Cryptography in Networking, Exercises 2 (September 21, 2017)

1) Find the elements with multiplicative inverses in \mathbb{Z}_{24}. What are those inverses?

2) The input of the Extended Euclidean algorithm consists of integers a and b. The algorithm returns a triple (d, x, y) which satisfies the equation $d = \gcd(a, b) = ax + by$. The recursive version of the algorithm is short:

Extended-Euclid (a, b):

1. if $b = 0$
 2. then return $(a, 1, b)$;
3. $(d', x', y') := \text{Extended-Euclid}(b, a \mod b)$;
4. $(d, x, y) := (d', y', x' - \lfloor a/b \rfloor y')$;
5. return (d, x, y).

The following example shows how the algorithm works when the input is $a = 99$, $b = 78$:

| a | b | $|a/b|$ | d | x | y |
|-----|-----|--------|-----|-----|-----|
| 99 | 78 | 1 | 3 | -11 | 14 |
| 78 | 21 | 3 | 3 | 3 | -11 |
| 21 | 15 | 1 | 3 | -2 | 3 |
| 15 | 6 | 2 | 3 | 1 | -2 |
| 6 | 3 | 2 | 3 | 0 | 1 |
| 3 | 0 | - | 3 | 1 | 0 |

Simulate the algorithm with numbers $a = 215$ and $b = 710$. How is it possible, with the help of the algorithm, to determine the multiplicative inverse of a modulo p (p a prime)?

3) Find all primitive roots modulo 19.

4) (a) Construct (addition and multiplication tables) the finite field $GF_f(2^3)$ using the irreducible polynomial $f(X) = X^3 + X^2 + 1$.

 (b) Show that this polynomial is indeed irreducible.

5) (a) Construct $GF_g(2^3)$ using the irreducible polynomial $g(X) = X^3 + X + 1$.

 (b) Using results from (a) and from previous exercise, try to find a mapping $h : GF_f(2^3) \rightarrow GF_g(2^3)$ such that h is bijective (one-to-one) and h satisfies the conditions

 i) $h(p(X) \oplus_f q(X)) = h(p(X)) \oplus_g h(q(X))$,

 ii) $h(p(X) \otimes_f q(X)) = h(p(X)) \otimes_g h(q(X))$,

 for all $p(X), q(X) \in GF_f(2^3)$. Such a function h is called an *isomorphism* and its existence shows that the fields $GF_f(2^3)$ and $GF_g(2^3)$ are structurally identical. This implies that the only difference between the two is that elements are named in different way.

6) Let us study a linear feedback shift register (LFSR) that corresponds to the irreducible polynomial $f = X^4 + X^3 + 1$ in $\mathbb{Z}_2[X]$.

Apply the LFSR to show that the polynomial X generates the whole multiplicative group in $GF_f(2^4)$.