CONFORMAL INVARIANCE OF DOUBLE-DIMER LOOPS

RICHARD KENYON

Brown University
Dimer model
Double-Dimer model

Two independent uniform random dimer coverings
Long loops.
Pr(loop surrounding both p_1, p_2?)
On a surface, a **finite lamination** is an isotopy class of pairwise disjoint non-contractible, non-peripheral simple closed curves.
Let z_1, \ldots, z_k points in U. For each finite lamination L in $U \setminus \{z_1, \ldots, z_k\}$, $\Pr_\epsilon(L)$ converges and depends only on the conformal type of $U \setminus \{z_1, \ldots, z_k\}$. (Ignore peripheral and contractible loops.)
Single dimer Kasteleyn matrix for \mathbb{Z}^2

\[
\begin{array}{cccc}
-1 & 1 & -1 & \\
i & -i & i & -i \\
1 & -1 & 1 & \\
i & -i & -i & i \\
-1 & 1 & -1 & \\
i & -i & i & -i \\
1 & -1 & 1 & \\
\end{array}
\]

Theorem [Kasteleyn] Let $K : \mathbb{C}^W \rightarrow \mathbb{C}^B$ as above.

$K = (K_{w,b})$ where $K_{w,b} = 0$ if w, b are not adjacent and otherwise $K_{w,b} = \{1, i, -1, -i\}$ according to direction.

Then $|\det K|$ is the number of dimer covers.
A function in the kernel of K is \textit{discrete analytic}.
A function in the kernel of K is discrete analytic.

\[
K f(w) = f(w + \epsilon) - f(w - \epsilon) + i(f(w + i\epsilon) - f(w - i\epsilon))
\]

\[
= 2\epsilon \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f(w)
\]

\[
= 2\epsilon \frac{\partial}{\partial \bar{z}} f(w)
\]

A function in the kernel of K is discrete analytic.

$K^{-1}(b, \cdot)$ is discrete meromorphic with pole at b.
Double dimer model

Let \(\mathbb{K} = \begin{pmatrix} 0 & K \\ K^t & 0 \end{pmatrix} \). (indexed by all vertices).

Then \(\det \mathbb{K} \) is the partition function of double-dimer configurations.

Let \(\Omega(G) \) be the set of “double-dimer configurations”: coverings of \(G \) with even-length loops and doubled edges.

Each configuration in \(\Omega \) with \(k \) nontrivial loops comes from \(2^k \) pairs of dimer covers.
Double dimer model

Now introduce quaternionic (instead of positive real) edge weights.

$$q = a_0 + a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} = \begin{pmatrix} a_0 + a_1 i & a_2 + a_3 i \\ -a_2 + a_3 i & a_0 - a_1 i \end{pmatrix}.$$

$$q^* = a_0 - a_1 \hat{i} - a_2 \hat{j} - a_3 \hat{k}$$

The weight of $$\omega \in \Omega$$ is now defined to be

$$\prod_{\text{cycles}} (m + m^*)$$

where $$m$$ is the product of the edge weights around the cycle.

Note $$(q_1q_2 \ldots q_k)^* = q_k^* \ldots q_1^*.$$

Doubled edges count $$qq^*$$.

This *couples* the individual dimer covers: they are no longer independent.
\[q_1 q_2^* + q_2 q_1^* \]
\[(q_1 + q_1^*) q_2 q_2^* \]
\[(q_2 + q_2^*) q_1 q_1^* \]
\[q_1 q_1^* q_2 q_2^* \]
\[q_1 q_1^* \]
\[q_2 q_2^* \]
Theorem: \(Q_{\text{det}} K = \sum_{\Omega} \prod_{\text{cycles}} (m + m^*) \).

Here \(Q_{\text{det}} \) is the quaternion determinant [Dyson].

It is defined for a quaternion-Hermitian matrix by

\[
Q_{\text{det}} M = \sum_{\sigma \in S_n} (-1)^\sigma \prod_{\text{cycles c of } \sigma} m(c)
\]

Theorem [Mehta]. \(Q_{\text{det}} K_{n \times n} = \sqrt{\det \tilde{K}_{2n \times 2n}} \),

where \(\tilde{K} \) is the matrix obtained by replacing each quaternion with its \(2 \times 2 \) matrix block.
Example: put weights q^x on north edges:

```
\begin{array}{cccc}
  1 & q & q^2 & q^3 \\
  q & q & q^2 & q^3 \\
  q^2 & q^2 & q^2 & q^3 \\
  q^3 & q^3 & q^3 & q^3 \\
\end{array}
```

Suppose $qq^* = 1$.

