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Ordered Pairs
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The pair set {x , y} is viewed as an unordered pair, since by
Extensionality Axiom, {x , y} = {y , x}.

But in many cases, we do want to consider ordered pairs. For
example, in the Cartesian coordinate system depicted below, the two
points (1,2) and (2,1) are different.

R0 1 2 3

R

1

2
(1, 2)

(2, 1)

(1,2) 6= (2,1)

In general, we want to define a set denoted by (x , y) that uniquely
encodes both what x and y are, and what order they are in. In other
words, we require that the set (x , y) can be decomposed uniquely:

(x , y) = (u, v) ⇐⇒ x = u and y = v . (∗)
In fact, any way of defining (x , y) that satisfies (∗) will suffice.
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Let us try to find a definition for (x , y).

First attempt: If we define (x , y) = {x , y}, then for a 6= b,

(a,b) = {a,b} = {b,a} = (b,a),

which violates (∗).

Second attempt: If we define (x , y) = {{x}, y}, then

({∅}, {∅}) =
{
{{∅}}, {∅}

}
=
{
{∅}, {{∅}}

}
= (∅, {{∅}}),

but ∅ 6= {∅}, which also violates (∗).

The following is one of the correct definitions:

Definition 3.1 (Kuratowski)
The set (x , y) is defined to be {{x}, {x , y}}.
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Theorem 3A
(x , y) = (u, v) ⇐⇒ x = u and y = v.

Proof. “⇐=”: Clearly, if x = u and y = v , then (x , y) = (u, v).
“=⇒”: Suppose (x , y) = (u, v), i.e.,

{{x}, {x , y}} = {{u}, {u, v}}. (1)

Case 1: x = y . Then from (1), we know that {{x}} = {{u}, {u, v}},
thus u = v = x = y .
Case 2: x 6= y . From (1), it follows that

{u} ∈ {{x}, {x , y}} x 6=y
=⇒ {u} = {x} =⇒ u = x .

By (1) again, we know that

{x , y} ∈ {{u}, {u, v}} x 6=y
=⇒ {x , y} = {u, v} x=u

=⇒ y = v .

5/42

Lemma 3B
If x , y ∈ A, then (x , y) ∈ ℘℘(A).

Proof. Since x , y ∈ A,

{x}, {x , y} ⊆ A, i.e., {x}, {x , y} ∈ ℘(A),

thus
{{x}, {x , y}} ⊆ ℘(A), i.e., (x , y) ∈ ℘℘(A).

Note: In particular, (x , x) := {{x}, {x , x}} = {{x}}.
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We define the first coordinate of the ordered pair (x , y) to be x , and the
second coordinate to be y .

An ordered pair (x , y), where x , y ∈ R, can be visualized as a point in
the real plane.

R

R

(x , y)
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Corollary 3C
Let A,B be two sets.

A× B = {(x , y) : x ∈ A and y ∈ B}
is a set, called the Cartesian product of A and B.

Proof. We have that

A× B = {(x , y) | x ∈ A and y ∈ B}
= {w ∈ ℘℘(A ∪ B) | ∃x∃y(w = (x , y) ∧ x ∈ A ∧ y ∈ B)},

thus by Separation Axiom, A× B is a set.
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For example:
R× R is the real plane:

R

R

(x , y)

if A = {a,b, c} and B = {x , y}, then

A× B = {(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)}.

If A = ∅ or B = ∅, then A× B = ∅.
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Remark

We chose to use Kuratowski’s definition of ordered pairs (1921):

(x , y) := {{x}, {x , y}}.

In fact, any definition that satisfies the following condition suffices:

(x , y) = (u, v) ⇐⇒ x = u and y = v .

Two alternative definitions:

Wiener’s definition (1914):

(x , y) := { {{x}, ∅}, {{y}} }.

Hausdorff’s definition (1914):

(x , y) := {{x ,1}, {y ,2}},

where 1 and 2 are two distinct objects different from x and y .
10/42

Relations and Orderings
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Consider the familiar “strictly less than” relation < on the set {2,3,5}.
We have that

2 < 3, 2 < 5, 3 < 5,

which can be visualized as follows:

2

3

5

Each “arrow” in the picture can be represented by an ordered pair:

(2,3), (2,5), (3,5).

The set of the above ordered pairs completely captures the
information of the above “strictly less than” relation:

R = {(2,3), (2,5), (3,5)}.
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In general:

Definition 3.2
A relation R is a set of ordered pairs.

If R is a relation and (x , y) ∈ R, then we sometimes write xRy .

Example 3.1: Let ω = {0,1,2,3, . . . } be the set of all natural numbers.

