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Exerciss 11 Solutions

1. a) Suppose U is an open subset of Rn and let x ∈ U . Use excision to
prove that

Hk(U, U \ {x}) ∼= Hk(B
n
, B

n
\ {0})

for all k ∈ Z.
b) Suppose U 6= ∅ is an open subset of Rn, V is an open subset of Rm

and suppose there exists a homeomorphism f : U → V . Use a) to prove
that n = m.

Solution: a)Since U is open there exists small enough r > 0 such that
B(x, r) ⊂ U . We wish to excise away a set A = U \ B(x, r) from the
pair (U, U \ {x}). Since

A ⊂ U \B(x, r),

where U \ B(x, r) is closed in U (since open ball B(x, r) is certainly
open), we have that

A ⊂ U \B(x, r) ⊂ U \ {x} = intU \ {x}.

Here the last equation follows from the fact that U \ {x} is open in U .
By excision theorem 14.1.

Hk(U, U \{x}) ∼= Hk(U \A, (U \{x})\A) = Hk(B(x, r), B(x, r)\{x}),

for all k ∈ Z. Since the pair (B(x, r), B(x, r) \ {x}) is clearly homeo-
morphic to the pair (B

n
, B

n
\ {0}), we are done.

b) Let f : U → V be a homeomorphism. Since U is not empty we can
choose x ∈ U . We can think of f as a mapping of pairs f : (U, U \
{x}) → (V, V \ {f(x)}). This mappings of pairs is a homeomorphism
of pairs. Indeed f−1 : V → U exists and is continuous. Moreover it
maps V \ {f(x)} to U \ {x}. Thus f−1 can be thought of as a mapping
of pairs f−1 : (V, V \ {f(x)}) → (U, U \ {x}), which is then inverse of
f , thought of as a mapping of pairs. It follows that

f∗ : Hk(U, U \ {x}) → Hk(V, V \ {f(x)})

is an isomorphism for all k ∈ Z (Corollary 10.13).
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On the other hand, by a) Hk(U, U \ {x}) is isomorphic to
Hk(B

n
, B

n
\ {0}) and likewise Hk(V, V \ {f(x)}) is isomorphic to

Hk(B
m
, B

m
\ {0}), for all k ∈ Z. By Exercise 4.b) Hk(B

n
, B

n
\ {0}) is

isomorphic to Hk(B
n
, Sn−1) and likewise Hk(B

m
, B

m
\ {0}) is isomor-

phic to Hk(B
n
, Sm−1), for all k ∈ Z. Using reduced homology sequence

of the pair (B
n
, Sn−1) and the fact that B

n
is contractible, we obtain,

in the usual manner, that

Hk(B
n
, Sn−1) ∼= H̃k−1(S

n−1) ∼=

{
Z, k = n,

0, otherwise
.

Here the last assertion follows from Theorem 14.2. Similarly

Hk(B
m
, Sm−1) ∼= H̃k−1(S

m−1) ∼=

{
Z, k = m,

0, otherwise
.

Comparing this groups for instance for k = n, we see that they can be
isomorphic for all k ∈ Z if and only if n = m.

2. Suppose f : B
n
→ B

n
is a homeomorphism. Prove that f(Bn) = Bn

and f(Sn−1) = Sn−1 (advice: remove a point).

Solution: Suppose x ∈ Bn. We prove that f(x) ∈ Bn by mak-
ing counter-assumption - f(x) ∈ Sn−1. Since f is a homeomorphism,
the restriction f | : B

n
\ {x} → B

n
\ {f(x)} is also a homeomorphism.

We’ll derive contradiction by showing that the spaces B
n
\ {x} and

B
n
\ {f(x)} cannot be homeomorphic. Indeed, since x ∈ Bn, B

n
\ {x}

is homeomorphic to B
n
\ {0} (precise proof of this claim can be ob-

tained through the proof of Theorem 3.20). The latter space is known
to have the homotopy type of Sn−1 (Exercise 5.7.2). Thus it has non-
trivial reduced homology group in dimension n−1. On the other hand
the space B

n
\ {f(x)} is contractible. This is seen by noticing that the

simple linear homotopy (x, t) → tx that contracts B
n
to origin restricts

to a contracting homotopy B
n
\{f(x)}×I → B

n
\{f(x)}, since f(x) is

on the boundary. In fact, using the fact that f(x) is an extreme point
of the ball B

n
(which we proved in the exercise 2.4.), we can easily see

that B
n
\ {f(x)} is even convex (how?). In any case, all its reduced

homology groups are trivial. Since we already noticed that B
n
\ {x}

has one non-trivial reduced homology groups, the spaces B
n
\ {x} and

B
n
\ {f(x)} cannot be homeomorphic. This shows that the counter
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assumption was wrong and f(x) ∈ Bn.

