q^{(\varepsilon)}$ satisfies:

- Localization with decay estimates around Q
Admissible wavelet systems (1).

\(\mathcal{S} \) is the collection of all dyadic cubes in \(\mathbb{R}^n \) and
\(\mathcal{A} = \{ \varepsilon \in \{0,1\}^n : \varepsilon \neq (0, \ldots, 0) \} \). Fix an orthonormal basis in \(L^2(\mathbb{R}^n) \)

\[\left\{ \varphi_{Q}^{(\varepsilon)} / \sqrt{|Q|} : Q \in \mathcal{S}, \varepsilon \in \mathcal{A} \right\} \]

We assume that \(\varphi_{Q}^{(\varepsilon)} \) satisfies:

- Localization with decay estimates around \(Q \)
- Hölder continuity of order \(\alpha \) with \(0 < \alpha \leq 1 \).
Admissible wavelet systems (1).

S is the collection of all dyadic cubes in \mathbb{R}^n and
$\mathcal{A} = \{ \varepsilon \in \{0,1\}^n : \varepsilon \neq (0, \ldots, 0) \}$. Fix an orthonormal basis in $L^2(\mathbb{R}^n)$

$$\{ \varphi_Q^{(\varepsilon)}/\sqrt{|Q|} : Q \in S, \varepsilon \in \mathcal{A} \}$$

We assume that $\varphi_Q^{(\varepsilon)}$ satisfies:

- Localization with decay estimates around Q
- Hölder continuity of order α with $0 < \alpha \leq 1$.
- Sectional oscillation for $i \in \{ j \leq n : \varepsilon_j = 1 \}$.

Thus $\varphi_Q^{(\varepsilon)}$ is a spread-out, Hölder-smooth version of $h_Q^{(\varepsilon)}$.
Admissible wavelets (2).

We require decay, Hölder estimates and sectional oscillation:

\[
|Q(x)| \lesssim C \downarrow^{1+\text{dist}(x, Q)} s(Q) \alpha_n (1+.)
\]

\[
|Q(t)| \lesssim C \downarrow^{1+\text{dist}(x, Q)} s(Q) \alpha_n (1+.)
\]

Sectional oscillation for

\[
|E_i(f)(x)| \lesssim C \downarrow^{1+\text{dist}(x, Q)} s(Q) \alpha_n (1+.).
\]

where

\[
E_i(f)(x) = R_x \int f(x_1, \ldots, s, \ldots, x_n) \, ds.
\]
Admissible wavelets (2).

We require decay, Hölder estimates and sectional oscillation:

\[|\varphi_Q^{(\varepsilon)}(x)| \leq C \left(1 + \frac{\text{dist}(x,Q)}{s(Q)} \right)^{-n(1+\delta)} \]
Admissible wavelets (2).

We require decay, Hölder estimates and sectional oscillation:

- \[|φ_Q^{(ε)}(x)| \leq C \left(1 + \frac{\text{dist}(x,Q)}{s(Q)} \right)^{-n(1+δ)} \]

- \[|φ_Q^{(ε)}(x) - φ_Q^{(ε)}(t)| \leq Cs(Q)^{-α} |x - t|^{α} \left(1 + \frac{\text{dist}(x,Q)}{s(Q)} \right)^{-n(1+δ)} \]
Induced Questions Wavelet Projections and Riesz Transforms

Admissible wavelets (2).

We require decay, Hölder estimates and sectional oscillation:

- \[|\varphi_Q^{(\varepsilon)}(x)| \leq C \left(1 + \frac{\text{dist}(x,Q)}{s(Q)}\right)^{-n(1+\delta)} \]
- \[|\varphi_Q^{(\varepsilon)}(x) - \varphi_Q^{(\varepsilon)}(t)| \leq Cs(Q)^{-\alpha}|x - t|^{\alpha} \left(1 + \frac{\text{dist}(x,Q)}{s(Q)}\right)^{-n(1+\delta)} \]
- Sectional oscillation for \(i \in \{j \leq n : \varepsilon_j = 1\} \):
 \[|E_i(\varphi_Q^{(\varepsilon)})(x)| \leq Cs(Q) \left(1 + \frac{\text{dist}(x,Q)}{s(Q)}\right)^{-n(1+\delta)}, \]
Admissible wavelets (2).