Then $Z(q) = \det \mathbb{K}(q)$ counts loops with weight $q^{\text{Area}} + (q^*)^{\text{Area}}$.

In particular $Z(e^{i\theta})$ counts loops with weight $2 \cos(\text{Area} \theta)$.

Friday, June 15, 12
Another example.

Suppose \(qq^* = 1 \).

Loops surrounding \(f_0 \) have weight \(q + q^* \).

All other loops have weight 2.
Another example.

Loops around A: $q_1 + q_1^*$

Loops around B: $q_2 + q_2^*$

Loops around A and B: $q_1 q_2 + (q_1 q_2)^*$

We can choose q_1, q_2 so that these three quantities are algebraically independent.
Another example.

Loops around A: $q_1 + q_1^* = 2x$

Loops around B: $q_2 + q_2^* = 2y$

Loops around A and B: $q_1 q_2 + (q_1 q_2)^* = 2z$

We can choose q_1, q_2 so that these three quantities are algebraically independent.

$$Z = \sum_{i,j,k \geq 0} C_{i,j,k} x^i y^j z^k$$
Lemma (based on [Fock-Goncharov])

By varying the qs one can extract from $\det K$ the contribution from any finite lamination.

That is, writing $\det K = \sum_L C_L \prod (m + m^*)$ we have

\[
C_L = \int \phi_L \det K \, dq_1 \ldots dq_k.
\]

This is an integral over $SU(2)^k$.

Can one compute $Z(q) = \det K(q)$?
Theorem:

\[F(q) := \lim_{\varepsilon \to 0} \frac{Z_\varepsilon(q)}{Z_\varepsilon(1)} \]
exists and is conformally invariant.

Proof idea:

Take a path of weights \(q_t, 0 \leq t \leq 1 \), with \(q_0 = 1 \).

\[\frac{d}{dt} \log Z_\varepsilon(q_t) = \frac{1}{2} \frac{d}{dt} \log \det \tilde{K}(q_t) \]

which can be written as a sum along the zippers of the Green’s function \(\tilde{K}^{-1}(q_t) \)... and \(\tilde{K}^{-1}(q_t) \) is a discrete meromorphic function.

(depends analytically on the domain). \(\Box \)
Simple example: $m \times n$ annulus.

Let $q = e^{-n\pi/m}$.

In limit $m, n \to \infty$ with $m/n \to \tau$ (and m even)

$$
\sum_{k=0}^{\infty} \Pr(k \text{ loops}) X^k = \prod_{j=1}^{\infty} \frac{(1 + q^j X + q^{2j})^2}{(1 + q^j + q^{2j})^2}.
$$

0 loops

1 loop

2 loops

...
Take \(q_1 = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \) and \(q_2 = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \).

Then \(Z = \sum_k C_k (2 + t^2)^k \) where \(k \) counts the number of loops surrounding both \(A \) and \(B \).

Theorem: \(\mathbb{E}(k) = g(A, B) \), the Dirichlet Green’s function on \(U \).
Uniform cycle-rooted tree (uniform unicycle)

For the uniform unicycle on an $n \times n$ grid,

\[
\mathbb{E}[\text{Area of cycle}] = \frac{2}{\pi} \log n + O(1)
\]
\[
\mathbb{E}[\text{Area}^2] = Cn^2 + o(n^2)
\]

\textbf{Thm}[Levine-Peres]

\[
\mathbb{E}[\text{Length}] = 8 + o(1).
\]
cycles of unicycles on curved surfaces:

CRT on a sphere

CRT on a disk in \mathbb{H}^2

(A. Kassel)
intensity of LERW
(joint w/Wilson)

Figure 2. Intensity of loop-erased random walk on \mathbb{Z}^2. The origin is at the lower-left, and directed edge-intensities as well as vertex-intensities of the LERW are shown. (See also Figure 11.)
THE END