We have shown that for any homeomorphism f : B
n
→ B

n
we have

that f(Bn) ⊂ Bn. Applying this to f−1 : B
n
→ B

n
we see that

Bn = f(f−1(Bn)) ⊂ f(Bn).

Thus f(Bn) = Bn. Since Bn is a disjoint union of Bn and its boundary
Sn−1 and f is bijection, it follows that we also must have f(Sn−1) →
Sn−1.

3. Suppose X is a non-empty set. We define the chain complex CX by
asserting CXn to be a free abelian group generated by the cartesian
product Xn+1, n ≥ 0 and Xn = 0 for n < 0. The boundary operator
dn : CXn → CXn−1, n ≥ 1, are defined as the unique homomorphism
with the property

dn(x0, . . . , xn) =
n∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn)

for basis elements (x0, . . . , xn) ∈ Xn+1 (and dn = 0 for n < 1). You do
not have to prove that CX is a chain complex (but you are certainly
welcome to think about it).
Complex CX has a natural augmentation ε : CX0 → Z defined by
ε(x) = 1 for basis elements x ∈ X .

Let a ∈ X be a fixed element. We define, for every n ∈ N, a homomor-
phism B : CXn(D) → CXn+1(D) by

B(x0, . . . , xn) = (a, x0, . . . , xn)

on the basis elements. For n < 0 we define B : CXn(D) → CXn+1(D)
to be an obvious zero mapping. Prove that for all z ∈ CXn the equation

(dn+1B +Bdn)(z) =

{
z, if n 6= 0,

z − ε(z)a, if n = 0

is true.

Solution: It is enough to prove that

(dn+1B +Bdn)(z) =

{
z, if n 6= 0,

z − ε(z)a, if n = 0
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holds when z = (x0, . . . , xn) is a generator of CXn. This is a straight-
forward calculation. We have that

(dn+1B(x0, . . . , xn) = dn+1(a, x0, . . . , xn).

To make calculation of boundary operator more clear, let us denote
x′
0 = a, x′

i = xi−1 for i = 1, . . . , n+ 1). Then

dn+1(a, x0, . . . , xn) = dn+1(x
′
0, . . . , x

′
n+1) =

n+1∑

i=0

(−1)i(x′
0, . . . , x̂

′
i, . . . , x

′
n+1) =

= (â, x0, . . . , xn) +
n+1∑

i=1

(−1)i(a, . . . , x̂′
i−1, . . . , xn).

The first element of this sum is simply z = (x0, . . . , xn) and shifting
index i to i− 1 in the second sum, we obtain

dn+1B(x0, . . . , xn) = z +
n∑

i=0

(−1)i+1B(x0, . . . , x̂i, . . . , xn) =

= z −
n∑

i=0

(−1)iB(x0, . . . , x̂i, . . . , xn).

Since B is a homomorphism,

n∑

i=0

(−1)iB(x0, . . . , x̂i, . . . , xn) = B(

n∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn) = B(dn(z)).

Thus
(dn+1B +Bdn)(z) = z − Bdn(z),

which, in case n > 0, is what we wanted to prove (for n < 0 both
sides of equation trivially zero). What happens when n = 0? Careful
examination of the proof above shows that when n = 0, some elements
of the proof do not make sense. Namely, when n = 0, the ”sequence”
(x0, . . . , x̂i, . . . , xn) is empty - the only element is taken away. In this
case we cannot say that

(a, . . . , x̂i, . . . , xn) = B(x0, . . . , x̂i, . . . , xn),

since it does not hold any more, on the left side we have an element
(a) of CX0, which is not in the image of B−1 : CX−1 → CX0 (later

4



mapping is trivial).
In case n = 0 the calculation looks as following:

(d1B +Bd0)(z) = d1(a, x0) +B(0) = x0 − a = z − ε(z)a,

since for basis element z = x0 we have that ε(z) = 1.

4. Let
B+ = {x ∈ Sn | xn+1 ≥ 0}

and
B− = {x ∈ Sn | xn+1 ≤ 0}

Prove that the inclusions of pairs (B+, S
n−1) → (Sn, B−) and

(B−, S
n−1) → (Sn, B+) induce isomorphisms in homology for all di-

mensions.

Solution: Let us start by pondering what the set A must be, so that
we can excite it from the pair (Sn, B−), according to excision property,
so that homology stays the same. By excision property we must have
that

Ā ⊂ intB− = {xn+1 < 0}.

Thus if A has this property, by Theorem 14.1. the inclusion
(Sn \ A,B− \ A) → (Sn, B−) induces isomorphisms in homology in all
dimensions.

Now, we cannot obtain (B+, S
n−1) this way, because this mean that

then we must have A = {xn+1 < 0} but it is not true that Ā = B− ⊂
intB−. So we start by excising something smaller. The simplest non-
trivial choice is

A = {−en+1}.

By excision Theorem 14.1. the inclusion j : (Sn\{−en+1}, B−\{−en+1}) →
(Sn, B−) induces isomorphisms j∗ : Hk(S

n \{−en+1}, B− \{−en+1}) →
Hk(S

n, B−), for all k ∈ Z.

