Page tree
Skip to end of metadata
Go to start of metadata



Go to start of metadata

1. Course title

Avaruusfysiikan numeeriset menetelmät

Rymdfysikens numeriska metoder

Numerical Space Physics

2. Course code


3. Course status: optional

-Which degree programme is responsible for the course?
Master’s Programme in Particle Physics and Astrophysical Sciences

-Which module does the course belong to?
PAP300 Advanced Studies in Particle Physics and Astrophysical Sciences (optional for Study Track in Astrophysical Sciences)

-Is the course available to students from other degree programmes?

4. Course level (first-, second-, third-cycle/EQF levels 6, 7 and 8)

Master’s level, degree programmes in medicine, dentistry and veterinary medicine = secondcycle
degree/EQF level 7
Doctoral level = third-cycle (doctoral) degree/EQF level 8

-Does the course belong to basic, intermediate or advanced studies (cf. Government Decree
on University Degrees)?
Advanced studies

5. Recommended time/stage of studies for completion

-The recommended time for completion may be, e.g., after certain relevant courses have
been completed.

6. Term/teaching period when the course will be offered

Given every second year (odd years) in the spring term, IV period.

7. Scope of the course in credits

5 cr

8. Teacher coordinating the course

Jens Pomoell

9. Course learning outcomes

  • You will learn about the various simulation methods that are used in space physics, why they are used and how they are used, and what their strengths and weaknesses are.

  • You will learn hands-on what running a simulation entails and how the data can be analysed.

  • You will understand the principles behind the numerical methods of the simulations, in particular magnetohydrodynamics.

  • You will be able to study space physics problems using advanced numerical simulations. 

10. Course completion methods


  • Exercises and final project. Exercises are mostly small programming tasks, derivations or literature reviews. The final project consists of a larger problem in which the student independently applies a simulation method to study a specific system.
  • Focus on contact teaching, can also be taken as a distance learning course

11. Prerequisites

12. Recommended optional studies


13. Course content

The course consists of three thematic packages.

  1. To begin with, the role of simulation methods in space physics is reviewed in which the how, what and why of simulations are presented on a general level. More focused topics such as methods for visualisation and analysis of simulation data are also discussed. 
  2. The second theme focuses on individual algorithms, in particular the numerical methods of hyperbolic conservation laws, magnetohydrodynamics, and PIC simulations.
  3. A major part of the course is the final hands-on project assignment in which the students individually apply a simulation method to study a particular problem in space physics.

14. Recommended and required literature

  • Lecture notes
  • Handout (on-line) supplementary material
  • Basic textbooks on plasma physics

15. Activities and teaching methods in support of learning

  • Lectures

  • Exercises (discussed during lectures)

  • Interactive demo sessions
  • Discussions and problem solving in groups
  • Final project with accompanying report/presentation

16. Assessment practices and criteria, grading scale

  • Final grade is based on exercises (20 %) and final project (80 %).

17. Teaching language

  • English

  • No labels