We require decay, Hölder estimates and sectional oscillation:

1. \(|\varphi_Q^{(\varepsilon)}(x)| \leq C \left(1 + \frac{\text{dist}(x,Q)}{s(Q)} \right)^{-n(1+\delta)} \)

2. \(|\varphi_Q^{(\varepsilon)}(x) - \varphi_Q^{(\varepsilon)}(t)| \leq Cs(Q)^{-\alpha} |x - t|^\alpha \left(1 + \frac{\text{dist}(x,Q)}{s(Q)} \right)^{-n(1+\delta)} \)

3. Sectional oscillation for \(i \in \{ j \leq n : \varepsilon_j = 1 \} : \)
 \[
 |E_i(\varphi_Q^{(\varepsilon)})(x)| \leq Cs(Q) \left(1 + \frac{\text{dist}(x,Q)}{s(Q)} \right)^{-n(1+\delta)},
 \]
 where
 \[
 E_i(f)(x) = \int_{-\infty}^{x_i} f(x_1, \ldots, s, \ldots, x_n) ds,
 \]
Directional wavelet projections

For $\varepsilon \in \mathcal{A} = \{0, 1\}^n \setminus \emptyset$ put

\[W^{(\varepsilon)}(u) = \sum_{Q \in \mathcal{S}} \langle u, \varphi^{(\varepsilon)}_Q \rangle \varphi^{(\varepsilon)}_Q |Q|^{-1}, \]
Directional wavelet projections

For \(\varepsilon \in \mathcal{A} = \{0, 1\}^n \setminus \emptyset \) put

\[
W^{(\varepsilon)}(u) = \sum_{Q \in \mathcal{S}} \langle u, \varphi_Q^{(\varepsilon)} \rangle \varphi_Q^{(\varepsilon)} |Q|^{-1},
\]

Theorem: (S. Müller, P.F.X.M.)

If \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \mathcal{A} \) with \(\varepsilon_{i_0} = 1 \), then
Directional wavelet projections

For $\varepsilon \in A = \{0, 1\}^n \setminus 0$ put $W^{(\varepsilon)}(u) = \sum_{Q \in \mathcal{S}} \langle u, \varphi^{(\varepsilon)}_Q \rangle \varphi^{(\varepsilon)}_Q |Q|^{-1},$

Theorem: (S. Müller, P.F.X.M.)
If $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in A$ with $\varepsilon_i_0 = 1$, then

$$\|W^{(\varepsilon)}(u)\|_p \leq A\|u\|_p^{1-\alpha}\|R^{(\varepsilon)}_{i_0}(u)\|_p\|^{\alpha}, \quad 0 < \alpha < 1.$$
Directional wavelet projections

For $\varepsilon \in A = \{0, 1\}^n \setminus 0$ put

$$W^{(\varepsilon)}(u) = \sum_{Q \in S} \langle u, \varphi^{(\varepsilon)}_Q \rangle \varphi^{(\varepsilon)}_Q |Q|^{-1},$$

Theorem: (S. Müller, P.F.X.M.)

If $\varepsilon = (\varepsilon_1, \ldots \varepsilon_n) \in A$ with $\varepsilon_{i_0} = 1$, then

$$\|W^{(\varepsilon)}(u)\|_p \leq A \|u\|_{p}^{1-\alpha} \|R_{i_0}(u)\|_{p}^{\alpha}, \quad 0 < \alpha < 1.$$

If $\alpha = 1$, then

$$\|W^{(\varepsilon)}(u)\|_p \leq A \left(1 + \log \frac{\|u\|_p \|R_{i_0}(u)\|_p}{\|R_{i_0}(u)\|_p} \right) \|R_{i_0}(u)\|_p,$$
Directional wavelet projections

For $\varepsilon \in \mathcal{A} = \{0, 1\}^n \setminus 0$ put

$$W^{(\varepsilon)}(u) = \sum_{Q \in S} \langle u, \varphi_Q^{(\varepsilon)} \rangle \varphi_{Q|Q}^{(\varepsilon)} |Q|^{-1},$$

Theorem: (S. Müller, P.F.X.M.)