Next we get from the pair (Sn \ {−en+1}, B− \ {−en+1}) to the pair
(B+, S

n−1) by using homotopy axiom. It is enough to show that the
inclusion k : (B+, S

n−1) → (Sn \ {−en+1}, B− \ {−en+1}) is a homo-
topy equivalence of pairs. We construct homotopy inverse l : Sn \
{−en+1}, B− \ {−en+1}) → (B+, S

n−1) as following. For all x ∈ B+ we
simply assert l(x) = x.
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For x ∈ B−, x 6= −en+1 we assert l(x) = y/|y| ∈ Sn−1 where y is chosen
to be the unique point of Rn that lies on the line

{−(1 − s)en+1 + sx | s ∈ R}

(this is the geometrical idea behind the proof). More precisely suppose
s ∈ R and x ∈ B−. Then

−(1− s)en+1 + sx = (sx1, . . . , s(xn+1 + 1)− 1),

so this point is in R
n if and only if

s =
1

1 + xn+1
.

Notice that since we assume that x 6= −en+1, s is well-defined (no
division by zero). The point of Rn that we obtain is the point

y(x) =
1

1 + xn+1
(x1, . . . , xn, 0).

If that point would be origin 0, that would mean x1 = . . . = xn = 0,
which forces (x is a point in Sn) x = ±en+1, which is impossible, since
x ∈ B−, x 6= −en+1. Thus l(x) = y(x)/|y(x)| is well-defined and is con-
tinuous as a mapping B− \ {−en+1} → Sn−1 (since x 7→ y(x) clearly
is). If x ∈ Sn−1 to begin with, then y(x) = x, so l(x) = x. This is
equivalent to l◦k = idSn−1. Since we have already defined l also on B+,
by l(x) = x, we must check that both our definitions agree on B+∩B−.
But this intersection is precisely Sn−1, and we have just shown that
both definitions give l(x) = x on Sn−1.

We have thus constructed a mapping l : Sn \ {−en+1} → B+ such that
l ◦ k = id. Also l maps Bn

− \ {−en+1} to Sn−1. Thus j can be thought
of as a mapping of pairs l : (Sn\{−en+1}, B−\{−en+1}) → (B+, S

n−1).

The next step is to show that l is a homotopy inverse of k, as a mapping
of pairs. Since l ◦k = id, it is enough to show that k ◦ l is homotopic to
identity of the pair (Sn\{−en+1}, B−\{−en+1}), as a mapping of pair.

We define a homotopy H : Sn \ {−en+1} × I → Sn \ {−en+1} by

H(x, t) =
(1− t)x+ tl(x)

(1− t)x+ tl(x)
.
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Notice that for x ∈ B+ we have that H(x, t) = x for all t ∈ I.

We need to show that H is well-defined i.e. that
1) (1− t)x+ tl(x) 6= 0 for all x ∈ B− \ {−en+1} and all t ∈ I, and
2) H(x, t) 6= −en+1 for all (x, t) ∈ B− \ {−en+1} × I.
Both claims are clear if x ∈ B+, so it is enough to prove them assuming
x ∈ B−.

First we prove 1). Suppose on contrary that (1 − t)x + tl(x) = 0 for
some x ∈ B− \ {−en+1} and some t ∈ I. If t = 0 this implies that
x = 0, which is impossible. Otherwise

l(x) =
t− 1

t
x

Since l(x) ∈ Sn−1, its last coordinate its zero, so also last coordinate
xn+1 of x must be zero, which implies that x ∈ Sn−1 , in which case
l(x) = x and the equation (1− t)x+ tl(x) = 0 becomes equation x = 0,
which is impossible. Hence 1) is true.

To prove 2) we notice that the equation H(x, t) = −en+1 can be true if
and only if the first n coordinates of (1− t)x+ tl(x) are zeros and t 6= 0
(since for t = 0 we have that H(x, 0) = x). Since the last coordinate of
l is zero by construction, this implies that

l(x) =
t− 1

t
(x0, . . . , xn, 0).

On the other hand
l(x) = y/|y|,

where

y =
1

1 + xn+1

(x1, . . . , xn, 0).

But the equation

1

|y|(1 + xn+1)
(x1, . . . , xn, 0) =

t− 1

t
(x0, . . . , xn, 0)

is impossible, since on the left side the scalar is always strictly positive
and on the right side it is strictly negative (and xi 6= 0 for at least one
i = 0, . . . , n, since otherwise x = ±en+1). This contradiction concludes
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the proof of 2.

Thus H is well-defined. It is clearly continuous. By construction it is
homotopy between identity and k ◦ l. It remains to show that it is a
homotopy of pairs i.e. maps B− \{−en+1}×I into B− \{−en+1}. This
amounts to showing that the last coordinate of H(x, t) is non-positive,
for (x, t) ∈ B− \ {−en+1} × I. But this last coordinate has the same
sign as (1 − t)x i.e. (1 − t)xn−1 and this is non-positive since xn+1 is
and 1− t ≥ 0.

