Skip to end of metadata
Go to start of metadata

     
  

Summary:
This is the homepage of the of the weekly Astrophysics journal club at the Division of Particle physics and astrophysics at the University of Helsinki.
The meetings are of an unofficial nature and the main driver is to get together and discuss recent interesting papers. This meeting differs from the
Seminar series in that people are not expected to talk about their own research and in that no credits will be awarded to students. The meetings are
open to everyone and the aim is to stimulate discussion about recent results and provide the possibility to
 learn about research that is not necessarily
connected to one's own field of expertise.

All topics are welcome ranging from planetary science to larger scales involving stellar
 astrophysics, Milky Way studies, galaxies and cosmology.
The only requirement is that the
 presented papers should be interesting to a wider audience and that they should be presented 
in such a way that also
a non-expert can follow the presentation. In the meetings we discuss one paper each week for about 45 minutes.
 All meetings are in English.

Location: Conference room C310 on the third floor.

Time: Thursdays at 10.15-11.00am during term time.

Speakers: Please contact Peter Johansson, Mikael Granvik or Clif Kirkpatrick if you want to present a paper.

Present Program: The next talk will be on the 28th of March

Presenter: Till Sawala:
Paper title: Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM
Authors: Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D.
Reference: 2019, ApJ submitted, ArXiv: 1903.07603

Abstract: We present an improved determination of the Hubble constant (H0) from Hubble Space Telescope (HST) observations of 70 long-period Cepheids in the Large Magellanic Cloud. These were obtained with the same WFC3 photometric system used to measure Cepheids in the hosts of Type Ia supernovae. Gyroscopic control of HST was employed to reduce overheads while collecting a large sample of widely-separated Cepheids. The Cepheid Period-Luminosity relation provides a zeropoint-free link with 0.4% precision between the new 1.2% geometric distance to the LMC from Detached Eclipsing Binaries (DEBs) measured by Pietrzynski et al (2019) and the luminosity of SNe Ia. Measurements and analysis of the LMC Cepheids were completed prior to knowledge of the new LMC distance. Combined with a refined calibration of the count-rate linearity of WFC3-IR with 0.1% precision (Riess et al 2019), these three improved elements together reduce the full uncertainty in the LMC geometric calibration of the Cepheid distance ladder from 2.5% to 1.3%. Using only the LMC DEBs to calibrate the ladder we find H0=74.22 +/- 1.82 km/s/Mpc including systematic uncertainties, 3% higher than before for this particular anchor. Combining the LMC DEBs, masers in NGC 4258 and Milky Way parallaxes yields our best estimate: H0 = 74.03 +/- 1.42 km/s/Mpc, including systematics, an uncertainty of 1.91%---15% lower than our best previous result. Removing any one of these anchors changes H0 by < 0.7%. The difference between H0 measured locally and the value inferred from Planck CMB+LCDM is 6.6+/-1.5 km/s/Mpc or 4.4 sigma (P=99.999% for Gaussian errors) in significance, raising the discrepancy beyond a plausible level of chance. We summarize independent tests which show this discrepancy is not readily attributable to an error in any one source or measurement, increasing the odds that it results from a cosmological feature beyond LambdaCDM.

Present program:

 

Past program:

Spring 2019:


Autumn 2018:


Spring 2018:

Autumn 2017:

Spring 2017:

Autumn 2016:

Spring 2016:

Autumn 2015:

Spring 2015:


Autumn 2014:

Spring 2014:

Autumn 2013:

Spring 2013:

Autumn 2012:

Spring 2012:

Autumn 2011:

  • No labels