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The pair set {x, y} is viewed as an unordered pair, since by
Extensionality Axiom, {x,y} = {y, x}.

But in many cases, we do want to consider ordered pairs. For
example, in the Cartesian coordinate system depicted below, the two
points (1,2) and (2, 1) are different.

R

(1,2) (1.2) £ (2,1)

In general, we want to define a set denoted by (x, y) that uniquely

encodes both what x and y are, and what order they are in. In other

words, we require that the set (x, y) can be decomposed uniquely:
(x,¥y)=(u,v) <= x=uandy =v. (%)

In fact, any way of defining (x, y) that satisfies (x) will suffice.
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Ordered Pairs \
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Let us try to find a definition for (x, y).

First attempt: If we define (x, y) = {x, y}, then for a # b,
(a,b) = {a b} = {b,a} = (b, a),

which violates (x).

Second attempt: If we define (x, y) = {{x}, y}, then

({03, £03) = { {03}, {0} } = { {0}, ({03} } = (0. {{0}}),
but () # {0}, which also violates (x).

The following is one of the correct definitions:

Definition 3.1 (Kuratowski)

The set (x, y) is defined to be {{x},{x,y}}.
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Theorem 3A

(x,y)=(u,v) <= x=uandy=v.

Proof. “<=": Clearly, if x = uand y = v, then (x,y) = (u, v).
“—": Suppose (x,y) = (u,v), i.e.,

{3 oyt = Hud {u, v (1)

Case 1: x = y. Then from (1), we know that {{x}} = {{u},{u, v}},
thusu=v=x=y.
Case 2: x # y. From (1), it follows that

{u} e (o oy E {u = (xp = u=x.
By (1) again, we know that
oy e {{ur luviy Z oyt = fu vy =y = v.
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We define the first coordinate of the ordered pair (x, y) to be x, and the
second coordinate to be y.

An ordered pair (x, y), where x, y € R, can be visualized as a point in
the real plane.
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Lemma 3B
Iftx,y € A, then (x,y) € pp(A).

Proof. Since x,y € A,

{xh {y) C A, (X}, {x, ¥} € p(A),

thus
{{x}, {x,y}} € p(A) ie., (x,y) € pp(A).

Note: In particular, (x, x) := {{x}, {x,x}} = {{x}}.
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Let A, B be two sets.
AxB={(x,y):xeAandy € B}

is a set, called the Cartesian product of A and B.

Proof. We have that

AxB={(x,y)|xeAandy e B}
={we pp(AUB) | 3Ix3Iy(w=(x,y) N xe AN ye B)}

thus by Separation Axiom, A x B is a set. O
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For example:
@ R x R is the real plane:

(x.y)

e if A={a,b,c} and B= {x,y}, then

Ax B={(a,x),(ay),(b,x),(b,y). (c,x),(c,y)}
@ lfA=0orB=0then Ax B=0.
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' Relationsand Orderings
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We chose to use Kuratowski’s definition of ordered pairs (1921):
(x,¥) = {x} {x,y}}.
In fact, any definition that satisfies the following condition suffices:

(x,y)=(u,v) <= x=uandy=v.

Two alternative definitions:

Wiener’s definition (1914):
(6 y) = {{{x}, 0}, {{y}} }-
Hausdorff’s definition (1914):
(6y) = {x 111y, 2},

where 1 and 2 are two distinct objects different from x and y.
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Consider the familiar “strictly less than” relation < on the set {2, 3,5}.

We have that
2<83, 2<5 3«5

which can be visualized as follows:

Each “arrow” in the picture can be represented by an ordered pair:
(2,3), (2,5), (3,5).

The set of the above ordered pairs completely captures the
information of the above “strictly less than” relation:

R=1{(2,3),(2,5),(3,5)}.
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In general:

Definition 3.2
A relation R is a set of ordered pairs.

If Ris arelation and (x, y) € R, then we sometimes write xRy.