We have concluded the proof of the fact that inclusion of pairs k : (B+, S
n−1) →

(Sn \ {−en+1}, B− \ {−en+1}). Now for the inclusion i : (B+, S
n−1) →

(Sn, B−) the triangle

(B+, S
n−1)

i //

k

**UUU
UU

UU
UU

UU
UU

UU
UU

(Sn, B−)

(Sn \ {−en+1}, B− \ {−en+1})

j
44iiiiiiiiiiiiiiiii

commutes (all mappings just inclusions of pairs). Passing to homology
we obtain, for every k ∈ Z, the commutative diagram

Hk(B+, S
n−1)

i∗ //

k∗

**VVV
VV

VV
VV

VV
VV

VV
VV

V
Hk(S

n, B−)

Hk(S
n \ {−en+1}, B− \ {−en+1})

j∗
44hhhhhhhhhhhhhhhhhh

.

In other words i∗ = j∗ ◦ k∗ and since j∗ and k∗ are isomorphisms, also
i∗ is and we are done.

The similar claim about the inclusion (B−, S
n−1) → (Sn, B+) is proved

in the same way. You can also use the claim already proved and sym-
metry. Indeed, consider a mapping ι : Sn → Sn, ι(x0, . . . , xn, xn+1) =
(x0, . . . , xn,−xn+1). This mapping maps B+ to B− and vice versa, B−

to B+. It follows that ι also maps Sn−1 to itself, in fact its restriction
to Sn−1 is identity. It follows that we can consider ι to be a mapping
of pairs ι : (Sn, B−) → (Sn, B+) or a mapping of pairs ι : (Sn, B+) →
(Sn, B−). Its restriction to B+ can be considered as a mapping of pairs
ι| : (B+, S

n−1) → (B−, S
n−1). Likewise its restriction to B− can be con-

sidered as a mapping of pairs ι| : (B−, S
n−1) → (B+, S

n−1). All these

8



mappings are homeomorphisms - in fact ι ◦ ι = id, so ι is bijection and
inverse of itself. It follows that ι : (Sn, B+) → (Sn, B−) is a continuous
inverse of ι : (Sn, B−) → (Sn, B+) and ι| : (B−, S

n−1) → (B+, S
n−1) is

a continuous inverse of ι| : (B+, S
n−1) → (B−, S

n−1).

The diagram

(B+, S
n−1)

i1 //

ι|
��

(Sn, B−)

ι

��

(B−, S
n−1)

i2 // (Sn, B+)

commutes. Here i1 and i2 are inclusions. Hence passing to homology
we obtain a commutative diagram

Hk(B+, S
n−1)

(i1)∗
//

ι|∗
��

Hk(S
n, B−)

ι∗

��

Hk(B−, S
n−1)

(i2)∗
// Hk(S

n, B+)

In this diagram vertical mappings are isomorphisms because they are
induced by homeomorhisms. Also we have already managed to show
that i1 induces isomorphisms in homology. Hence also (i2)∗ is an iso-
morphism for all k ∈ Z.

5. In the course of the proof of the excision property we have defined,
for every n ∈ Z, a barycentric subdivision operator Sn : LCn(D) →
LCn(D) and the mapping Hn : LCn(D) → LCn+1(D). We have also
shown that S is a chain mapping and H is a chain homotopy between
identity mapping id: LC(D) → LC(D) and S. Here D is a convex set
of a finite-dimensional vector space.
a) Suppose X is a topological space and let f : ∆n → X be a singular
n-simplex in X i.e. a basis element of Cn(X). We define

Tn(f) = f♯(Sn(id∆n)),

Gn(f) = f♯(Hn(id∆n)),

where Sn : LCn(∆n) → LCn(∆n) and Hn : LCn(∆n) → LCn+1(∆n) as
above. We extend Tn and Gn to unique homomorphisms Cn(X) →
Cn(X) and Cn(X) → Cn+1(X). Prove that for all n ∈ Z we have

dn+1Gn +Gn−1dn = id−Tn.
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b) Let m ≥ 1. Prove that
∑

0≤i<m

GT i

is a chain homotopy between the chain mappings id and Tm.

Solution: a) In the lecture material we have shown that for any convex
D, n ≥ Z and any element α of LCn(D) the equation

(0.1) dn+1Hn(α) +Hn−1dn(α) = α− Sn(α).

Now, suppose f : ∆n → X is a singular n-simplex in X i.e. a generator
of Cn(X). Then

dn+1G(f) = dn+1f♯(Hn(id∆n)).