The usual “strictly less than” relation < on ω is defined formally to
be the set:

<= {(x , y) ∈ ω × ω | x is strictly less than y}.
For instance, (0,1) ∈< or 0 < 1.

The divisibility relation | on ω is defined to be the set

|= {(m,n) ∈ ω × ω : ∃k ∈ ω(m · k = n)}.
For instance, 3 | 9, 5 | 10, etc.

The identity relation id on ω is defined to be the set
id = {(n,n) | n ∈ ω}
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Example 3.2: The set R = {(1,3), (4,3), (3,3), (3,2)} of ordered pairs
is a relation.

1

32

4

Example 3.3: The membership relation ∈ on the set {∅, {∅}, {{∅}}} is
the set

∈= {(∅, {∅}), ({∅}, {{∅}})}.

Example 3.4: Let X be a fixed nonempty set. The strict inclusion
relation ⊂ on subsets of X is the set

⊂= {(A,B) | A ⊆ B ⊆ X , A 6= B}.

Note: In particular, the empty set ∅ is a relation (called the empty
relation).
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Lemma 3D
If (x , y) ∈ R, then x , y ∈

⋃⋃
R.

Proof. (x , y) ∈ R =⇒ {{x}, {x , y}} ∈ R =⇒ {{x}, {x , y}} ⊆
⋃

R

=⇒ {x , y} ∈
⋃

R =⇒ {x , y} ⊆
⋃⋃

R =⇒ x , y ∈
⋃⋃

R

(since a ∈ A =⇒ a ⊆
⋃

A)

Definition 3.3
We define the domain of R (dom R), the range of R (ran R), and the
field of R (fld R) as

dom R = {x ∈
⋃⋃

R | ∃y (x , y) ∈ R},

ran R = {y ∈
⋃⋃

R | ∃x (x , y) ∈ R},
fld R = dom R ∪ ran R.

If fld R ⊆ A, then we say that R is a relation on A.

Example 3.5: For the relation R = {(1,3), (4,2), (3,3), (3,2)}, we have
that dom R = {1,4,3}, ran R = {3,2}, fld R = {1,2,3,4}.
Note: By Separation Axiom, dom R, ran R and fld R are all sets.
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Example 3.6: For the relation
<= {(x , y) ∈ ω × ω | x is strictly less than y},

dom <= ω, ran <= ω \ {0}, fld <= ω, and < is a relation on ω.

Example 3.7: Let X be a fixed nonempty set. For the strict inclusion
relation ⊂= {(A,B) | A ⊆ B ⊆ X , A 6= B}, we have fld ⊂= ℘(X ), since
∅ ⊂ A for any nonempty A ⊆ X .

Example 3.8: A set R ⊆ R× R is a relation. R can be viewed as a
subset of the coordinate plane. The projection of R onto the horizontal
axis is dom R, and the projection onto the vertical axis is ran R.

(x , y)

R

R
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We can define an ordered triple as

(x , y , z) = ((x , y), z)

=
{
{(x , y)}, {(x , y), z}

}
=
{
{ {{x}, {x , y}} }, { {{x}, {x , y}}, z}

}
Similarly, an ordered quadruple is defined as

(x1, x2, x3, x4) = ((x1, x2, x3), x4)

= (((x1, x2), x3), x4)

Continue in this way, an ordered n-tuple is defined as

(x1, x2, . . . , xn) = ((x1, x2, . . . , xn−1), xn)

= (((x1, x2, . . . , xn−2), xn−1), xn)

= . . .

= ((. . . ((x1, x2), x3), . . . ), xn)

In particular, we stipulate that a 1-tuple (x) = x .
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Let A1,A2, . . . ,An be sets. Define
A1 × A2 × A3 = (A1 × A2)× A3

= {(x1, x2, x3) : x1 ∈ A1, x2 ∈ A2 and x3 ∈ A3}...
A1× · · ·×︸ ︷︷ ︸

n

An = (A1× · · ·×︸ ︷︷ ︸
n−1

An−1)× An

= {(x1, . . . , xn) : x1 ∈ A1, . . . , xn ∈ An}

Definition 3.4
An n-ary relation R on A is a set of ordered n-tuples with all
components in A, that is, R ⊆ A× · · ·×︸ ︷︷ ︸

n

A.

Example 3.9: The following picture visualizes a ternary relation R on R.

(x , y , z)
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Definition 3.5
Let R be a (binary) relation on a set A.

R is said to be reflexive if xRx for every x ∈ A.
R is said to be irreflexive if xRx for no x ∈ A.
R is said to be symmetric if for all x , y ∈ A

xRy =⇒ yRx .

