Geometric measure theory in metric spaces, spring 2010
Lecturer
Scope
10 cu.
Type
Advanced studies
Prerequisites
Good background in measure and integration and real analysis, courses mitta ja integraali and reaalianalyysi I and II suffice
Lectures
Weeks 3-9 and 11-18 Tuesdays 10-12 and Thursdays 10-12 C123
No lectures and exercises on March 4, 9 and 11
Possible topics
- Hausdorff measures in metric spaces; Frostman's lemma and existence of subsets of finite and positive measure
- Lipschitz mappings into metric spaces and their 'Kirchheim-differentiability'
- rectifiable sets in the sense of Ambrosio and Kirchheim
- currents in the sense of Ambrosio and Kirchheim
- functions of bounded variation
- geometric measure theory in Heisenberg groups
Bibliography
K.J. Falconer, Geometry of fractal sets, Cambridge University Press, 1985
H.Federer, Geometric measure theory, Springer-Verlag, 1969
P. Mattila, Geometry of sets and measures in euclidean spaces, Cambridge University Press,1995
C.A. Rogers, Hausdorff measures, Cambridge University Press, 1970
Exercise group
Ryhmä |
Päivä |
Aika |
Paikka |
Pitäjä |
---|---|---|---|---|
1. |
Thu |
16-18 |
B322 |
Pertti Mattila |