Since f♯ is a chain mapping

dn+1f♯(Hn(id∆n)) = f♯(dn+1(Hn(id∆n)),

where in the last equation dn+1 is a boundary operator Cn+1(∆n) →
Cn(∆n). By (0.1)

dn+1(Hn(id∆n) = id∆n −Sn(id∆n)−Hn−1dn(id∆n).

If we apply f♯ to this, we obtain (combining with already established
results)

dn+1f♯(Hn(id∆n)) = f♯(id∆n −Sn(id∆n)−Hn−1dn(id∆n)) =

= f♯(id∆n)− f♯(Sn(id∆n))− f♯(Hn−1dn(id∆n)).

Here
f♯(id∆n) = f ◦ id = f,

f♯(Sn(id∆n)) = Tn(f),

while

f♯(Hn−1dn(id∆n)) = f♯(Hn−1(
n∑

i=0

(−1)idin(id∆n)) =
n∑

i=0

(−1)if♯(Hn−1(d
i
n(id∆n)).

Now, by definition din(id∆n) = id∆n ε
i
n = εin, which is affine mapping

∆n−1 : ∆n. Hence

f♯(Hn−1dn(id∆n)) =

n∑

i=0

(−1)if♯(Hn−1(ε
i
n)).
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So far we have obtained

dn+1Tn(f) = f − Tn(f)−
n∑

i=0

(−1)if♯(Hn−1(ε
i
n)),

while what we should obtain in the end is

dn+1Tn(f) = f − Tn(f)−Gn−1dn(f),

where

Gn−1dn(f) = Gn−1(

n∑

i=0

(−1)if ◦ εin) =
n∑

i=0

(−1)iGn−1(f ◦ εin).

Here f ◦ εin : ∆n−1 → X is a basis element of Cn−1(X), so by the
definition of Gn−1

Gn−1(f ◦ εin) = (f ◦ εin)♯(Hn−1(id∆n−1
)) = f♯((ε

i
n)♯(Hn−1(id∆n−1

))).

Thus what we have obtained looks like

dn+1Tn(f) = f − Tn(f)−
n∑

i=0

(−1)if♯(Hn−1(ε
i
n)),

while what we have to obtain looks like

dn+1Tn(f) = f − Tn(f)−
n∑

i=0

(−1)i(f♯((ε
i
n)♯(Hn−1(id∆n−1

))).

Thus it remains to prove that

Hn−1(ε
i
n) = (εin)♯(Hn−1(id∆n−1

).

Since εin = εin ◦ id∆n−1
= (εin)♯(id∆n−1

) we can write this as

Hn−1(ε
i
n)♯(id∆n−1

) = (εin)♯(Hn−1(id∆n−1
).

Now it is easy to see what this is all about - we have to show that Hn−1

and (εin)♯ commute (or at least, that would be enough)! This makes
sense - homotopy H was ”universal construction” defined for all pos-
sible convex sets, so it sounds very plausible that it should commute
with mappings induced by affine mappings, since they are ”THE map-
pings” in the world of convex sets (more precisely - they are the ones
that preserve convex structure). Thus what we do next is to attempt
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to prove the following claim.

Claim: Suppose α : D → E is an affine mapping between convex
sets. Then α♯ : LCn(D) → LCn(E) is well-defined and commutes with
H for all n ∈ Z. In other words the diagram

LCn(D)
α♯

//

Hn

��

LCn(E)

H′

n

��

LCn−1(D)
α♯

// LCn−1(E)

commute for all n ∈ Z.

Proof of the claim: Suppose α : D → E. By definition LCn(D)
is a free subgroup of Cn(D) generated by all those singular simplices
f : ∆n → D which are affine mappings and likewise for D′. Since
α♯(f) = α ◦ f : ∆n → D′ is affine (as a composition of affine mappings)
, we see that α♯ maps all generators of LCn(D) into LCn(D

′). In other
words restrictionα♯ : LCn(D) → LCn(E) is well-defined.

Since H is defined by induction on n (and zero for negative n), we
prove the second part of the claim by induction on n. For n ≤ 0 there
is nothing to prove. Suppose claim is true for n− 1. We need to prove
the claim for n. By definition

Hn(f) = Bf(f −Hn−1df)

for singular affine simplex f : ∆n → D and similarly

H ′
n(f) = Bf(f −H ′

n−1df)

for singular affine simplex f : ∆n → D′. By inductive assumption

H ′
n−1 ◦ α♯ = α♯ ◦Hn−1

and we have to show that

H ′
n ◦ α♯ = α♯ ◦Hn.

For every given affine mapping f : ∆n → D the composition α ◦ f is an
affine mapping ∆n → D′, so by definition

(H ′
n ◦α♯)(f) = H ′

n(α♯(f)) = H ′
n(α ◦ f) = Bα◦f ((α ◦ f)−H ′

n−1d(α ◦ f)).