R is said to be transitive if for all x , y , z ∈ A
xRy and yRz =⇒ xRz.

Example 3.10: The “strictly less than” relation < on ω is
irreflexive, since n < n does not hold for any n ∈ ω;
not reflexive, since it is irreflexive;
not symmetric, since, e.g. 0 < 1 but 1 < 0;
transitive, since [n < m and m < k ] =⇒ n < k .

The “less than or equal to” relation ≤ on ω is
reflexive, since n ≤ n for any n ∈ ω;
not irreflexive, since it is reflexive.
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Example 3.11: The relation R = {(1,2), (2,2)} on {1,2} is neither
reflexive nor irreflexive.
Example 3.12: The membership relation

∈= {(∅, {∅}), ({∅}, {{∅}})}

on the set {∅, {∅}, {{∅}}} is
irreflexive, since ∅ /∈ ∅, {∅} /∈ {∅}, {{∅}} /∈ {{∅}};
not symmetric, since ∅ ∈ {∅} while {∅} /∈ ∅;
not transitive, since ∅ ∈ {∅} and {∅} ∈ {{∅}} while ∅ /∈ {{∅}}.

Example 3.13: Let be a fixed nonempty set. The strict inclusion relation

⊂= {(A,B) | A ⊆ B ⊆ X , A 6= B}.

on ℘(X ) is
irreflexive, since A 6⊂ A for any A ⊆ X ;
not symmetric, since ∅ ⊂ X but X 6⊂ ∅;
transitive, since [A ⊂ B ⊆ X and B ⊂ C ⊆ X ] =⇒ A ⊂ C ⊆ X .
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Definition 3.6
A relation R on a set A is called a partial ordering on A if R is transitive
and irreflexive.

Example 3.14: The following are partial orderings:
The “strictly less than” relation < on ω.
The strict inclusion relation ⊂ on ℘({a,b, c}).

{a,b, c}

{a,b} {a, c} {b, c}

{a} {b} {c}

∅

ω

...

0

1

2

3

Example 3.15: The membership relation ∈ on A = {∅, {∅}, {{∅}}} is
not a partial ordering, as it is not transitive. However, the membership
relation ∈ on B = {∅, {∅}, {∅, {∅}}} is a partial ordering, since ∈ is
transitive on B.
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We usually denote partial orderings by the symbol <, and define

x ≤ y iff either x < y or y = x .

[ Digression: In the study of partial orderings, there is always the question of
whether to use strict orderings (<) or weak orderings (≤) as the basic
concept. “<” requires that a partial ordering be irreflexive, while “≤” requires
that a partial ordering on A be reflexive on A. Each alternative has its own
minor advantages and disadvantages, see page 170 of the book for
discussions. ]
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Theorem 7A
Assume that < is a partial ordering on a set A. For arbitrary x , y , z ∈ A:

(a) At most one of the following three alternatives holds:

x < y , x = y , y < x .

(b) x ≤ y ≤ x =⇒ x = y.

Proof. (a) If x < y and x = y , then x < x , contradicting irreflexivity.
If x < y and y < x , then by transitivity, x < x , again contradicting
irreflexivity.

(b) If x ≤ y ≤ x and x 6= y , then x < y < x , which contradicts (a).
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Definition 3.7
A relation R on a set A is called a linear ordering on A if R is transitive
and satisfies trichotomy on A, i.e., for any x , y ∈ A, exactly one of the
following three alternatives holds:

xRy , x = y , yRx .

For example:
The “strictly less than” relation < on ω is a linear ordering.
(Trichotomy: for every x , y ∈ ω, exactly one of the following three
alternatives holds: x < y , x = y , y < x .)
The strict inclusion relation ⊂ on ℘({a,b}) for a 6= b is not a linear
ordering, as it does not satisfy trichotomy: for {a}, {b} ∈ ℘({a,b}),

{a} 6⊂ {b}, {a} 6= {b}, {b} 6⊂ {a}.

{a,b}

{a} {b}

∅

ω

...

0

1

2

3
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Theorem 3R
Let R be a linear ordering on a set A. Then
(i) R is connected, i.e., for distinct x , y ∈ A, either xRy or yRx.
Thereby, R is a linear ordering iff R is transitive and connected.
(ii) R is irreflexive, i.e., xRx for no x ∈ A. Thereby R is a partial
ordering.

Proof. (i) Obvious by trichotomy, since x 6= y for distinct x , y ∈ A.
(ii) For any x ∈ A, since x = x , it follows from trichotomy that xRx does
not hold.