Example 3.1: Letw = {0,1,2,3, ...} be the set of all natural numbers.

@ The usual “strictly less than” relation < on w is defined formally to
be the set:

<={(x,y) € w xw | xis strictly less than y}.
For instance, (0,1) e<or0 < 1.
@ The divisibility relation | on w is defined to be the set
|={(m,n)cewxw:Ikecwim-k=n)}.
For instance, 3|9, 5110, etc.

@ The identity relation id on w is defined to be the set
id={(n,n) | new}
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If(x,y) € R thenx,y € JUR.
Proof. (x,¥) € R = {{x},{x,y}} € R = {{x},{x,y}} CUR

(sinceac A— aC |JA)
= {xyteUR = {xy} CUUR = x,y cUUR

Definition 3.3

We define the domain of R (dom R), the range of R (ran R), and the
field of R (id R) as

domR={xe| J| JR|3y(x,y) € R},

ran R ={y € J|JR|3x(x.y) € R},
fld R = dom R Uran R.
Iffld R C A, then we say that R is a relation on A.

v

Example 3.5: For the relation R = {(1,3),(4,2),(3,3),(3,2)}, we have
thatdom R = {1,4,3},ran R = {3,2}, ldR = {1,2, 3, 4}.

Note: By Separation Axiom, dom R, ran R and fid R are all sets. -

Example 3.2: The set R = {(1,3),(4,3),(3,3),(3,2)} of ordered pairs
is a relation.

30

e

]
Example 3.3: The membership relation € on the set {0, {0}, {{0}}} is
the set

e={(0,{0}), ({0}, {{03})}.

Example 3.4: Let X be a fixed nonempty set. The strict inclusion
relation C on subsets of X is the set

c={(AB)|ACBCX, A#B).

Note: In particular, the empty set () is a relation (called the empty

relation).
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Example 3.6: For the relation
<=A{(x,y) € w x w | x is strictly less than y},
dom <= w, ran <=w \ {0}, fld <= w, and < is a relation on w.

Example 3.7: Let X be a fixed nonempty set. For the strict inclusion
relation c = {(A,B) | AC BC X, A# B}, we have fld C = p(X), since
0 c Afor any nonempty A C X.

Example 3.8: Aset R C R x R is arelation. R can be viewed as a

subset of the coordinate plane. The projection of R onto the horizontal
axis is dom R, and the projection onto the vertical axis is ran R.
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We can define an ordered triple as

(Xa}/7z) = ((X,y),Z)
— {0 b (0,2}
= {{{x} Iy L {{{x} {x.y}h 2}

Similarly, an ordered quadruple is defined as

(X1, X2, X3, X4) = ((X1, X2, X3), X4)
= (((X17X2)7X3)7X4)

Continue in this way, an ordered n-tuple is defined as

(X17X25"'axn): ((X13X27---7Xn—1)axn)
= (((x1, X2, ..., Xn—2), Xn—1), Xn)

=((-.-((x1,X%2),X3),...), Xn)

In particular, we stipulate that a 1-tuple (x) = x.
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Definition 3.5

Let R be a (binary) relation on a set A.
@ R is said to be reflexive if xRx for every x € A.
@ R is said to be irreflexive if xRx for no x € A.
@ R is said to be symmetric if for all x,y € A
xRy = yRx.
@ R is said to be transitive if for all x,y,z € A
xRy and yRz — xRz.

Example 3.10: The “strictly less than” relation < on w is
@ irreflexive, since n < n does not hold for any n € w;
@ not reflexive, since it is irreflexive;

@ not symmetric, since, e.g. 0 < 1 but 1 < 0;
@ transitive, since [n < mand m < k] = n < k.