12



By inductive assumption, and since α♯ is a chain mapping, so commutes
with boundary, we have that

(α◦f)−H ′
n−1d(α◦f) = α♯(f)−H ′

n−1α♯(df) = α♯(f)−α♯◦Hn−1(df) = α♯(f−Hn−1(df)),

so
(H ′

n ◦ α♯)(f) = Bα◦f (α♯(f −Hn−1(df)).

The next step is to investigate the relation between B and α♯. Let
g = (x0, . . . , xn−1) be the arbitrary generator element of LCn−1(D),
thought of as finite string (x0, . . . , xn−1). Rememeber that this just
means that xi = g(ei). Now it follows that

α♯(g) = (α(x0), . . . , α(xn−1)),

so
Bα◦f (α♯(g)) = Bα◦f (α(x0), . . . , α(xn−1)) =

= (α(f(b)), α(x0), . . . , α(xn−1) = α♯(f(b), x0, . . . , xn−1) = α♯ ◦Bf(g).

Here b is the barycentre of ∆n−1. We have shown that for every gener-
ator g of LCn(D)

Bα◦f ◦ α♯(g) = α♯ ◦Bf (g).

Since this is true for all generators, it is true for all elements g ∈
LCn−1(D). In particular it is true for g = f −Hn−1(df), so

(H ′
n◦α♯)(f) = Bα◦f (α♯(f−Hn−1(df)) = α♯◦Bf(f−Hn−1(df)) = α♯Hn(f).

The claim is proved.

b) This is in fact an application of the previous week exercise 10.6. In
that exercise we have shown that if f, g : C → D, k,m : D → D′, are
chain mappings between chain complexes C,C ′, D,D′, H is a chain ho-
motopy between f to g and H ′ is a chain homotopy between k and m,
then k◦H+H ′◦g is a chain homotopy from k◦f to m◦g. This gives us
directly a way to construct homotopies between composite mappings.
We have shown that G is a homotopy between id and T , which are
both chain mappings C(X) → C(X). Notice that the fact that T is a
chain mapping follows directly from the claim of a, i.e. the existence
of homotopy G and Lemma 14.9.

Since G is a homotopy between id and T , the result of Exercise 10.6.
mentioned above imply that id ◦G+G◦T = G+GT is a chain homotopy

13



from id ◦ id = id and T ◦ T = T 2. Iterating in the similar manner by
induction we obtain that ∑

0≤i<m

GT i

is a chain homotopy between id and Tm, for all m ∈ Z.

6. Suppose A is a retract of X . Prove that for all n ∈ Z

Hn(X) ∼= Hn(A)⊕Hn(X,A).

Solution: It is enough to show that there exists short exact sequence
of the form

0 // Hn(A)
f

// Hn(X)
g

// Hn(X,A) // 0

which splits. Now, we do know a certain exact sequence that contains
a piece looking like this (without trivial groups on ends) - long exact
homology sequence of the pair (X,A),

. . . // Hn+1(X,A)
∆ // Hn(A)

i∗ // Hn(X)
j∗

// Hn(X,A)
∆ // Hn−1(A) // . . . .

Now, imagine that we can show that i∗ : Hn(A) → Hn(X) is injec-
tive for all n ∈ Z. Then, by exactness Im∆ = Ker i∗ = 0, so
∆: Hn+1(X,A) → Hn(A) is trivial zero mapping for all n ∈ Z.
This implies, again, by exactness, Im g∗ = Ker∆ = Hn(X,A), so
g∗ : Hn(X) → Hn(X,A) is surjection for all n ∈ Z. Thus, if i∗ is
injective for all n ∈ Z, then also g∗ : Hn(X) → Hn(X,A) is surjection
for all n ∈ Z and we have an exact sequence

0 // Hn(A)
i∗ // Hn(X)

j∗
// Hn(X,A) // 0

It remains to show that when A is a retract of X , then i∗ is injective
and also that this sequence splits. By Lemma 11.16 the last assertion
is equivalent to the existence of homomorphism f ′ : Hn(X) → Hn(A)
such that f ′ ◦ i∗ = id. But, if such a homomorphism do exist, then i∗ is
also automatically injective. This is because if x, y ∈ Hn(A) are such
that i∗(x) = i∗(y), then

x = id(x) = f ′(i∗(x)) = f ′(i∗(y)) = id(y) = y.

This is an example of the general set-theoretical principle - if a mapping
has so-called ”left inverse” w.r.t. composition of mappings, it must be
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injective.

We have reduced the problem to finding a homomorphism f ′ : Hn(X) →
Hn(A) such that f ′◦i∗ = id. Since A is a retract, there exists continuous
mapping r : X → A such that r(x) = x for all x ∈ A. This is the same
thing as the equation r ◦ i = idA. Taking stars of both sides we obtain

r∗ ◦ i∗ = (r ◦ i)∗ = id∗ = id .

Thus r∗ is a mapping we are looking for.

