1. Prove the following version of the Gauss lemma: Let \(p \in M \) and \(v \in T_pM \) a vector such that \(\exp_p v \) is defined. Let \(w \in T_v(T_pM) = T_pM \). Then
\[
\langle \exp_{p*}v(v), \exp_{p*}v(w) \rangle = \langle v, w \rangle.
\]

2. Show that any connected Riemannian manifold \((M, g)\) admits a Riemannian metric \(\tilde{g} = \varphi g \), where \(\varphi : M \to \mathbb{R} \) is a positive \(C^\infty \)-function, such that \((M, \tilde{g})\) is bounded. In other words, there exists a constant \(C \) such that \(d_{\tilde{g}}(x,y) \leq C \) for all \(x, y \in M \).

[Hint: The following facts may be useful. (a): If \(h : M \to \mathbb{R} \) is a non-negative continuous function, then there exists a \(C^\infty \)-function \(f : M \to \mathbb{R} \) s.t. \(f(x) > h(x) \) for all \(x \in M \). (b): For every \(\varepsilon > 0 \) and for every \(p, q \in M \), there exists an admissible path \(\gamma : [0, L] \to M \) such that \(L = \ell(\gamma) \leq d(p, q) + \varepsilon \) and \(|\dot{\gamma}_t| = 1 \) except for finitely many \(t \in [0, L] \).]

3. Let \(M \) and \(N \) be Riemannian manifolds and \(f : M \to N \) a diffeomorphism. Suppose that \(N \) is complete and that there exists a constant \(c > 0 \) such that
\[
|v| \geq c|f_*p v|
\]
for all \(p \in M \) and for all \(v \in T_pM \). Prove that \(M \) is complete.

4. (Corrected version) Let \(M \) be a complete connected Riemannian manifold, \(N \) a Riemannian manifold and \(f : M \to N \) a smooth mapping that is a local isometry. Suppose that for every \(x, y \in N \) there exists a unique geodesic from \(x \) to \(y \). Prove that \(f \) is bijective (and hence an isometry).

[You may use the fact that local isometries preserve geodesics.]

5. Let \(M \) be a smooth manifold, \(N \) a Riemannian manifold and \(f : M \to N \) a surjective local diffeomorphism. Introduce on \(M \) a Riemannian metric such that \(f \) is a local isometry. Furthermore, show by examples that \(M \) (equipped with the Riemannian metric introduced above) need not be complete even if \(N \) is complete.