The “less than or equal to” relation < on w is
@ reflexive, since n < nforany n € w;

@ not irreflexive, since it is reflexive.
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Let Ay, As, ..., A, be sets. Define
[ A1><A2><A3 = (A1><A2)><A3
= {(X1,X2,X3) X1 €Ay, xo € Aband x3 € A3}

A x-xA, = (A x--xA, _ A
@ Aix---xAp (A1 x 1>< n—1) X An
n n—
= {(X1,....%n) : X1 € A1,....Xp € Ap}

Definition 3.4

An n-ary relation R on A is a set of ordered n-tuples with all
components in A, thatis, RC Ax --- x A.
N——

n

Example 3.9: The following picture visualizes a ternary relation R on R.
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Example 3.11: The relation R = {(1,2),(2,2)} on {1,2} is neither
reflexive nor irreflexive.
Example 3.12: The membership relation

e= {(0, {0}), ({0}, {{0} 1)}

on the set {0, {0}, {{0}}}is

e irreflexive, since 0 ¢ 0, {0} ¢ {0}, {{0}} ¢ {{0}};

@ not symmetric, since ) € {0} while {0} ¢ 0;

@ not transitive, since () € {0} and {0} € {{0}} while 0 ¢ {{0}}.
Example 3.13: Let be a fixed nonempty set. The strict inclusion relation

c={(AB)|ACBCX, A+B).

on p(X) is
@ irreflexive, since A ¢ Aforany A C X;
@ not symmetric, since ) C X but X ¢ 0;
@ transitive, since [ Ac BC XandBCc CC X]—=AcC CCX.
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Definition 3.6

A relation R on a set A is called a partial ordering on A if R is transitive
and irreflexive.

Example 3.14: The following are partial orderings:
@ The “strictly less than” relation < on w.
@ The strict inclusion relation C on p({a, b, c}).

{a,b,c}
: P N
3 {a,b} {a,c} {b,c}
5 > XK
w 1 {a} {b} {c}
0 0

Example 3.15: The membership relation € on A = {0, {0}, {{0}}} is
not a partial ordering, as it is not transitive. However, the membership
relation € on B = {0, {0},{0,{0}}} is a partial ordering, since € is

transitive on B.
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Theorem 7A
Assume that < is a partial ordering on a set A. For arbitrary x,y,z € A:
(a) At most one of the following three alternatives holds:

X<y, X=Yy, y<Xx.
b) x<y<x=x=y.

Proof. (a) If x < y and x = y, then x < x, contradicting irreflexivity.
If x < yand y < x, then by transitivity, x < x, again contradicting
irreflexivity.

(b) If x <y < xandx # y, then x < y < x, which contradicts (a). [
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We usually denote partial orderings by the symbol <, and define

x <y iff eitherx <yory=x.

[ Digression: In the study of partial orderings, there is always the question of
whether to use strict orderings (<) or weak orderings (<) as the basic
concept. “<” requires that a partial ordering be irreflexive, while “<” requires
that a partial ordering on A be reflexive on A. Each alternative has its own
minor advantages and disadvantages, see page 170 of the book for
discussions. ]
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Definition 3.7

A relation R on a set A is called a linear ordering on A if R is transitive
and satisfies trichotomy on A, i.e., for any x, y € A, exactly one of the
following three alternatives holds:

xRy, x=y, yRx.

For example:

@ The “strictly less than” relation < on w is a linear ordering.
(Trichotomy: for every x, y € w, exactly one of the following three
alternatives holds: x <y, x=y, y<x.)

@ The strict inclusion relation C on p({a, b}) for a # b is not a linear
ordering, as it does not satisfy trichotomy: for {a}, {b} € p({a, b}),

{a} ¢ {b}, {a} #{b}, {b} Z{a}.

: {a, b}
8 N
BRE {a} {b}
1 N . yd
0
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Theorem 3R

Let R be a linear ordering on a set A. Then

(i) R is connected, i.e., for distinct x, y € A, either xRy or yRx.
Thereby, R is a linear ordering iff R is transitive and connected.
(i) R is irreflexive, i.e., xRx for no x € A. Thereby R is a partial
ordering.

