Child pages
  • JYM aihealueet
Skip to end of metadata
Go to start of metadata

Johdatus yliopistomatematiikkaan

Kurssin oppimistavoitteet: Aihealueet

 

Alla olevasta taulukosta voi tarkistaa, millä tasolla kurssilla opittavat aihealueet olisi tarkoitus osata. Oppimistavoitetta lähestyvät taidot eivät vielä välttämättä riitä takaamaan kurssin läpipääsyä. Kurssin läpäisemiseksi tulisi oppimistavoitteet saavuttaa ainakin joissakin aihealueissa. Oppimistavoitteen saavuttaminen kaikissa aihealueissa tarkoittaa, että opiskelijalla on mahdollisuus korkeimpaan arvosanaan.

 

AihealueTarkemmat aiheetOppimistavoitetta lähestyvät taidotOppimistavoitteen saavuttavat taidot

Todistustekniikat






       

 

 

 

 

Induktio

Hallitsee induktiotodistuksen vaiheet eli tutkii alkuaskeleen, muodostaa induktio-oletuksen ja tietää, mitä induktioaskeleessa pitäisi osoittaa.

Osaa laskea rekursiivisesti määritellyn jonon alkioita.

Osaa laatia pätevän induktiotodistuksen sekä I että II induktioperiaatetta käyttäen.

Joukkoja koskevat todistukset

Osaa konkreettisessa tilanteessa perustella, onko joukko toisen joukon osajoukko.

Pystyy luonnostelemaan rakenteen todistukselle, jossa kaksi joukkoa osoitetaan samaksi.

Osaa abstraktissa tilanteessa osoittaa joukon toisen joukon osajoukoksi.

Osoittaa kaksi joukkoa samoiksi näyttämällä sisältymisen molempiin suuntiin.

Vastaesimerkin käyttö

Tunnistaa väitteen epätodeksi.

Kumoaa epätodet väitteet konkreettisilla vastaesimerkeillä.

"Jos ..., niin ..." ja "jos ja vain jos" -muotoisten väitteiden todistaminen

Pystyy luonnostelemaan rakenteen tämän tyyppisten väitteiden todistuksille eli hahmottaa, mitä voi käyttää oletuksena ja mitä pitää osoittaa.

Osaa laatia todistuksen tämän tyyppiselle joukkoja tai kuvauksia koskevalle väitteelle.

Epäsuora päättely

Tunnistaa oletukset ja väitteen sekä osaa muodostaa vastaoletuksen eli antiteesin.

Osaa laatia pätevän epäsuoran todistuksen.

LogiikkaLoogiset konnektiivit

Tuntee loogiset konnektiivit ja niiden totuustaulut.

Osaa tulkita implikaation, konjuktion ja disjunktion negaation omin sanoin loogisesti ekvivalentissa muodossa.

Osaa etsiä totuustaulujen avulla annetun väitteen kanssa loogisesti ekvivalentin väitteen.

KvanttoritOsaa muotoilla väitteitä kvanttoreita käyttäen ja tulkita kvanttoreita sisältäviä väitteitä omin sanoin.

Hahmottaa kvanttorien järjestyksen merkityksen ja kvanttorien negaatioiden merkityksen.

Pystyy perustelemaan, onko kaksi kvanttoria tai kvanttorin ja negaation sisältävä väite tosi vai epätosi.

Joukot

Merkinnät

Ymmärtää, mitä käytetyillä merkinnöillä tarkoitetaan.

Käyttää itse moitteettomia merkintöjä ja nimityksiä (esimerkiksi alkio kuuluu joukkoon ja osajoukko sisältyy joukkoon).

Osajoukon käsite

Tunnistaa, mitä joukot ovat annetun joukon osajoukkoja.

Erottaa toisistaan alkion ja osajoukon.

Pystyy osoittamaan joukon toisen joukon osajoukoksi myös abstraktissa tilanteessa.

Yhdiste, leikkaus, erotus, perusjoukko, komplementti

Osaa muodostaa annetuista joukoista joukko-operaatioilla uusia joukkoja konkreettisissa tilanteissa.

Pystyy havainnollistamaan joukko-operaatioita Vennin kaavioilla.

Osaa todistaa joukko-operaatioita sisältäviä väitteitä oikeiksi tai vääriksi myös abstrakteissa tilanteissa.

