Where? – Simons Center, Stony Brook
When? – January–April 2013
Organizers: Ilia Binder, John Cardy, Andrei Okounkov, Paul Wiegmann

Workshops:
- “Integrable structures in random processes" January 21–25 (Binder-Okounkov)
- “Random Tiling" February 11–15 (Kenyon-de Gier-Nienhuis)
- “Conformal invariance in continuous and discrete systems" April 8–12 (Cardy-Wiegmann-Lawler)

for more details visit
http://scgp.stonybrook.edu/scientific/programs/
or contact one of the organizers
Holomorphic Parafermions on the Lattice and in Conformal Field Theory

John Cardy

University of Oxford

Helsinki, June 2012
Outline

- some pre-history
- discretely holomorphic parafermions in Ising and \mathbb{Z}_N models
- discretely holomorphic parafermions from random curves
- discrete holomorphicity and integrability
- holomorphic parafermions in CFT and SLE
Green [1953] invented the term parastatistics to describe multi-particle states in quantum field theory which transform according to non-trivial representations of S_n.

Fradkin-Kadanoff [1980] identified parafermions in classical 2d lattice models which were generalisations of Kaufman’s 1949 Ising model fermions: they argued that in the scaling limit at criticality

$$\langle \psi_\sigma(z_1)\psi_\sigma(z_2) \rangle \propto (z_1 - z_2)^{-2\Delta}(z_1^* - z_2^*)^{-2\overline{\Delta}}$$

$\sigma = \Delta - \overline{\Delta}$ is ‘fractional spin’

if Δ or $\overline{\Delta} = 0$, ψ_σ is (anti-)holomorphic

in 2d quantum models (eg for the fractional quantum Hall effect) these were called anyons [Wilczek, 1982]
Example: the Ising model

- \mathbb{Z}^2 lattice, degrees of freedom $s_r = \pm 1$, weights

$$e^{\sum_{rr'} J_{rr'} s(r)s(r')} \propto \prod_{rr'} \left(1 + x_{rr'} s(r)s(r') \right)$$

- \mathbb{Z}_2 symmetry under $s(r) \rightarrow -s(r)$
- Disorder variable $\mu(R)$: $s(r)$ identified with $-s(r)$ as r goes around R
- Equivalent to taking $x_{rr'} \rightarrow -x_{rr'}$ on edges (rr') which cross a ‘string’ attached to R:

![Diagram of a lattice with a string and a dot indicating the string's attachment point]
define fermion $\psi_\sigma(rR)$ on the edge (rR):

$$\psi_\sigma(rR) = s(r) \cdot \mu(R) e^{-i\sigma \theta_{rR}}$$

$$\mu(R_4) = \frac{1 - xs(r_1)s(r_2)}{1 + xs(r_1)s(r_2)} \mu(R_3)$$
\[
(1 + xs(r_1)s(r_2)) \mu(R_4) = (1 - xs(r_1)s(r_2)) \mu(R_3)
\]

- multiply both sides by \(s(r_1)\) and \(s(r_2)\) and use \(s^2 = 1\):

\[
s(r_1)\mu(R_4) + xs(r_2)\mu(R_4) = s(r_1)\mu(R_3) - xs(r_2)\mu(R_3)
\]

\[
xs(r_1)\mu(R_4) + s(r_2)\mu(R_4) = -xs(r_1)\mu(R_3) + s(r_2)\mu(R_3)
\]

- on the other hand we have discrete holomorphicity if

\[
e^{i\pi/4}\psi_{13} + e^{3i\pi/4}\psi_{23} + e^{5i\pi/4}\psi_{24} + e^{7i\pi/4}\psi_{14} = 0
\]

- these are consistent if \(\sigma = \frac{1}{2}\) and \(x = \tanh J = \sqrt{2} - 1\) - the condition for the isotropic Ising model to be critical!
\[
(1 + xs(r_1)s(r_2)) \mu(R_4) = (1 - xs(r_1)s(r_2)) \mu(R_3)
\]

- multiply both sides by \(s(r_1)\) and \(s(r_2)\) and use \(s^2 = 1\):

\[
s(r_1)\mu(R_4) + xs(r_2)\mu(R_4) = s(r_1)\mu(R_3) - xs(r_2)\mu(R_3)
\]
\[
xs(r_1)\mu(R_4) + s(r_2)\mu(R_4) = -xs(r_1)\mu(R_3) + s(r_2)\mu(R_3)
\]

- on the other hand we have discrete holomorphicity if

\[
e^{i\pi/4}\psi_{13} + e^{3i\pi/4}\psi_{23} + e^{5i\pi/4}\psi_{24} + e^{7i\pi/4}\psi_{14} = 0
\]

- these are consistent if \(\sigma = \frac{1}{2}\) and \(x = \tanh J = \sqrt{2} - 1\) - the condition for the isotropic Ising model to be critical!