It follows that linear orderings R can not have cycles such as

x1Rx2, x2Rx3, x3Rx4, x4Rx1.

Because if the above cycle exists, then by transitivity x1Rx1,
contradicting the irreflexivity.
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Definition 3.8
Let < be a partial ordering on a set A.

An element a ∈ A is called a minimal element of A with respect to
< if for every x ∈ A,

x ≤ a =⇒ x = a.

An element a ∈ A is called a maximal element of A with respect to
< if for every x ∈ A,

a ≤ x =⇒ x = a.

Definition 3.9
Let < be a partial ordering on a set A.

An element a ∈ A is called the least element or minimum of A with
respect to <, denoted by min A, if

a ≤ x for every x ∈ A.

An element a ∈ A is called the greatest element or maximum of A
with respect to <, denoted by max A, if

x ≤ a for every x ∈ A.
26/42

For example:

Consider the strict inclusion relation ⊂ on the set
A = {{a,b}, {a}, {b}}.

{a,b}

{a} {b}

The minimal elements of A are {a} and {b}, but min A does not exist.
Both the maximal element and the greatest element of A are {a,b}.

Consider the strict inclusion relation ⊂ on the set
B = {{a,b}, {a}, {b}, ∅}.

{a,b}

{a} {b}

∅

Both the minimal element and the least element of B are ∅. Both the
maximal element and the greatest element of B are {a,b}.
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Consider the strict inclusion relation ⊂ on the set
C = {{a}, {b}, ∅}.

{a} {b}

∅

Both the minimal element and the least element of C are ∅. The maximal
elements of C are {a} and {b}, but max C does not exist.

The least (greatest) element of A (if exists) must be a minimal
(maximal) element of A. But the converse is not true in general.

For linear orderings, the concept of least (greatest) element coincides
with that of minimal (maximal) element.

A set A can have at most one least (greatest) element, since if both a
and b are least (greatest) elements of A, then by definition, a ≤ b and
b ≤ a, thus a = b.
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Definition 3.10
A linear ordering R on a set A is said to be a well ordering if every
nonempty subset of A has a least element.

For example, The “strictly less than” relation < on ω is a well ordering
(a rigorous proof will be given in Chapter 4), but < on Z is not a well
ordering, as, e.g., Z does not have a least element.

ω

...

0

1

2

3

...

0

1

2

3

-1

-2

Z

...
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Equivalence Relations
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Definition 3.11
A relation R on a set A is called an equivalence relation if R is
reflexive, symmetric and transitive.

Example 3.16: On R:

The identity relation = is an equivalence relation;
The “strictly less than” relation < is transitive, but it is not reflexive
or symmetric, thus not an equivalence relation.
The relation ≡ defined by

x ≡ y ⇐⇒ |x | = |y |
is an equivalence relation.
(Transitivity: x ≡ y and y ≡ z =⇒ |x | = |y | = |z| =⇒ x ≡ z)
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Example 3.17: Let S = {l1, l2, l3, l4, l5, l6, l7, l8} be the set of 8 lines in
the following picture, and ‖ the parallel relation on S, that is

‖= {(li , lj) ∈ S × S | li is parallel to lj}.

l3

l2

l1

l5

l4

l8

l7
l6

Then ‖ is an equivalence relation on S, since
reflexivity: (we stipulate that) li ‖ li for all li ∈ S;

symmetricity: li ‖ lj =⇒ lj ‖ li ;
transitivity: li ‖ lj and lj ‖ lk =⇒ li ‖ lk .
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Example 3.18: Let ≡3 be a relation on Z defined by

x ≡3 y ⇐⇒ 3 | x − y ,

i.e., x ≡3 y iff x has the same remainder as y when divided by 3,
or x is congruent to y modulo 3. Show that ≡3 is an equivalence
relation.

Proof. Reflexivity: For any x ∈ Z, clearly, 3 | 0, i.e., 3 | x − x or x ≡3 x .

Symmetricity: For any x , y ∈ Z,

x ≡3 y =⇒ 3 | x − y =⇒ 3 | y − x =⇒ y ≡3 x .

Transitivity: For any x , y , z ∈ Z,

x ≡3 y and y ≡3 z =⇒ 3 | x − y and 3 | y − z
=⇒ 3 | (x − y) + (y − z)

=⇒ 3 | x − z
=⇒ x ≡3 z.
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Definition 3.12
Let ≡ be an equivalence relation on a set A. Given a ∈ A. The set

[a]≡ = {x ∈ A : x ≡ a}

is called an equivalence class of a (modulo ≡). If the relation ≡ is clear
from the context, we may only write [a].

The element a is called a representative of the equivalence class [a].