If $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \mathcal{A}$ with $\varepsilon_{i_0} = 1$, then

$$||W^{(\varepsilon)}(u)||_p \leq A ||u||_p^{1-\alpha} ||R_{i_0}(u)||_p^\alpha, \quad 0 < \alpha < 1.$$

If $\alpha = 1$, then

$$||W^{(\varepsilon)}(u)||_p \leq A \left(1 + \log \frac{||u||_p ||R_{i_0}(u)||_p}{||R_{i_0}(u)||_p} \right) ||R_{i_0}(u)||_p,$$

Haar projections are not limiting cases of the above. Check the exponents!
Dyadic decomposition of Haar Projections:

We resolve the discontinuities of the Haar system step by step. At each
dyadic scale we relate the Riesz transforms to Haar projections.
\(b \in C^\infty(\mathbb{R}) \), with support in \([-1, 1]\), so that

\[
\begin{align*}
 b(t) &= b(-t), \quad \text{Lip}(b) \leq 8, \quad \text{and} \quad \int_{-1}^{+1} b(t) dt = 1. \\
 d_0(x) &= 2^n b(2x_1) \cdots b(2x_n) - b(x_1) \cdots b(x_n). \\
 u &= \sum_{\ell=-\infty}^{\infty} u \ast d_\ell, \quad d_\ell(x) = d_0(2^\ell x)2^{n\ell}.
\end{align*}
\]
Decomposing $P^{(\varepsilon)}(u)$

$$S_j = \{ Q \in S : |Q| = 2^{-j} \}, \quad \Delta_{j+\ell}(h_Q^{(\varepsilon)}) = h_Q^{(\varepsilon)} * d_{\ell}.$$
Decomposing $P^{(\varepsilon)}(u)$

$$S_j = \{ Q \in S : |Q| = 2^{-j} \}, \quad \Delta_{j+\ell}(h^{(\varepsilon)}_Q) = h^{(\varepsilon)}_Q \ast d_\ell.$$

$$T^{(\varepsilon)}_\ell u = \sum_{j \in \mathbb{Z}} \sum_{Q \in S_j} \langle u, \Delta_{j+\ell}(h^{(\varepsilon)}_Q) \rangle h^{(\varepsilon)}_Q |Q|^{-1}, \quad P^{(\varepsilon)}(u) = \sum_{\ell = -\infty}^{\infty} T^{(\varepsilon)}_\ell u.$$
Decomposing $P^{(\varepsilon)}(u)$

$$S_j = \{ Q \in S : |Q| = 2^{-j} \}, \quad \Delta_{j+\ell}(h_Q^{(\varepsilon)}) = h_Q^{(\varepsilon)} \ast d_\ell.$$

$$T^{(\varepsilon)}_\ell u = \sum_{j \in \mathbb{Z}} \sum_{Q \in S_j} \langle u, \Delta_{j+\ell}(h_Q^{(\varepsilon)}) \rangle h_Q^{(\varepsilon)} |Q|^{-1}, \quad P^{(\varepsilon)}(u) = \sum_{\ell = -\infty}^{\infty} T^{(\varepsilon)}_\ell u.$$

The inverse $R_{i_0}^{-1}$ has symbol

$$\frac{|\xi|}{\xi_{i_0}} = \frac{\xi_{i_0}}{|\xi|} + \sum_{i=1, i \neq i_0}^{\infty} \frac{\xi_i}{\xi_{i_0}} \cdot \frac{\xi_i}{|\xi|}.$$
Decomposing $P^{(\varepsilon)}(u)$

$$S_j = \{ Q \in \mathcal{S} : |Q| = 2^{-j} \}, \quad \Delta_{j+\ell}(h_Q^{(\varepsilon)}) = h_Q^{(\varepsilon)} \ast d_\ell.$$

$$T_\ell^{(\varepsilon)}u = \sum_{j \in \mathbb{Z}} \sum_{Q \in S_j} \langle u, \Delta_{j+\ell}(h_Q^{(\varepsilon)}) \rangle h_Q^{(\varepsilon)} |Q|^{-1}, \quad P^{(\varepsilon)}(u) = \sum_{\ell=-\infty}^{\infty} T_\ell^{(\varepsilon)}u.$$