Proof. (i) Obvious by trichotomy, since x # y for distinct x, y € A.
(i) For any x € A, since x = x, it follows from trichotomy that xRx does
not hold. ]

It follows that linear orderings R can not have cycles such as
Xq RXQ, Xo RX3, X3 RX4, X4RX1 .

Because if the above cycle exists, then by transitivity x; Rxq,
contradicting the irreflexivity.
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For example:
@ Consider the strict inclusion relation C on the set

A= {{a,b},{a}, {b}}.
{a.b}
S AN
{a} (b}

The minimal elements of A are {a} and {b}, but min A does not exist.
Both the maximal element and the greatest element of A are {a, b}.

@ Consider the strict inclusion relation C on the set
B= {{a7 b}7 {a}7 {b}v @}

{a.b)
S AN

{a} {b}
AN ’ e

Both the minimal element and the least element of B are (. Both the
maximal element and the greatest element of B are {a, b}.
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Definition 3.8
Let < be a partial ordering on a set A.

@ An element a € A is called a minimal element of A with respect to
< if for every x € A,

x<a=—x=a

@ An element a € A is called a maximal element of A with respect to

< if forevery x € A,
a<x=x=a.

Definition 3.9
Let < be a partial ordering on a set A.

@ An element a € A is called the least element or minimum of A with
respect to <, denoted by min A, if

a< x forevery x € A.

| A

@ An element a € A is called the greatest element or maximum of A
with respect to <, denoted by max A, if

x < aforevery x € A.

>
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@ Consider the strict inclusion relation C on the set
C = {{a},{b},0}.
{a} {b}
AN ) yd

Both the minimal element and the least element of C are (. The maximal
elements of C are {a} and {b}, but max C does not exist.

The least (greatest) element of A (if exists) must be a minimal
(maximal) element of A. But the converse is not true in general.

For linear orderings, the concept of least (greatest) element coincides
with that of minimal (maximal) element.

A set A can have at most one least (greatest) element, since if both a
and b are least (greatest) elements of A, then by definition, a < b and
b < a,thus a=b.
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Definition 3.10

A linear ordering R on a set A is said to be a well ordering if every
nonempty subset of A has a least element.

For example, The “strictly less than” relation < on w is a well ordering
(a rigorous proof will be given in Chapter 4), but < on Z is not a well
ordering, as, e.g., Z does not have a least element.

N W
N W
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Definition 3.11

A relation R on a set A is called an equivalence relation if R is
reflexive, symmetric and transitive.

Example 3.16: On R:

@ The identity relation = is an equivalence relation;

@ The “strictly less than” relation < is transitive, but it is not reflexive
or symmetric, thus not an equivalence relation.

@ The relation = defined by
x=y < x| =1yl
is an equivalence relation.
(Transitivity: x =yandy =z = |x| = |y| = |z| = x = 2)
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Equivalence Relations
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Example 3.17: Let S={h, b, k,ls, 5, s, Iz, I} be the set of 8 lines in
the following picture, and || the parallel relation on S, that is

|={(li,}}) € S x S|lis parallel to /;}.

Then || is an equivalence relation on S, since
reflexivity: (we stipulate that) /; || /; for all /; € S;

symmetricity: fi || [ = | || I;;

transitivity: /; || and [; || lk = i || I-

32/42



Example 3.18: Let =3 be a relation on Z defined by
X=3y < 3|x—-y,

i.e., x =3 y iff x has the same remainder as y when divided by 3,
or x is congruent to y modulo 3. Show that =3 is an equivalence
relation.

Proof. Reflexivity: For any x € Z, clearly, 3| 0, i.e., 3| x — x or x =3 X.
Symmetricity: Forany x, y € Z,
X=3y=3|x—-y=3|y—-x=y=3x.

Transitivity: Forany x,y,z € Z,
x=3yandy=3z=—3|x—yand3|y—z
=3|(x=y)+ (-2
= 3| x—-2z
== X =3 Z.
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Example 3.20: Let S={h, b, k, 4,5, ks, Iz, I} be the set of 8 lines in
the following picture, and || the parallel relation on S, that is

| ={(li}) € S x S| I is parallel to /;}.