Example 3.19: Let ≡ be the equivalence relation on R defined by
x ≡ y iff |x | = |y |. For any r ∈ R,

[r ] = {x ∈ R : x ≡ r} = {x ∈ R : |x | = |r |} = {r ,−r}.
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Example 3.20: Let S = {l1, l2, l3, l4, l5, l6, l7, l8} be the set of 8 lines in
the following picture, and ‖ the parallel relation on S, that is

‖= {(li , lj) ∈ S × S | li is parallel to lj}.

l3

l2

l1

l5

l4

l8

l7
l6

Then [l1] = [l2] = [l3] = {l1, l2, l3},

[l4] = [l5] = {l4, l5},

[l6] = [l7] = [l8] = {l6, l7, l8}.
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Example 3.21: Let ≡3 be the relation “has the same remainder when
divided by 3 as” on Z. For any k ∈ Z,

[k ] = {x ∈ Z : 3 | k − x}.

E.g., [0] = {0,3,−3,6,−6, . . . } = {3k : k ∈ Z}
[1] = {1,−2,4,−5, . . . } = {3k + 1 : k ∈ Z}
[2] = {2,−1,5,−4, . . . } = {3k + 2 : k ∈ Z}

[0] = [3] = [−3] = . . .
[1] = [−2] = [4] = . . .
[2] = [−1] = [5] = . . .

It is easy to check that

[0] ∩ [1] = ∅, [1] ∩ [2] = ∅, [0] ∩ [2] = ∅.

Z-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
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Proposition 3.13

Let ≡ be an equivalence relation on a set A. For any x , y ∈ A,
(i) x ∈ [x ];
(ii) If y ∈ [x ], then [y ] = [x ];
(iii) If [x ] 6= [y ], then [x ] ∩ [y ] = ∅.

Proof. (i) As ≡ is reflexive, x ≡ x , which implies that

x ∈ {z ∈ A : z ≡ x} = [x ].

(ii) Assume y ∈ [x ], i.e., y ≡ x . By transitivity and symmetricity of the
equivalence relation ≡, we have that, for any a ∈ A,

a ∈ [y ] ⇐⇒ a ≡ y
y≡x
⇐⇒ a ≡ x ⇐⇒ a ∈ [x ],

and thus [x ] = [y ].

(iii) If z ∈ [x ] ∩ [y ], then [x ] = [z] = [y ] by (ii).
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Definition 3.14
Let ≡ be an equivalence relation on a set A. The set of all equivalence
classes of ≡ is called the quotient set of A by ≡, denoted by A/≡.
That is

A/≡ = {[x ] : x ∈ A}.

Example 3.22: Let ≡ be an equivalence relation on R defined by x ≡ y
iff |x | = |y |. Then

R/≡ = {[r ] : r ∈ R} = {{r ,−r} : r ∈ R}.
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Example 3.23: Let S = {l1, l2, l3, l4, l5, l6, l7, l8} be the set of 8 lines in
the following picture, and ‖ the parallel relation on S.

l3

l2

l1
l5

l4

l8

l7
l6

Then

S/‖ = {[l1], [l4], [l6]} = {{l1, l2, l3}, {l4, l5}, {l6, l7, l8}}.
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Example 3.24: Let ≡3 be the relation “has the same remainder when
divided by 3 as” on Z.

Z/≡3 = {[k ] : k ∈ Z} = { [0], [1], [2] }.

[0] = {0,3,−3,6,−6, . . . }

[2] = {2,−1,5,−4, . . . }

[1] = {1,−2,4,−5, . . . }
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Definition 3.15
Let A be a non-empty set. A set Π of nonempty subsets of A is called a
partition of A if

for any X ,Y ∈ Π, if X 6= Y, then X ∩ Y = ∅
(i.e., elements of Π are pairwise disjoint);

A =
⋃

X∈Π

X (i.e., Π is exhaustive);

Intuitively, the above definition says that, if a set A is partitioned into
some pairwise disjoint non-empty subsets, then we call the set Π
consisting of all these subsets a partition of A.

X1
X3

X2

A

X1 X2 X3

{
, ,

}

Π
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Example 3.25: The set Π = {{a,b}, {c,d}, {e}} is a partition of the set
{a,b, c,d ,e}.

a b c

de

Example 3.26: The set {(r − 1, r ] : r ∈ Z} is a partition of R

R-3 -2 -1 0 1 2 3 4
( ( ( (] ] ] ]( ( (] ] ]

Example 3.27: The quotient set

Z/≡3 = { [0], [1], [2] }

is a partition of Z. This result is not incidental.

Z-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
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