The proof above is ”abstract” and ”axiomatic” - we did not use ac-
tual construction and definition of singular homology, only its prop-
erties such as long exact homology sequence or the properties of star-
operator. There is also a direct approach. Namely it is enough to prove
that C(X) ∼= C(A) ⊕ C(X,A) as chain complexes (be careful - on
the group level they are always isomorphic, Cn(X) ∼= Cn(A)⊕Cn(X,A)
for all n ∈ Z and any pair (X,A), but this is not enough). The claim
follows then from Lemma 12.1 (passing to homologies preserve isomor-
phisms of chain complexes and direct sums of chain complexes).

To prove that C(X) ∼= C(A)⊕C(X,A) as chain complexes, it is enough
to show that the exact sequence

0 // C(A)
i♯

// C(X)
j♯

// C(X,A) // 0

of chain complexes and chain mappings splits. In complete analogy
to situation for groups this means that there exists a chain mapping

α : C(X) → C(A)⊕ C(X,A) such that the diagram

C(X)

α

��

g

((QQ
QQ

QQ
QQ

QQ
QQ

Q

0 // C(A)

i♯
77oooooooooooo

''OO
OO

OO
OO

OO
OO

C(X,A) // 0

C(A)⊕ C(X,A)

66mmmmmmmmmmmm

commutes (compare this to definition 11.15 where the same thing was
defined for abelian groups and homomorphisms). Again, by complete
analogy, the version of Lemma 11.16 works in chain complex settings
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(you have to check that mappings constructed in the proof of this
Lemma sum up to a chain mapping), so it is enough to show the
existence of chain mapping f ′ : C(X) → C(A) with the property
f ′ ◦ i♯ = id. The mapping r♯, where r : X → A is a retraction, satisfies
this property.

7.* By ”the boundary” dM of the Mobius Band we mean the union of sides
b and c as a subset of M as in the picture below

a

a

cb

By investigating groups Hn(M, dM) (or other methods) prove the fol-
lowing facts:
a) dM is not a retract of M
b) H1(M) ∼= H1(dM) ∼= Z and it is possible to choose generators in
groups H1(M), H1(dM) so that the mapping i∗ : H1(dM) → H1(M)
induced by inclusion i : dM →֒ M can be thought of as a mapping
Z → Z, n 7→ 2n.

Solution: a) We can try to apply the precious Lemma, which implies
that it would be enough to show that

Hn(M) ∼= Hn(dM)⊕Hn(X, dM)

is not true for at least one n ∈ Z. Since the pair (M, dM) can be trian-
gulated as the pair (K,L) of ∆-complexes, all groups can be calculated
as simplicial homology (Theorem 15.1).

The simplicial structure of K and L we use is the following familiar
structure:
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U

V

a

a

b cd

v0 v1

v2v3

The simplicial homology of Mobius band triangulated as in the picture
we calculated in Example 9.6. The results were

Hn(K) =

{
Z, for n = 0, 1

0, otherwise .

Let us calculate H1(K,L). The group C2(K,L) is a free abelian group
of two generators U and V (or rather their classes in the quotient group
C2(K,L), but we use this simpler notation). Since in K we have

dU = a+ c− d,

dV = a + d− b,

and b, c ∈ L, in C1(K,L) we have

dU = a− d,

dV = a + d

(again we do not bother with denoting equivalence classes as classes, for
simplicity of notation). It follows that the boundary group B1(K,L) is
a group generated on a− d and a+ d.

The group C1(K,L) is generated on two elements a, d. Since all vertices
of K belong to L, we have that C0(K,L) = 0, so

Z1(K,L) = Ker d1 = C1(K,L) = Z[a]⊕ Z[d].

Thus we have that

H1(K,L) = Z[a]⊕ Z[d]/(Z[a + d]⊕ Z[a− d]).

To calculate this we do the standard switch of basis-trick, using Exercise
7.2. According to this exercise {a+ d+ (a− d), a− d} = {2a, a− d} is
a basis of B1(K,L) and {a, a− d} is a basis of Z1(K,L). Hence

H1(K,L) = Z[a]⊕ Z[a− d]/(Z[2a]⊕ Z[a− d]) ∼= Z[a]/Z[2a] ∼= Z2.
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This is actually enough - using this information we can already prove
that

H1(M) ∼= H1(dM)⊕H1(X, dM).

Indeed the group on the left is Z, as we know from Example 9.6. The
group on the right, on the other hand, contains a summondH1(X, dM) ∼=
Z2, so the group on the right contains at least one non-trivial torsion
element, namely (0, 1̄). Free group cannot contain non-trivial torsion
element, so this is a contradiction that proves a).

b) The mapping i∗ : H1(dM) → H1(M) features in the long exact re-
duced homology sequence of the pair (M, dM)

. . . // H2(M, dM)
∆2 // H1(dM)

i∗ // H1(M)
j∗
// H1(M, dM)

∆1 // H̃0(dM) // . . .