Potenssijoukko

Osaa muodostaa annetun (pienen) joukon potenssijoukon luettelemalla sen kaikki alkiot.

Hallitsee osajoukoksi osoittamisen ja kahden joukon samaksi osoittamisen myös potenssijoukon tapauksessa.

Tulojoukko

Hahmottaa tulojoukon alkiot järjestettyinä pareina.

Pystyy yksinkertaisissa tilanteissa havainnollistamaan tulojoukkoa koordinaatistossa.

Hallitsee osajoukoksi osoittamisen ja kahden joukon samaksi osoittamisen myös tulojoukon tapauksessa.

Osaa piirtää tulojoukkoja koordinaatistoon sekä konkreettisissa että abstrakteissa tilanteissa.

Kuvaukset

Kuvauksen käsite

Muistaa kuvauksen määritelmän.

Pystyy havainnollistamaan piirtämällä, millainen sääntö on kuvaus ja millainen ei ole.

Käyttää oikein nimityksiä kuvaus, funktio, kuva-alkio, lähtö ja maali.

Osaa perustella, onko annettu sääntö kuvaus vai ei.

Kuva ja alkukuva

Muistaa määritelmät.

Pystyy havainnollistamaan kuvan ja alkukuvan käsitteitä piirtämällä.

Osaa määrittää annetun konkreettisen joukon kuvan ja alkukuvan annetussa kuvauksessa.

Osaa todistaa abstrakteissa tilanteissa kuvaan ja alkukuvaan liittyviä väitteitä oikeiksi tai vääriksi.

Injektio ja surjektio

Muistaa määritelmät.

Pystyy havainnollistamaan piirtämällä, millainen kuvaus on injektio ja millainen on surjektio.

Tunnistaa kuvaajan perusteella, onko funktio injektio tai surjektio.

 

Osaa määritelmiä käyttäen perustella, onko annettu konkreettinen kuvaus injektio tai surjektio.

Osaa todistaa abstrakteissa tilanteissa injektion ja surjektion käsitteisiin liittyviä väitteitä oikeiksi tai vääriksi.

Käänteiskuvaus

Pystyy havainnollistamaan piirtämällä käänteiskuvauksen käsitettä.

Osaa etsiä kuvaukselle käänteiskuvausehdokkaan.

Pystyy tilanteesta riippuen joko osoittamaan, että kuvaus ei ole bijektio, minkä vuoksi sillä ei ole käänteiskuvausta, tai näyttämään käänteiskuvauksen määritelmään nojautuen löytäneensä kuvaukselle käänteiskuvauksen.

Relaatiot

Relaatiot ja niiden refleksiivisyys, symmetrisyys ja transitiivisuus

Pystyy havainnollistamaan yksinkertaisia relaatioita nuolikaavioilla ja koordinaatistossa.

Tunnistaa, onko relaatio refleksiivinen, symmetrinen tai transitiivinen.

Pystyy luonnostelemaan määritelmien pohjalta rakenteen todistukselle, jossa osoitetaan annettu relaatio refleksiiviseksi, symmetriseksi tai transitiiviseksi.

Osaa perustella täsmällisesti määritelmiin nojautuen, onko annettu relaatio refleksiivinen, symmetrinen tai transitiivinen.

Ekvivalenssirelaatio ja ekvivalenssiluokat

Osaa tutkia, onko annettu konkreettinen relaatio ekvivalenssirelaatio.

Pystyy ekvivalenssiluokan määritelmän avulla selvittämään, mitä alkioita on tietyssä ekvivalenssiluokassa, jonka edustaja on annettu.

Osaa abstraktissakin tilanteessa perustella täsmällisesti määritelmän avulla, onko kysymyksessä ekvivalenssirelaatio vai ei.

Pystyy määrittämään annetun ekvivalenssirelaation ekvivalenssiluokat edustajien avulla ilmaistuna ja kertomaan, mitä muita alkioita niihin kuuluu.

Kompleksiluvut

Kompleksiluvuilla laskeminen

Osaa laskea kompleksilukujen summia, erotuksia, tuloja ja osamääriä.

Osaa määrittää kompleksiluvun reaaliosan, imaginaariosan, liittoluvun sekä itseisarvon ja havainnollistaa niitä kompeksitasossa.

