Child pages
  • Sobolev spaces, autumn 2013
Skip to end of metadata
Go to start of metadata

The Sobolev spaces course/seminar, autumn 2013,

is run by

Dr Ritva Hurri-Syrjänen

Number of credits given to participants

10 op.


The participants should already have knowledge of the courses Real Analysis I and the basic course on Functional Analysis.


Week numbers 36-42 and 44-50 Tuesday 10-12 C122, Wednesday12-14 B321.


are awarded to the participants for giving presentations.

Some useful books 

Robert A. Adams: Sobolev Spaces, Academic Press, Boston, MA, 1975.

Robert A. Adams and John J. F. Fournier: Sobolev Spaces, Second edition.-Pure and Applied Mathematics Series 140, Elsevier/Academic Press, Amsterdam, 2003.

Haim Brezis: Functional Analysis, Sobolev Spaces and Partial Differential equations, Springer, New York Dordrecht Heidelberg London, 2011.

David Gilbarg and Neil S. Trudinger: Elliptic Partial Differential Equations of Second Order, 2nd Edition, Revised 3rd Printing, Springer-Verlag, Berlin Heidelberg, 2001.

Alois Kufner, Oldrich John and Svatopluk Fucik: Function Spaces, Noordhoff International Publishing, Leyden, 1977.

Giovanni Leoni: A First Course in Sobolev Spaces, Graduate Studies in Mathematics, Volume 105, American Mathematical Society, Providence, Rhode Island, 2009.

Vladimir Maz'ya: Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Berlin Heidelberg, 2011.

Vladimir Maz'ya and Sergey Poborchi: Differentiable Functions on Bad Domains, World Scientific, Singapore, 1997.

S. L. Sobolev:Some Applications of Functional Analysis in Mathematical Physics, Third Edition, Translations of Mathematical Monographs, Volume 90, American Mathematical Society, Providence, Rhode Island, 1991.

Luc Tartar: An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, Springer-Verlag, Berlin Heidelberg, 2007.



Course sign up

After 15.09.2013 please follow this link in order to sign up.


  • No labels