The inverse $R_{i_0}^{-1}$ has symbol

$$\frac{\xi}{\xi_{i_0}} = \frac{\xi_{i_0}}{|\xi|} + \sum_{i=1, i \neq i_0} \frac{\xi_i}{\xi_{i_0}} \cdot \frac{\xi_i}{|\xi|}.$$

$$T_\ell^{(\varepsilon)}R_{i_0}^{-1}u = T_\ell^{(\varepsilon)}R_{i_0}u + \sum_{i=1, i \neq i_0} T_\ell^{(\varepsilon)}E_{i_0} \partial_i R_i.$$
Fix $p \geq 2$. We have the Norm-Estimates

\[\| T_\ell^{(\epsilon)} \|_p \leq 2^{-\ell/2}, \quad \| T_\ell^{(\epsilon)} R_{i_0}^{-1} \|_p \leq 2^{+\ell/2}; \quad \ell > 0, \]

\[\| T_\ell^{(\epsilon)} \|_p \leq 2^{-|\ell|}, \quad \| T_\ell^{(\epsilon)} R_{i_0}^{-1} \|_p \leq 2^{-|\ell|/p}; \quad \ell \leq 0, \]

which imply interpolatory estimates.
Fix $p \geq 2$. We have the Norm-Estimates

$$\| T^{(\ell)} \|_p \leq 2^{-\ell/2} , \quad \| T^{(\ell)} R_{i_0}^{-1} \|_p \leq 2^{+\ell/2} ; \quad \ell > 0,$$

$$\| T^{(\ell)} \|_p \leq 2^{-|\ell|} , \quad \| T^{(\ell)} R_{i_0}^{-1} \|_p \leq 2^{-|\ell|/p} ; \quad \ell \leq 0,$$

which imply interpolatory estimates

$$\| P^{(\ell)}(u) \|_p \leq C \| R_i u \|^{1/2} \| u \|^{1/2} .$$

as follows
Pattern of Proof

Apply triangle inequality

$$\|P^{(\varepsilon)}(u)\|_p \leq \sum_{\ell=-\infty}^{\infty} \|T^{(\varepsilon)}_{\ell} u\|_p$$
Pattern of Proof

Apply triangle inequality

$$\|P^{(\varepsilon)}(u)\|_p \leq \sum_{\ell=-\infty}^{\infty} \|T^{(\varepsilon)}_{\ell} u\|_p$$

Choose M

$$2^M \leq \frac{\|u\|_p \|R_{i_0}\|_p}{\|R_{i_0} u\|_p} \leq 2^{M+1},$$

and split the series at $\ell = M$
Pattern of Proof

Apply triangle inequality

\[\| P^{(\varepsilon)}(u) \|_p \leq \sum_{\ell = -\infty}^{\infty} \| T_{\ell}^{(\varepsilon)} u \|_p \]

Choose \(M \)

\[2^M \leq \frac{\| u \|_p \| R_{i_0} \|_p}{\| R_{i_0} u \|_p} \leq 2^{M+1} , \]

and split the series at \(\ell = M \)

\[\sum_{\ell = -\infty}^{M} \| T_{\ell}^{(\varepsilon)} R_{i_0}^{-1} \|_p \| R_{i_0} u \|_p + \sum_{\ell = M+1}^{\infty} \| T_{\ell}^{(\varepsilon)} \|_p \| u \|_p \]
Pattern of Proof

Apply triangle inequality

\[\| P^{(\varepsilon)}(u) \|_p \leq \sum_{\ell=-\infty}^{\infty} \| T^{(\varepsilon)}_\ell u \|_p \]