Osaa havainnollistaa kompeksiluvun vastalukua, käänteislukua ja liittolukua kompleksitasossa.

Osaa ratkaista ensimmäisen asteen yhtälöitä kompleksilukujen joukossa myös tilanteissa, joissa yhtälössä esiintyy sekä tuntematon että sen liittoluku.

Osaa laatia todistuksia joillekin kompleksilukujen laskusäännöille.

Napaesitys ja eksponenttiesitys

Osaa määrittää kompleksiluvun itseisarvon ja vaihekulman radiaaneissa itse laatimansa havainnollistavan piirroksen avulla.

Osaa määrittää kompleksiluvun napaesityksen sekä eksponenttiesityksen ja käyttää niitä tulojen, potenssien, osamäärien, käänteis- ja liittolukujen määrittämiseen.

Käyttää muistikolmioita sopivien vaihekulmien määrittämiseen.

Toisen asteen yhtälö ja binomiyhtälö

Löytää reaalikertoimisen toisen asteen yhtälön ratkaisut myös silloin, kun ne eivät ole reaalilukuja.

Tuntee menetelmän, jolla binomiyhtälö voidaan ratkaista eksponenttiesityksen avulla, ja osaa sitä käyttäen löytää ainakin yhden ratkaisun annetulle binomiyhtälölle.

Pystyy päättelemään ratkaisujen lukumäärän binomiyhtälöstä jo ennen ratkaisua ja tuntee periaatteen, miten ratkaisut sijoittuvat kompeksitasoon.

 Osaa ratkaista binomiyhtälöitä eksponenttiesityksen avulla. Löytää kaikki ratkaisut ja pystyy havainnollistamaan niiden sijaintia kompleksitasossa piirtämällä.

Tietojenkäsittelytieteen 
 ja tilastotieteen matematiikka

 

 

 

Geometrinen sarja

Tunnistaa geometrisen lukujonon ja geometrisen sarjan.

Osaa laskea geometrisen sarjan osasumman ja suppenevan geometrisen sarjan summan.

Pystyy soveltamaan geometrista lukujonoa ja geometrista sarjaa sopivien ongelmien ratkaisussa.

Binomikertoimet

Osaa määrittää pieniä binomikertoimia Pascalin kolmion avulla.

Osaa laskea isompia binomikertoimia kertoman avulla.

Pystyy soveltamaan binomikertoimia erilaisissa osajoukkojen (kombinaatioiden) lukumäärää koskevissa ongelmissa.

Pystyy todistamaan yksinkertaisia binomikertoimia koskevia sääntöjä.

Logaritmit

Osaa laskea 2-kantaisen logaritmin arvoja jakolaskun avulla.

Pystyy hahmottelemaan logaritmifunktion muodon.

Tuntee potenssin-, tulon- ja osamäärän logaritmisäännöt.

Pystyy päättelemään, miten luvun a potenssiin korottaminen tai sen kertominen ykköstä suuremmalla luvulla vaikuttavat logaritmiin log(a).

Osaa ratkaista yksinkertaisia logaritmi- ja eksponenttiyhtälöitä logaritmin määritelmän ja logaritmisääntöjen avulla.

Modulaarinen aritmetiikka

Osaa määrittää yksinkertaisissa tilanteissa jakojäännöksiä ja perustella vastauksensa.

Osaa laskea, mitä on esimerkiksi 53 mod 7.

Pystyy käyttämään kongruenssien laskusääntöjä hankalampien jakojäännösten selvittämiseen.

Verkot

Erottaa toisistaan suunnatun ja suuntaamattoman verkon.

Tietää, mitä tarkoittavat käsitteet solmu ja kaari.

Osaa päätellä suuntaamattoman verkon solmun asteen.

Osaa kuvata verkkoja vierusmatriisien avulla.

 

 

Osaa tutkia, onko annettu suuntaamaton verkko kaksijakoinen.

Pystyy osoittamaan, että annetut verkot eivät ole isomorfisia tutkimalla solmujen asteita.

Pystyy osoittamaan, että annetut verkot ovat isomorfiset käyttämällä hyväksi niiden vierusmatriiseja.

Osaa päätellä polun pituuden ja tunnistaa, mitkä polut ovat syklejä. Pystyy päättelemään, onko annettu verkko yhtenäinen.

  • No labels