- this is true inside all correlation functions with other observables elsewhere and with all (compatible) boundary conditions

Holomorphic Parafermions
more generally we can take different couplings J, J' in different directions

we then get discrete holomorphicity only if we embed the lattice in \mathbb{R}^2 so each face is a rhombus of interior angle α and

$$\tanh J = \tan \left(\frac{\pi - \alpha}{4} \right), \quad \tanh J' = \tan \left(\frac{\alpha}{4} \right)$$

which implies $\sinh 2J \sinh 2J' = 1$, the condition for criticality
more generally we can take \(s(r) \in (1, \omega, \ldots, \omega^{N-1}) \) where
\[
\omega = e^{2\pi i/N}
\]

nearest neighbour interaction with most general weights

\[
\prod_{rr'} \left(1 + \sum_{j=1}^{N-1} w_j (s(r)^* s(r'))^j + \text{c.c.} \right)
\]

and similarly \(w'_j \) on the vertical edges

define disorder variables \(\mu(R) \) by \(s \rightarrow \omega s \) across the string

define parafermions

\[
\psi_\sigma \equiv e^{-i\sigma \theta^r} s(r) \mu(R)
\]
these are discretely holomorphic [Rajabpour, JC 2008] if \(\sigma = (N - 1)/N \) and

\[
 w_j = x_j(\alpha) = \prod_{j'=0}^{j-1} \frac{\sin(2\pi j' + \alpha)/2N}{\sin(2\pi (j' + 1) - \alpha)/2N),
 w'_j = x_j(\pi - \alpha)
\]

these are the weights of the Fateev-Zamolodchikov model [1982], which is critical and integrable in the sense of Yang-Baxter

F-Z [1985] assumed these parafermions are holomorphic in the scaling limit and used them as building blocks of the corresponding CFT.
consider a planar lattice built out of elementary faces or plaquettes, e.g. \mathbb{Z}^2

the degrees of freedom (a, b, \cdots) live on the vertices and the weight for a given configuration is

$$\propto \prod_{\text{faces}} W(a, b, c, d)$$

such models can also be realised as vertex models with degrees of freedom on the edges
the weights $W(a, b, c, d; u)$ depend on a real variable u (spectral parameter) such that, when summed over the central degree of freedom c

$$
\sum_c W(., ., c, .; u) W(., ., ., v) W(., ., c; u - v)
$$

$$
= \sum_c W(., c, ., u - v) W(., ., c; v) W(., c, ., ; u)
$$

for Ising and \mathbb{Z}_N models $W(a, b, c, d; u) \propto w(a, c; u)w(b, d; u')$

and Y-B equations are usually called star-triangle relations
the discretely holomorphic weights of the Ising and Z_N models satisfy the Yang-Baxter equations with α identified as the spectral parameter u

the spectral parameter tells us how to embed the lattice in \mathbb{R}^2 so as to get discrete holomorphicity (and conjecturally full conformal invariance in the scaling limit)
More general lattices

- this extends to an inhomogeneous 2-colourable ‘Baxter lattice’: such a lattice can always be embedded in \mathbb{R}^2 so that all its faces are rhombi, so it is isoradial: if the local weights are those determined by the local angle α then ψ_σ is discretely holomorphic.
the Yang-Baxter equations are equivalent to saying that different tilings of a hexagon do not change measure in exterior
many (but not all?) interesting lattice models may also be realised in terms of non-intersecting curves

Smirnov showed how to construct discretely holomorphic observables for some simple examples

a more instructive example is the $O(n)$ model on \mathbb{Z}^2 lattice [Nienhuis,Blöte]
in this case one considers curves $\gamma_{z_0z_e}$ from some point z_0 ending at a given edge z_e, with turning angle $\theta_{z_0z_e}$