Choose \(M \)

\[2^M \leq \frac{\| u \|_p \| R_{i_0} \|_p}{\| R_{i_0} u \|_p} \leq 2^{M+1}, \]

and split the series at \(\ell = M \)

\[\sum_{\ell=-\infty}^{M} \| T^{(\varepsilon)}_\ell R^{-1}_{i_0} \|_p \| R_{i_0} u \|_p + \sum_{\ell=M+1}^{\infty} \| T^{(\varepsilon)}_\ell \|_p \| u \|_p \]

Insert the norm estimates for the operators
Pattern of Proof

Apply triangle inequality

\[\| P^{(\varepsilon)}(u) \|_p \leq \sum_{\ell = -\infty}^{\infty} \| T^{(\varepsilon)}_{\ell} u \|_p \]

Choose \(M \)

\[2^M \leq \frac{\| u \|_p \| R_{i_0} \|_p}{\| R_{i_0} u \|_p} \leq 2^{M+1}, \]

and split the series at \(\ell = M \)

\[\sum_{\ell = -\infty}^{M} \| T^{(\varepsilon)}_{\ell} R_{i_0}^{-1} \|_p \| R_{i_0} u \|_p + \sum_{\ell = M+1}^{\infty} \| T^{(\varepsilon)}_{\ell} \|_p \| u \|_p \]

Insert the norm estimates for the operators

\[2^{M/2} \| R_{i_0} u \|_p + 2^{-M/2} \| u \|_p \leq C \| R_i u \|^{1/2}_p \| u \|^{1/2}_p. \]
Decomposing $W^{(\epsilon)}(u)$

A similar decomposition based on Calderon’s reproducing formula gives a decomposition of the wavelet projection

$$W^{(\epsilon)}(u) = \sum_{Q \in S} \langle u, \varphi_Q^{(\epsilon)} \rangle \varphi_Q^{(\epsilon)} |Q|^{-1}.$$
Decomposing $W^{(\varepsilon)}(u)$

A similar decomposition based on Calderon's reproducing formula gives a decomposition of the wavelet projection

$$W^{(\varepsilon)}(u) = \sum_{Q \in S} \langle u, \varphi^{(\varepsilon)}_Q \rangle \varphi^{(\varepsilon)}_Q |Q|^{-1}.$$

With $T^{(\varepsilon)}_\ell u = \sum_{j \in \mathbb{Z}} \sum_{Q \in S_j} \langle u, \Delta_{j+\ell}(\varphi^{(\varepsilon)}_Q) \rangle \varphi^{(\varepsilon)}_Q |Q|^{-1}$, $\Delta_{j+\ell}(\varphi^{(\varepsilon)}_Q) = \varphi^{(\varepsilon)}_Q * d_\ell$.

we get the decomposition

$$W^{(\varepsilon)}(u) = \sum_{\ell = -\infty}^{\infty} T^{(\varepsilon)}_\ell u.$$
Norm-Estimates for the decomposing operators

\[\| T^{(\epsilon)}_{\ell} \|_p \leq C 2^{-\ell \alpha}, \quad \| T^{(\epsilon)}_{\ell} R^{-1}_{i_0} \|_p \leq 2^{\ell - \ell \alpha}; \quad \ell > 0, \]
\[\| T^{(\epsilon)}_{\ell} \|_p \leq 2^{-|\ell| |\ell|}, \quad \| T^{(\epsilon)}_{\ell} R^{-1}_{i_0} \|_p \leq 2^{-|\ell| |\ell|}; \quad \ell \leq 0, \]

imply
Norm-Estimates for the decomposing operators

\[\| T^{(e)}_\ell \|_p \leq C2^{-\ell \alpha}, \quad \| T^{(e)}_\ell R_{i_0}^{-1} \|_p \leq 2^{\ell-\ell \alpha}; \quad \ell > 0, \]
\[\| T^{(e)}_\ell \|_p \leq 2^{-|\ell|} |\ell|, \quad \| T^{(e)}_\ell R_{i_0}^{-1} \|_p \leq 2^{-|\ell|} |\ell|; \quad \ell \leq 0, \]

imply

\[\| W^{(e)}(u) \|_p \leq A \| u \|_p^{1-\alpha} \| R_{i_0}(u) \|_p^\alpha, \quad 0 < \alpha < 1. \]
Norm-Estimates for the decomposing operators