The group H̃0(dM) is trivial, since dM is path-connected (it is actually
homeomorphic to S1). To calculate H2(M, dM) we use simplicial ho-
mology again. Actually, using things we have already calculated above
in a), we obtain for all n,m ∈ Z

d2(nU +mV ) = n(a + d)−m(a− d) = (n +m)a+ (n−m)d.

Here U, V are free generators of C2(K,L) and a, d are free generators
of C1(K,L). Thus d2(nU + mV ) = 0 if and only if n + m = n − m
which is easily seen to imply n = m = 0. Hence d2 is injection, so
Z2(K,L) = Ker d2 = 0 and consequently H2(M, dM is trivial.

Thus we obtain short exact sequence

0 // H1(dM)
i∗ // H1(M)

j∗
// H1(M, dM) // 0.

Here we know that H1(M) ∼= Z and H1(M, dM) ∼= Z2. The group
H1(dM) we do not know, but we can calculate for example simplicially
again, or we can use the fact that, by exactness, it is (isomorphic to)
a subgroup of H1(M) ∼= Z. All subgroups of Z are either trivial or
isomorphic to Z. Trivial H1(M) cannot be, since then by exactness j∗
is isomorhism, which is impossible, since Z and Z2 are not isomorphic.
Hence H1(M) ∼= Z. Or, one can argue that dM is easily seen to be
homeomorphic to S1 and we do know that H1(S

1) ∼= Z.

All in all, short exact sequence

0 // H1(dM)
i∗ // H1(M)

j∗
// H1(M, dM) // 0.
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up to isomorphisms look like short exact sequence

0 // Z
α // Z

β
// Z2

// 0.

Let us investigate what α and β can be. Since Z2 = {0̄, 1̄}, there are
only two possibilities, β(1) = 0̄ or β(1) = 1̄. But if β(1) = 0̄, then
β(x) = β(x · 1) = x0̄ = 0̄ for all x ∈ Z (since β homomorphism),
so β cannot be surjective, which contradicts exactness (it has to be
surjection). Hence β(1) = 1̄, i.e. β : Z → Z2 is nothing but canonical
projection β(x) = x̄ from Z to the quotient group Z → Z2. The
kernel of such a mapping is 2Z, the subgroup of all even integers. By
exactness it is the image of α : Z → Z. Now, an isomorphism α : Z →
Z is completely determined by n = α(1), in which case α(x) = nx
for all x ∈ Z and Imα = nZ. It follows that there are exactly two
homomorphisms α : Z → Z that fit in the short exact sequence above -
one is mapping x 7→ 2x and the other is x 7→ −2x (don’t forget about
the other possibility, it is easy to overlook it!). Since the sequences

0 // H1(dM)
i∗ // H1(M)

j∗
// H1(M, dM) // 0.

and

0 // Z
α // Z

β
// Z2

// 0.

are isomorphic it follows that either i∗(u) = 2v or i∗(u) = −2v, where u
is a chosen generator of H1(dM) and v is a chosen generator of H1(M).
But −v is then also a generator of H1(M), so re-choosing a generator,
we obtain that i∗(u) = 2v. This is what had to be shown.

Of course there is more direct way obtain the same result - using singu-
lar homology we can compute the actual generators for both H1(dM)
and H1(M) and use them to calculate i∗. Since C1(L) is generated by
two 1-simplices b and c of L and

d1b = −d1c

(check!), we see that Z1(L) = Z[b − c]. Since there are no 2-simplices
in L, B1(L) is trivial, so H1(L) ∼= Z1(L) is a free group generated by
the class of b+ c.
The generator for H1(K) was calculated in the example 9.6., the result
was that as a generator for H1(K) ∼= Z we can choose the homology
class of the cycle d (the diagonal of the square). Now we claim that in
H(K)

[b+ c] = 2[d],
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which would be sufficient for the claim. This can be seen as follows. In
C1(K) the elements

−dU = d− a− c,

dV = d+ a− b

are boundaries, hence vanish in homology. Adding them together we
obtain in homology

0 = [d(V − U)] = [d− a− c+ d+ a− b] = [2d− (b+ c)],

which is the same as [b+ c] = 2[d] and we are done.

Remark: Actually it is enough to do b), since a) can be obtained as
a simple corollary of b). Indeed, suppose dM is a retract of M . This
means that there exists continuous mapping r : M → dM such that
r ◦ i = id. Taking stars of this equations gives us

r∗ ◦ i∗ = id .

Let u be the generator of H1(dM). Then i∗(u) = 2v for a generator v
of H1(M). This implies that

u = id(u) = r∗(i∗(u)) = r∗(2v) = 2r∗(v).

This equation cannot be true, since r∗(v) = mu for some m ∈ Z and
equation u = 2mu is impossible. Essentially if you think of the situation
in terms of mappings Z → Z, then i∗ is mapping x 7→ 2x and such a
homomorphism do not have left inverse r∗ : Z → Z, which would be
also a homomorphism.
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