/,
A N
J 5,
3
b
I
Then [/1] = [/2] = [/3] = {/1 s /2, /3},

(4] = [l6] = {la, 5},
[l] = [F] = [le] = {l6, I7, lg }-
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Definition 3.12
Let = be an equivalence relation on a set A. Given a € A. The set

[a=={xeA: x=a}

is called an equivalence class of a (modulo =). If the relation = is clear
from the context, we may only write [a].

The element a is called a representative of the equivalence class [a].

Example 3.19: Let = be the equivalence relation on R defined by
x =y iff [x| = |y|. Forany r € R,

[rl={xeR:x=r}={xeR:|x|=|r]} ={r,—r}.
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Example 3.21: Let =3 be the relation “has the same remainder when
divided by 3 as” on Z. For any k € Z,

kK| ={xe€Z:3| k—x}.
E.g., [0]= {0,3,-3,6,-6,...} ={3k: ke Z}

[1]= {1,-2,4,-5,...} = {3k +1: k € Z}
2= {2,-1,5,~4,...} = {3k +2: k € Z}

0] = (3] = [-3] =
[1] = [-2] = [4] =
2= (-1 =[5 -

It is easy to check that
OIN[1]=0, [1In[2] =0, [0]N[2]=0.

XXXXXXXXXEXIE
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Proposition 3.13

Let = be an equivalence relation on a set A. Forany x,y € A,
(i) x € [x];
(i) Ify € [x], then[y] = [x];
(iii) If[x] # [y], then [x] N [y] = 0.

Proof. (i) As = is reflexive, x = x, which implies that
xe{zeA:z=x} =[x].

(i) Assume y € [x], i.e., y = x. By transitivity and symmetricity of the
equivalence relation =, we have that, for any a € A,

acly] < a=y g a=x < aclx|,

and thus [x] = [y].
(i) If z € [x] N [y], then [x] = [z] = [y] by (ii). O
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Example 3.23: Let S = {/1 b,k s, l5, g, 17, /8} be the set of 8 lines in
the following picture, and || the parallel relation on S.

Then

S/ = A1kl [, (]} = {{h. k. B}, {la, 6}, {l; 7. l5}}
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Definition 3.14

Let = be an equivalence relation on a set A. The set of all equivalence
classes of = is called the quotient set of A by =, denoted by A/ —.

That is
Al=={[x]: x € A}.

Example 3.22: Let = be an equivalence relation on R defined by x = y
iff [ x| = |y|. Then

R/=z=A{[r]:reR}={{r,—r} :r e R}.
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Example 3.24: Let =3 be the relation “has the same remainder when
divided by 3 as” on Z.

Lf=5 = {lk] - k € Z} = {[0], [1], [2] }-

[0] = {0,3,-3,6,-6.|..}
[1]={1,-2,4,-5,.\}

[2] = {2,-1,5,~4,...}
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— Example 3.25: The set N = {{a, b}, {c,d},{e}} is a partition of the set
Definition 3.15 {a,b,c,d,e}.
Let A be a non-empty set. A set 1 of nonempty subsets of A is called a

partition of A if a
@ forany X,Y e N, ifX#Y,thenXNY =0

(i.e., elements of I are pairwise disjoint); v
o A= | X (ie, N is exhaustive); . .
Xen Example 3.26: The set {(r — 1,r] : r € Z} is a partition of R

Intuitively, the above definition says that, if a set A is partitioned into

( Y Y Y Y Y Y 1
\ X 1N X Iy I\ ]\ 1
some pairwise disjoint non-empty subsets, then we call the set I 3 2 4 0 1 2 3 4

consisting of all these subsets a partition of A. Example 3.27: The quotient set

a Z)=, = { [0}, [1].[2]}
v { @ ) @ , } is a partition of Z. This result is not incidental.
n

A
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