\[\| T^{(\varepsilon)}_{\ell} \|_p \leq C 2^{-\ell \alpha}, \quad \| T^{(\varepsilon)}_{\ell} R_{i_0}^{-1} \|_p \leq 2^{\ell - \ell \alpha}; \quad \ell > 0, \]
\[\| T^{(\varepsilon)}_{\ell} \|_p \leq 2^{-|\ell|} \| \ell \|, \quad \| T^{(\varepsilon)}_{\ell} R_{i_0}^{-1} \|_p \leq 2^{-|\ell|} \| \ell \|; \quad \ell \leq 0, \]

imply
\[\| W^{(\varepsilon)}(u) \|_p \leq A \| u \|_p^{1-\alpha} \| R_{i_0}(u) \|_p^\alpha, \quad 0 < \alpha < 1, \]
and
\[\| W^{(\varepsilon)}(u) \|_p \leq A \left(2 + \log \frac{\| u \|_p \| R_{i_0} \|_p}{\| R_{i_0}(u) \|_p} \right) \| R_{i_0}(u) \|_p, \quad \alpha = 1. \]
Norm estimates for $T^{(ε)}_{ℓ}$, $T^{(ε)}_{ℓ} R^{-1}_{i_0}$. Reduction to permutation operators and to projections onto block bases of the Haar system:

$$T^{(ε)}_{ℓ} u = \sum_{j \in \mathbb{Z}} \sum_{Q \in S_j} \langle u, \Delta_{j+ℓ}(h^{(ε)}_Q) \rangle h^{(ε)}_Q |Q|^{-1}.$$

$ℓ > 0$ $→$ projections. $ℓ < 0$ $→$ rearrangements.

$Q \in S_j, \quad |Q| = 2^{-nj}$. $D^{(ε)}(Q)$ discontinuities of $h^{(ε)}_Q$.

$$D^{(ε)}_{j+ℓ}(Q) = \{ z : d(z, D^{(ε)}(Q)) \leq 2^{-(j+ℓ)} \}$$

strips of width $2^{-(j+ℓ)}$ around the discontinuities.

$\Delta_{j+ℓ}(h^{(ε)}_Q)$ lives on $D^{(ε)}_{j+ℓ}(Q)$ and oscillates at scale $\sim 2^{-ℓ} diam Q$.
\[|\Delta_{j+\ell}(h_Q^{(\varepsilon)})| \leq C, \quad \text{Lip}(\Delta_{j+\ell}(h_Q^{(\varepsilon)})) \leq C2^\ell / \text{diam}Q. \]

Cover \(Q \cap D_{j+\ell}^{(\varepsilon)}(Q) \) with pairwise disjoint cubes of diameter \(2^{-\ell} \text{diam}Q \).
\[\rightarrow \{ E_1(Q), \ldots, E_M(Q) \}, \quad M \leq C2^{n(\ell-1)}. \]

Form \(d_Q = \sum_{i=1}^{M} h_{E_i(Q)} \) and \(G(u) = \sum_{j \in \mathbb{Z}} \sum_{Q \in S_j} \langle u, h_Q^{(\varepsilon)} \rangle d_Q |Q|^{-1} \),
and compare with
\[\mathcal{T}_\ell^{(\varepsilon)*} u = \sum_{j \in \mathbb{Z}} \sum_{Q \in S_j} \langle u, h_Q^{(\varepsilon)} \rangle \Delta_{j+\ell}(h_Q^{(\varepsilon)}) |Q|^{-1}. \]
We have
\[\| T_\ell^{(\varepsilon)} u \|_q \leq C \| G(u) \|_q, \]
and
\[\| (T_\ell^{(\varepsilon)} R_{i_0}^{-1})^* u \|_q \leq C 2^\ell \| G(u) \|_q, \]
Estimates for the projection itself,
\[
\| G(u) \|_q \leq 2^{-\ell/2} \| u \|_q \quad \text{for} \quad q \leq 2.
\]
\[
\| G(u) \|_q \leq 2^{-\ell/p} \| u \|_q \quad \text{for} \quad q \geq 2.
\]