- $\psi_\sigma(z_e) \equiv \mathbb{E}[e^{-i\sigma z_0z_e}]$

- $\sum_{\square} \psi_\sigma(z_e) \delta z_e = 0$ if the weights satisfy the critical Y-B equations and the faces are embedded in \mathbb{R}^2 as rhombi with angle $\alpha = \theta$ [Ikhlef, JC 2009]
Yang-Baxter equations are cubic functional equations for $W(\cdots; u)$

\[
\begin{align*}
W(u, u-v, v) &= W(u-v, u, v)
\end{align*}
\]

Discrete holomorphicity is a linear condition on $W(\cdots; u)$ for a fixed u.
Yang-Baxter equations are cubic functional equations for $W(\cdots; u)$

\[
\begin{align*}
u & = u - v \\
v & = u - v
\end{align*}
\]

discrete holomorphicity is a linear condition on $W(\cdots; u)$ for a fixed u

\[
\begin{align*}
4 & \quad 3 \\
1 & \quad 2
\end{align*}
\]

does one imply the other in general? Are there counter-examples?

connection is clearer in the limit $u - v \to 0$ when rhombus degenerates and both sets of equations simplify
Holomorphic parafermions from the continuum

- curve from z_0 to point on boundary of disc $z_e = z + \epsilon e^{i\theta}$
- in CFT language consider [cf. Werness’ SLE approach]

\[
\psi_\sigma(z) = \lim_{\epsilon \to 0} \int d\theta e^{-i\sigma \theta} \phi_{\text{boundary}}(z + \epsilon e^{i\theta})
\]

- [Simmons + JC] for $\sigma = \Delta_{21} = (6 - \kappa) / 2\kappa$ limit exists and $\psi_\sigma(z)$ is holomorphic
- moreover its correlators satisfy 2nd order linear differential equations wrt z
Holomorphic parafermions and CFT

- In the half-plane the parafermionic observable corresponds to the CFT correlation function

\[\left\langle \phi_{21}(z_0)\psi_\sigma(z) \right\rangle_\mathbb{H} \sim (z_0 - z)^{-\Delta_{21} - \sigma} \]

- As \(z \to \text{boundary} \), \(\psi_\sigma \to \phi_{21} \)

- Conformal invariance implies that these have the same scaling dimension and hence \(\sigma = \Delta_{21} = (6 - \kappa) / 2\kappa \)
extension to N curves

...this suggests that bulk holomorphic parafermions exist with
\[\sigma = \Delta_{N+1,1} \]

$N = 2$ is already identified in terms of boundary curves of F-K clusters [Smirnov, Riva+JC]

in CFT every boundary correlation function has a an extension into the complex z-plane – this suggests that to each boundary operator in a given CFT with scaling dimension Δ, there exists a holomorphic bulk operator with conformal spin Δ

if so, there may be a lot more possible discretely holomorphic observables out there!
Some outstanding problems

- is it always true that [cf Fendley’s talk]

 \[\text{discrete holomorphicity } \Leftrightarrow \text{criticality} + \text{Yang-Baxter integrability?} \]

 - can one do something useful with this? [eg Smirnov–Duminil-Copin]
 - boundary extensions [see Guttmann, Ikhlef talks]

- can convergence of \(\psi_\sigma \) to a truly holomorphic quantity be proved for cases other than the Ising model?
- major problem: not enough equations!
 - can this be used to prove convergence of the measure on curves to SLE à la Smirnov?
 - can this be used as a constructive route to the full scaling theory/CFT? [cf. talks by Hongler, Chelkak, Izyurov]

Holomorphic Parafermions
Where? – Simons Center, Stony Brook
When? – January–April 2013
Organizers: Ilia Binder, John Cardy, Andrei Okounkov, Paul Wiegmann
Workshops:
 “Integrable structures in random processes" January 21–25 (Binder-Okounkov)
 “Random Tiling" February 11–15 (Kenyon-de Gier-Nienhuis)
 “Conformal invariance in continuous and discrete systems" April 8–12 (Cardy-Wiegmann-Lawler)

for more details visit
http://scgp.stonybrook.edu/scientific/programs/
or contact one of the organizers