1. Let A be the infinitesimal generator of a strongly continuous semigroup T with growth bound ω_0, that is, $\omega_0 := \inf \{ \omega \in \mathbb{R} : \exists M \geq 1, \| T(t) \| \leq Me^{\omega t} \text{ for all } t \geq 0 \}$. Show that $\rho(A^*)$ contains the right half-plane $\{ \lambda \in \mathbb{C} : \text{Re} \lambda > \omega_0 \}$ and that $R(\lambda, A^*) = R(\lambda, A)^*$ for all $\lambda \in \mathbb{C}$ with $\text{Re} \lambda > \omega_0$.

2. Let X be a Banach space and let $f : [a, b] \to X^*$ be continuous from $[a, b]$ to X^* equipped with the weak*-topology. Show that the mapping

$$x \mapsto \int_a^b \langle x, f(s) \rangle ds$$

defines a continuous linear functional on X, that is, an element of X^*. This element is denoted $\int_a^b f(s) ds$ and is called the weak* Riemann integral of f. (Hint: Banach-Steinhaus).

3. Let A be the infinitesimal generator of a strongly continuous semigroup T on the Banach space X. Prove that X is \ominus- reflexive with respect to T if and only if $R(\lambda, A)$ is a compact operator in the weak topology on X determined by X^\ominus, that is, the weakest topology on X making the functionals $x \mapsto \langle x, x^\ominus \rangle$ continuous for all $x^\ominus \in X^\ominus$.

4. Let A be the infinitesimal generator of a strongly continuous semigroup T on the Banach space X. Prove that X is \ominus^\ominus- reflexive with respect to T if and only if X^\ominus is \ominus- reflexive with respect to T^\ominus.

1